Generalized Gaussian model for EEG data 25th Young Statisticians Meeting

Željka Salinger¹

School of Mathematics, Cardiff University

YSM 2021

¹ joint work with N.N. Leonenko (Cardiff University, UK), N. Šuvak (J.J. Strossmayer University of Osijek, Croatia), A. Sikorskii and M.J. Boivin (Michigan State University, USA)

SalingerZ@cardiff.ac.uk (Cardiff University)

GGD for EEG data

YSM 2021 1 / 20

Electroencephalogram (EEG)

- Electroencephalogram (EEG) registers electrical neural activity of the brain
- Signals are captured by multiple electrodes called *channels* located over the scalp

Figure: International 10-20 system

(4) (5) (4) (5)

Electroencephalogram (EEG)

- EEG signals observed as realisations of a stochastic process
- Signals nonlinear and nonstationary

a same and and a same and a same Marmondananan under the second and a second with the second and t www.montering.www.www.www.www.www.www.www. man man man man and the man man man and the man man and the second and the second and the second sec Manana Manana Marker www. Manana Ma

Figure: Example of an electroencephalogram²

²image source: Wikipedia, distributed under a CC-BY 4.0 license (=) (=)

Dataset used in the analysis

- Data were collected during the observational study of severe malaria in Uganda between 2008 and 2015
- **EEG data** was recorded using 19 channels with an average record duration of 30 minutes, obtaining EEG signal for 78 children
- Non-EEG data included
 - **neurodevelopmental score** single measure of neurodevelopment and cognition regardless of age (*z*-scores) taken at 3 time points
 - **demographic and anthropometric characteristics** age, sex, height-for-age and weight-for-age-*z*-score, socioeconomic status, home environment quality...
 - biomarkers panels from plasma and cerebrospinal fluid
- The analysis builds upon previous work by Veretennikova et al.³

Main goal

.. in short

Model the EEG increments "in some way" and use the obtained information (in addition to non-EEG data) to predict neurodevelopmental and cognitive development of children who were in a coma from cerebral malaria.

SalingerZ@cardiff.ac.uk (Cardiff University)

YSM 2021 5 / 20

Diffusion process

 Model for EEG signal with a stochastic component described using a stochastic differential equation (SDE)

$$dX_t = -\theta X_t dt + v(X_t) dB_t, \quad \theta > 0, \quad t \ge 0,$$
(1)

driven by the standard Brownian motion $(B_t, t \ge 0)$

- Bibby et al.⁴ describe the construction of a diffusion process with a stationary probability density function (PDF)
- If the stationary PDF is continuous, bounded, and strictly positive on the whole \mathbb{R} , SDE (1) admits the unique weak ergodic solution and defines the diffusion with chosen stationary distribution

SalingerZ@cardiff.ac.uk (Cardiff University)

⁴Bibby, Skovgaard, and Sørensen, "Diffusion-type models with given marginal distribution and autocorrelation function".

Examples of histograms of EEG increments

SalingerZ@cardiff.ac.uk (Cardiff University)

GGD for EEG data

YSM 2021 7 / 20

Generalized Gaussian distribution (GGD)

• The choice for the stationary distribution - Generalized Gaussian distribution (GGD) using the parametrization from Lutwak et al.⁵ for $\mu = 0$

$$f_{s,b}(x) = \begin{cases} \frac{1}{2(s\sigma^2)^{1/s}\Gamma\left(1+\frac{1}{s}\right)}e^{-\frac{|x|^s}{s\sigma^2}} , & b = 0\\ \frac{bs}{2\sigma^2}\left(\frac{s\sigma^2}{b}\right)^{-1/s}\frac{\Gamma\left(1+\frac{1}{s}+\frac{\sigma^2}{b}\right)}{\Gamma\left(\frac{1}{s}\right)\Gamma\left(\frac{\sigma^2}{b}\right)}\left(1+\frac{b}{s\sigma^2}|x|^s\right)^{-\frac{\sigma^2}{b}-\frac{1}{s}-1} , & b > 0, \end{cases}$$
(2)

- Normal distribution with mean 0 and variance σ^2 for b=0 and s=2
- Student-type distribution for b > 0 and s = 2

Fitting of light-tailed GGD to EEG increments

- In the light-tailed case (b = 0), the two-dimensional parameter $\zeta = (s, \sigma^2)$ of the stationary distribution GGD (2) is estimated by the quasi-likelihood method
- For the purpose of estimation of parameter ζ we disregard the existing exponentially decaying autocorrelation structure of the diffusion and define the quasi log-likelihood function as

$$l_n(\zeta) = \sum_{i}^{n} \ln\left(\frac{1}{2(s\sigma^2)^{1/s}\Gamma\left(1+\frac{1}{s}\right)}e^{-\frac{|X_i|^s}{s\sigma^2}}\right).$$
 (3)

• The estimate $\hat{\zeta} = (\hat{s}, \hat{\sigma^2})$ of the parameter $\zeta = (s, \sigma^2)$ is then obtained by maximising (3), which can be performed using existing non-linear optimization methods.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Examples of obtained fit

SalingerZ@cardiff.ac.uk (Cardiff University)

GGD for EEG data

YSM 2021 10 / 20

Generalized Gaussian distribution (GGD)

• The choice for the stationary distribution - Generalized Gaussian distribution (GGD) using the parametrization from Lutwak et al. for $\mu = 0$

$$f_{s,b}(x) = \begin{cases} \frac{1}{2(s\sigma^2)^{1/s} \Gamma\left(1+\frac{1}{s}\right)} e^{-\frac{|x|^s}{s\sigma^2}} &, \quad b = 0\\ \frac{bs}{2\sigma^2} \left(\frac{s\sigma^2}{b}\right)^{-1/s} \frac{\Gamma\left(1+\frac{1}{s}+\frac{\sigma^2}{b}\right)}{\Gamma\left(\frac{1}{s}\right) \Gamma\left(\frac{\sigma^2}{b}\right)} \left(1+\frac{b}{s\sigma^2} |x|^s\right)^{-\frac{\sigma^2}{b}-\frac{1}{s}-1} &, \quad b > 0, \end{cases}$$
(4)

• Normal distribution with mean 0 and variance σ^2 for b=0 and s=2• Student-type distribution for b>0 and s=2

Empirical scaling function

- The shape of the scaling function is strongly influenced by the tail index
- $\bullet\,$ Tail index α was estimated based on empirical scaling function introduced by Grahovac et al.^6 $\,$

$$\hat{\tau}_{N,n}(q) = \frac{\sum_{i=1}^{N} s_i \frac{\ln S_q(n, n^{s_i})}{\ln n} - \frac{1}{N} \sum_{i=1}^{N} s_i \sum_{j=1}^{N} \frac{\ln S_q(n, n^{s_j})}{\ln n}}{\sum_{i=1}^{N} (s_i)^2 - \frac{1}{N} \left(\sum_{i=1}^{N} s_i\right)^2}$$

where S_q is the partition function of the sample X_1, X_2, \ldots, X_n

$$S_q(n,t) = \frac{1}{\lfloor n/t \rfloor} \sum_{i=1}^{\lfloor n/t \rfloor} \left| \sum_{j=1}^{\lfloor t \rfloor} X_{(i-1)\lfloor t \rfloor + j} \right|^q,$$

with q > 0, $1 \le t \le n$ and $s_i \in (0,1)$, $i = 1, \dots, N$

⁶Grahovac et al., "Asymptotic properties of the partition function and applications in tail index inference of heavy-tailed data". $\Box \rightarrow \langle \Box \rangle + \langle \Box$

SalingerZ@cardiff.ac.uk (Cardiff University)

Asymptotic form of scaling function

• Estimation can be done by fitting the empirical scaling function to its asymptotic form

$$\tau^{\infty}_{\alpha}(q) = \begin{cases} \frac{q}{\alpha}, & \text{if } q \leq \alpha \text{ and } \alpha \leq 2, \\ 1, & \text{if } q > \alpha \text{ and } \alpha \leq 2, \\ \frac{q}{2}, & \text{if } 0 < q \leq \alpha \text{ and } \alpha > 2, \\ \frac{q}{2} + \frac{2(\alpha - q)^2(2\alpha + 4q - 3\alpha q)}{\alpha^3(2 - q)^2}, & \text{if } q > \alpha \text{ and } \alpha > 2 \end{cases}$$

Figure: Asymptotic form of scaling function

Estimation of tail index on EEG increments

- Estimation performed on 10 random samples of size 10000 obtaining estimates of tail index $\hat{\alpha}_i$
- A single value of tail index estimate $\hat{\alpha}$ was chosen to be the median of values $\hat{\alpha}_i, i = 1, \dots, 10$

Figure: Tail index estimates of EEG increments

EL SQA

Input	Modelling (fitting of distributions)	Output (prediction of neurodevelopment)

Input	Modelling (fitting of distributions)	Output (prediction of neurodevelopment)
EEG data		

YSM 2021 15 / 20

SalingerZ@cardiff.ac.uk (Cardiff University)

GGD for EEG data

YSM 2021 15 / 20

GGD for EEG data

SalingerZ@cardiff.ac.uk (Cardiff University)

YSM 2021 15 / 20

SalingerZ@cardiff.ac.uk (Cardiff University)

YSM 2021 15 / 20

Elastic net regression

- Elastic net regression was used to identify important predictors of neurodevelopment and cognition
- Elastic net regression controls for correlations among predictors and deals with the case where the number of predictors is much bigger than the number of observations
- Elastic net regression can be viewed as a penalized least squares method which minimizes the loss function⁷ defined by

$$L(\alpha, \lambda, \boldsymbol{\beta}) = |\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}|^2 + \lambda \left(\frac{1-\alpha}{2} |\boldsymbol{\beta}|^2 + \alpha |\boldsymbol{\beta}|_1\right),$$

• Hyperparameter α can be seen as a mixing parameter between ridge $(\alpha=0)$ and LASSO $(\alpha=1)$ regression

⁷Zou and Hastie, "Regularization and variable selection via the elastic net". = = ∽ へ SalingerZ@cardiff.ac.uk (Cardiff University) GGD for EEG data YSM 2021 16/20

Models used

- Response variable was the standardized neurocognitive score taken 6 months after the discharge from the hospital
- Models investigated based on feature matrix:
 - non-EEG features model included just the non-EEG features (baseline neurodevelopmental score, demographic and anthropometric characteristics, biomarkers)
 - combined non-EEG and GGD features model non-EEG features and estimates of s and σ^2 obtained from fitting light-tailed GGD
 - combined non-EEG and tail index features model non-EEG features and median values of estimates $\hat{\alpha}$ of tail index (as continuous and categorical variable)

Results

Comparison of models

Table: Model comparison based on elastic net regression results

Model features included (number of features)	RMSE	Number of non-zero coefficients	Number of non- zero coefficients from EEG fea- tures subset
Non-EEG features (54)	0.5670	12	N/A
Non-EEG (54) and GGD (38) fea-	0.5655	13	1
tures			
Non-EEG (54) and continuous tail index features (19)	0.5670	12	0
Non-EEG (54) and categorical tail index features (38 dummy variables)	0.5499	10	1

三日 のへの

イロト イボト イヨト イヨト

Results

Conclusion

Conclusion

Addition of information obtained from EEG data can improve the prediction of neurodevelopment and cognition in children who recovered from a coma.

SalingerZ@cardiff.ac.uk (Cardiff University)

Future research

 Investigate possible multimodal distributions, e.g 3-peak distribution from Cammarota et al.⁸

• Machine learning approach, e.g. convolutional neural networks

SalingerZ@cardiff.ac.uk (Cardiff University)

GGD for EEG data

References

- Bo Martin Bibby, Ib Michael Skovgaard, and Michael Sørensen. "Diffusion-type models with given marginal distribution and autocorrelation function". In: Bernoulli 11.2 (2005), pp. 191–220.
- J.P.N. Bishwal. Parameter Estimation in Stochastic Differential Equations. Springer-Verlag, Berlin, Heidelberg, 2007.
- Valentina Cammarota, Domenico Marinucci, and Igor Wigman. "On the distribution of the critical values of random spherical harmonics". In: J. Geom. Anal. 26.4 (2016), pp. 3252–3324. arXiv: 1409.1364.
- Alex Dytso, Ronit Bustin, and Harold Vincent Poor. "Analytical properties of generalized Gaussian distributions". In: J. Stat. Distrib. Appl. 5.1 (2018), pp. 2195–5832.
- Danijel Grahovac et al. "Asymptotic properties of the partition function and applications in tail index inference of heavy-tailed data". In: Statistics (Ber). 49.6 (2015), pp. 1221–1242.
- Bronius Grigelionis. Student's t-Distribution and Related Stochastic Processes. Springer-Verlag, Berlin, Heidelberg, 2013.
- Nikolai N. Leonenko et al. "Generalized Gaussian time series model for increments of EEG data". In: submitted (2021).
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang. "Moment-entropy inequalities". In: Ann. Probab. 32.1B (2004), pp. 757–774.
- Saralees Nadarajah. "A generalized normal distribution". In: J. Appl. Stat. 32.7 (2005), pp. 685–694.
- Maria A. Veretennikova, Alla Sikorskii, and Michael J. Boivin. "Parameters of stochastic models for electroencephalogram data as biomarkers for child's neurodevelopment after cerebral malaria". In: J. Stat. Distrib. Appl. 5.1 (2018).
- Hui Zou and Trevor Hastie. "Regularization and variable selection via the elastic net". In: J. R. Stat. Soc. Ser. B (statistical Methodol. 67.2 (2005), pp. 301–320.