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SPICE Modeling of Process Variation Using
Location Depth Corner Models

Gerhard Rappitsch, Ehrenfried Seebacher, Michael Kocher and Ernst Stadlober

Abstract— For robust designs the influence of process vari-
ations has to be considered during circuit simulation. We
propose a nonparametric statistical method to find sets of
simulation parameters that cover the process spread with a
minimum number of simulation runs. Process corners are
determined from e-test parameter vectors using a location
depth algorithm. The e-test corner vectors are then trans-
formed to SPICE parameter vectors by a linear mapping. A
special corner extension algorithm makes the resulting sim-
ulation setup robust against moderate process shifts while
preserving the underlying correlation structure. To be ap-
plicable in a production and circuit design environment, the
models are integrated into an automated model generation
flow for usage within a design-framework. The statistical
methods are validated for analog/mixed-signal benchmark
circuits.

Keywords— Location Depth, SPICE, Simulation, Statisti-
cal Corner Models, Robust Design, Process Variation.

I. INTRODUCTION

URING the past years, circuit simulation has become

more and more important for the development of in-
tegrated circuits. The growing complexity of the applica-
tions and shorter product development cycles demand high
efforts from the designers to create complex designs more
quickly. Circuit simulation has become a very important
tool to check the functionality of a design before prototyp-
ing in order to avoid time-intensive and therefore expensive
production iterations.

Besides the precise SPICE modeling of typical semicon-
ductor devices additional aspects of circuit simulation have
to be taken into account. For the design of robust circuits,
one aspect is the accurate modeling of the process vari-
ation and its inclusion within silicon foundry simulation
libraries. There exist two standard approaches for analyz-
ing process variation: worst case methods and Monte Carlo
methods. The widely used worst case method combines de-
vice parameters to maximize a single device performance
(e.g. speed, power or voltage levels, see also Section ITI-A)
and provides a fast simulation technique (only a few sim-
ulation runs are necessary). Since correlations are usually
not taken into account properly, the results may often be
too pessimistic. As a consequence, valid designs may be
rejected or have to be adjusted to meet artificial and in-
accurate worst case limits. This can lead to unnecessarily
large chip area and power consumption as well as increasing
design efforts and costs.

To obtain more adequate simulations, parametric Monte
Carlo methods may be used where the crucial SPICE model
parameters are sampled from a pre-defined distribution
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conforming to the process specification. The problem of
Monte Carlo simulations, however, is that hundreds of
simulation runs have to be performed and depending on
the complexity of analog/mixed-signal circuits this may
take several simulation hours to be completed. Parametric
Monte Carlo models from production control data (e-test
data) are presented in [1] and [2]. Moreover, yield analysis
and yield optimization tools based on parametric statistical
models are described in [3], [4], [5] and [6]. As far as Monte
Carlo models are concerned, the underlying assumptions
for parametric models (e.g. normally distributed data) may
not be valid for real e-test data.

Recently, nonparametric statistical methods have been
employed to establish boundary vectors in worst case mod-
els ([7], [8]). The approach introduced in [7] is based on
nonparametric density estimation where points with low
density values are selected as boundary points in device
model generation. The method is usable for generating
multivariate SPICE parameter sets from e-test data. In
combination with a spatial diversity algorithm points are
selected from the original data cloud and may be used for
a process in a controlled and stable state. However, the
quality of the density estimator strongly depends on the
number of data points in the crucial tail regions. For in-
teresting dimensions (p > 5) the data distribution in the
tails is in general too scattered to get a reliable density
estimation.

Our new procedure, shortly reported in [8], uses a non-
parametric statistical method based on multivariate rank-
ing by the so called location depth. Data points with low
location depth are selected as corner points and extended
by a special boundary extension algorithm. This method
has some remarkable features: (i) it produces reliable re-
sults even with a small number of corner points, (ii) it is
robust against moderate process shifts and (iii) it is appli-
cable also for high dimensions in contrast to the density
estimation suggested in [7].

A simple illustration is given in Figure 1 where the data
cloud of the two e-test parameters NMOS effective chan-
nel length and treshold voltage is covered by 10 corner
points on the boundary. This method is implemented using
the statistical software package S-PLUS and the statistical
models obtained are included into a Cadence/Spectre’ ™
Design Framework.

Section IT includes the choice of suitable e-test parame-
ter vectors and their transformation to SPICE parameter
vectors. The problem of statistical corner models is tack-
led in Section IIT where the appropriate selection of both
corner wafers and statistically typical wafers is considered.
Section IV is devoted to implementation issues. The accu-
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racy and usefulness of the method within an analog/mixed-
signal design environment is validated using digital and
analog demonstration circuits in Section V. Our findings
are concluded in the final Section VI.
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Fig. 1. Scatter plot of LEFFN (NMOS effective channel length) and
VTON (NMOS treshold voltage).

II. TRANSFORMATION OF E-TEST PARAMETERS TO
SPICE PARAMETERS

A. SPICE Parameters

The proposed method for the determination of statistical
corner models starts with the selection of corner wafers in
the e-test parameter space (see Section III). The e-test
parameters have to be transformed to SPICE parameters
of the device models used. In the subsequent sections the
selection of e-test parameters and their transformation to
SPICE parameters are explained for NMOS and PMOS
transistors and the BSIM3V3 MOS transistor model [9].

To perform the simulation of a circuit, accurate SPICE
models of the devices have to be available. The parameters
of these models (SPICE parameters) are determined from
current and voltage measurements of the devices on a refer-
ence wafer by applying optimization methods [10]. Owing
to the large number of measurements necessary to obtain
reliable parameters, parameter extraction for MOS transis-
tors and an industry-standard device model like BSIM3V3
[9] (approx. k = 150 parameters) is very time-consuming.

We denote the set of SPICE parameters by P; =
{pgl),...,pgk)} with |Ps| = k the dimensionality of the
parameter space and a single parameter by ps € Ps. A
parameter vector is a vector v € R” , the value of a single
parameter ps is denoted by v(ps). Likewise, the values of a
single parameter py for a certain wafer w are called v(w, ps)
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and the SPICE parameter vector for wafer w is defined
as v(w) = (v(w,pgl)), e ,v(w,pgk)))T. Consequently, the
devices on a specific wafer are represented by a vector of
SPICE parameter values.

A possible approach to find a set of parameter vectors
that represent the process variation is to determine the
SPICE parameter vectors of many wafers (n > 100) by
parameter extraction and to find extreme points in the
space of the SPICE parameters [11]. The drawback of this
method, however, is that the full extraction of SPICE pa-
rameters is too expensive to be feasible in a production
environment where several processes have to be supported
and the characterization has to be updated regularly.

B. E-Test Parameters

To avoid the expensive extraction of several wafers, pro-
duction control parameters (or e-test parameters) can be
used to identify wafers that represent the process corners.
For each wafer the production control parameters are mea-
sured during production and the values are saved in a
database. For simulation purposes, however, they cannot
be used directly since e-test parameters are computed by
simplified equations to increase the speed of the measure-
ment.

We denote the set of e-test parameters by P, =
{p(el), e pém)} with |P.| = m the dimensionality of the
e-test parameter space and a single e-test parameter by
Pe € P.. An e-test parameter vector is a vector t € IR™,
the value of a single parameter p, is denoted by ¢(p.). Like-
wise, the values of an e-test parameter p, for a certain wafer
w are called t(w,p.) and the e-test parameter vector for

: (1) NN
wafer w is the vector t(w) = (t(w,pe )y ooy t(w, pe ))

The commercial parameter extraction tool IC-CAPTM

[11] from Agilent selects wafers representing the process
corners by a nonparametric density estimation method in
the e-test parameter space and extracts the SPICE param-
eters of the selected wafers. With this method the number
of extracted wafers is reduced, but this number (r > 10) is
still too large for an efficient extraction and measurement.

C. Parameter Selection and Data Transformation

In our approach the wafers representing the process cor-
ners are chosen by a multi-variate ranking method applied
to the e-test parameter vectors. Approximations of the
corresponding SPICE parameter values are calculated by
transforming the e-test parameter values with respect to
the SPICE parameters of a single typical wafer (also called
‘golden wafer’). With this the exact SPICE parameter
values have to be extracted from one typical wafer only
and suitable SPICE parameter values of corner wafers are
simply obtained from the e-test parameter values. Subse-
quently we specify the transformation of the e-test parame-
ters to the simulation parameters, i.e. we define a function
e2SPICE : R™ — IR* with IR™ being the space of e-test
parameters and IR® the space of SPICE parameters.

For every process a typical wafer w; is determined and
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TABLE 1
CORRESPONDING BSIM3V3 (ps) AND E-TEST PARAMETERS (pe):
TYPE OF VARIATION APPLIED.

L ps | p. ] Type]
vth0 | VTON/P abs
zw | WEFFN/P | abs
xl LEFFN/P abs
tor | TGOXN/P | abs
u0 UON/P rel
nsub | NSUBN/P | abs
nch | NSUBN/P | abs
rsh | RDIFFN/P | abs

the SPICE parameters for all devices of interest are ex-
tracted only for this wafer w;. To find suitable values for
the SPICE parameters of another wafer w, the deviation of
the corresponding e-test parameter values of wafer w with
respect to the typical wafer w; has to be calculated. This
deviation is then equated with the deviation between the
SPICE parameters for wafer w and the extracted SPICE
parameters for wafer w;.

In order to analyze the MOS transistor process variation
the following m = 14 e-test parameters are selected for
NMOS and PMOS transistors: VTON and VTOP (tresh-
old voltage for long and wide transistor), LEFFN and
LEFFP (effective channel length for a small channel tran-
sistor), WEFFN and WEFFP (effective channel width for a
narrow channel transistor), TGOXN and TGOXP (gate ox-
ide thickness), UON and UOP (effective mobility), NSUBN
and NSUBP (substrate doping), RDIFFN and RDIFFP
(n-diffusion and p-diffusion sheet resistance).

The following £ = 2 x 8 = 16 BSIM3V3 param-
eters were chosen as corresponding SPICE parameters:
vth0, xl, zw, tox, u0, nsub, nch, rsh. The correspondence
between the selected e-test and BSIM3V3 parameters is
shown in Table I.

To generate SPICE parameters for any wafer w the devi-
ation of the corresponding e-test parameter from the typ-
ical wafer w; is applied to the typical SPICE parameter
vector v(wy).

Depending on the type of the e-test parameters, two
kinds of deviations are considered: absolute and relative
deviation. The absolute deviation of the e-test parameters
can be written as

dabs(wvwhpe) = t(w7pe) - t(wtvpe) (1)
and the relative deviation as
t(w, pe)
drel(W, Wi, pe) = ——5. 2
02 Pe) = e pe) ®

For the SPICE parameters we have similarly

dabs(wawhps) = v(wyps) - v(wtaps) (3)

and ( )
v(w, ps

drei(w, we, ps) = ————%. 4

1(w, we, ps) (. pa) (4)
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By equating the absolute deviations dgps(w,wy,ps) =
daps(w, wy, pe) and the relative deviations dye;(w, we, ps) =
drei(w, wy, pe) the SPICE parameter value for any wafer is
calculated in case of the absolute deviation as

v(w,ps) = t(w, pe) + (v(we, ps) = twe,pe)) — (5)

and for the relative deviation as

U(wtaps)
t(wtape)

Owing to the linear structure of the transformation,
e2SPICE can be written as a linear mapping

v=A-t+b (7)

v(w, ps) = “t(w, pe)- (6)

where v is the k-dimensional vector of SPICE parameter
values and ¢ the m-dimensional vector of e-test parameters
(k > m). The matrix A is of dimension k X m and vector
b has k elements. The elements of matrix A and vector
b can be determined by Equations (5) and (6) where the

SPICE parameter pgi) e P, = {pgl)7 e ,pgk)
to the i-th row of matrix A and the ¢-th element of vector
b, and the e-test parameter p&) € P, = {ptM, ... pl™

s Pe

} corresponds

corresponds to the j-th column of matrix A. Furthermore,
for every SPICE parameter psi) there is a corresponding
e-test parameter pgj ) = c(pgi)
determine the variation of pg). Table I shows the type of
deviation for all SPICE parameters ps considered. There-

fore, the elements of matrix A are given as

) whose variation is used to

1 pd) = c(pgi)),abs. deviation
o v(we,pD) ) _ (1) Foti
a;; = % pe’ = c(ps”),rel. deviation (8)
otherwise ,

and the elements of vector b read

= c(pl?),
abs. deviation (9)
0 otherwise .

b, = ’U(U}t,pgi)) - t(wtvpgj))

To verify transformation e2SPICE (7) we simulated a
CMOS ring oscillator with several sets of SPICE parame-
ters generated by e2SPICE for a dataset of n = 48 wafers
from 3 different lots. For this purpose k = 16 SPICE pa-
rameters (see Table I) have been determined from m = 14
e-test parameters and two devices (NMOS and PMOS tran-
sistors).

The 41-stage ring oscillator was implemented as a pro-
cess control structure (scribe line monitor) in a standard
0.8ym CMOS process. The simulated results have been
compared to the corresponding measurement data (Figure
2) which was available as process control data. The wafers
were taken from three R&D lots where lot 2 had slight prob-
lems during production. The third lot ran already stable
and in this lot also the applied process-split is closely fol-
lowed by the circuit simulation with a relative error less
than 2%. The comparison of simulated and measured data
shows that the results of the measurement are reproduced
with sufficient accuracy.
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Verification of transformation e2SPICE: Ring-Oscillator

III. STATISTICAL CORNER MODELS

Transformation e2SPICE (7) opens the door to a more
efficient procedure. The time-consuming task of extracting
SPICE parameter values for all corner wafers (as suggested
in [11]) can be replaced by the simple task of transforming
e-test parameter vectors to corresponding SPICE param-
eter vectors by e2SPICE using only the extracted SPICE
parameter vector of the typical wafer.

First we shortly describe the conventional worst case
method which will be compared with the proposed sta-
tistical method. Our statistical method to determine the
boundary points in the high-dimensional parameter space
is based on an idea called location depth which can be cal-
culated for each data point by the algorithm of Rousseeuw
and Struyf [12]. The location depth is a multivariate ex-
tension of univariate statistical ranking due to Tukey [13].

In a second step we introduce a procedure which extends
the multivariate boundary region by adding a safety mar-
gin. With this safety margin, the existing process variation
is increased to assure that the checked circuit works also
correctly if the process varies more than the underlying
data may reflect.

Finally, we describe a method to find a statistically typ-
ical wafer, which can be considered as an estimator of the
multivariate median. The generation of SPICE parame-
ters for a statistically typical wafer is an important step
in creating robust designs since it enables efficient design
centering.

A. Standard Worst Case Method

Worst case methods are a usual way to take process
variation into account. For standard worst case methods
the one-dimensional e-test parameter limits (pass/fail lim-
its) are combined to maximize a single device performance:
e.g. for a MOS transistor worst case power corner (highest
power consumption), the minimal effective channel length,
the maximal effective channel width, the minimal thresh-

SPICE PARAMETERS Ps AND ANALOG CORNERS.

TABLE II

‘ Parameter | WorstPower | Worst Speed ’

vthQ min max
Tw max min
xl min max
tor min max
u0 max min
nsub min max
nch min max
rsh min max
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old voltage and the maximum mobility (gain factor) are set
to their extreme values. The principle may be illustrated
by assuming a simplified transistor equation for the MOS
transistor saturation current:

w0y (W + zw)

DS = tox(L + xl)

(VGS —vth0))®  (10)
with design variables W (drawn width), L(drawn length),
VGS (gate-source voltage) and the physical constant €.
The maximization/minimization of IDS leads to worst
case power/worst case speed corners and can be achieved
by setting the device parameters to their upper and lower
limits as listed in Table II. The maximum and minimum
values are calculated from the pass/fail limits of the cor-
responding e-test parameters (see Table I in Section II-C)
which are transformed to the SPICE parameter limits by
transformation (7). Within the austriamicrosystems de-
sign environment four types of worst cases are constructed
for MOS transistors: worst case speed (slow NMOS and
PMOS) and worst case power (fast NMOS and PMOS)
for analog applications (see Table II), as well as worst
case one (fast NMOS, slow PMOS) and worst case zero
(slow NMOS, fast PMOS) for digital applications. The
problem of this method, however, is that existing corre-
lations between device parameters are often ignored lead-
ing to pessimistic corner values and hence to large spread
during analog simulation of circuit performance. Figure 9
in Section V-A shows negative correlation between oxide
thickness TGOXN and substrate doping NSUBN, but for
the worst case speed corner the minimization of IDS (10)
would rather assume positive correlation: a maximum ox-
ide thickness TGOXN (low gain factor) combined with a
maximum substrate doping NSUBN (high effective tresh-
old voltage).

B. Location Depth Corner Method (LDCM)

In contrast to standard worst case methods, the proposed
Location Depth Corner method (LDCM) does not use arti-
ficial combinations of parameter values. The corner points
are determined by the location depth method applied to
e-test parameter vectors of real wafers. The key idea of the
location depth (Tukey, [13]) is to measure how deep a point
lies in the data cloud. For a sample of one-dimensional data
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there is a direct correspondence to univariate ranking: min-
imum and maximum have the lowest location depth (= 1)
and the median has the highest location depth (= [n/2]).
The formulation of the location depth is valid also in higher
dimensions enabling the location of corner wafers repre-
sented by a set of e-test parameters (m > 10). As de-
scribed in [12], the location depth of an arbitrary point
0= (61,...,0,) € IR? relative to a p-dimensional data set
Z = {xi = (%i1,...,%p);t = 1,...,n} is defined as the
smallest number of data points in any closed half-space
with boundary through € and can be written as

ldepth(0; Z) = min #{i;uTx; > uT}

[luf|=1

(11)

where u ranges over all vectors in IR” with ||u|| = 1. A
very important property of the location depth is the affine
invariance, i.e. if @ is transformed to AO+b with b € IRP
and A € IRP*? nonsingular then ldepth(A0+b; AZ+b) =
ldepth(0; Z). Considering the linear relationship between
e-test parameters and SPICE parameters in transformation
e2SPICE (7) means, that the structure of the multivariate
ranking is preserved in the SPICE parameter domain.
Owing to the relation of the location depth in the one-

dimensional case z = (z1,...,7,)7
ldepth(0; z) = min(#{i;z; < 0}, #{i;2; > 0})  (12)
to the ranking of the observations z(;) < ... < x(y), the

location depth is also referred to as multivariate ranking.

An efficient approximate algorithm due to Rousseeuw
and Struyf [12] is available for the calculation of the loca-
tion depth in higher dimensions. It is used to establish the
corner points in the proposed LDCM method:

1. Set ldepth(0; Z) «— n. o(1)
2. Repeat mg times: O(ma)
(a) Draw a random sample of size p O(p)
(b) Determine a direction u perpendicular
to the p-subset. O(p?)
(c) Project all data points on the line L through 6
with direction u. O(np)
(d) Compute the univariate depth k of 6 on L. O(n)
(e) Put ldepth(0; Z) < min (ldepth(6; Z), k). o(1)

The accuracy of the algorithm strongly depends on the
number of search directions my (see Section V-C).

Fig. 3. Location Depth: Surface plot of the location depth for 200
samples of two independent N(0,1) distributed random variables.

To visualize this concept, the location depth has been
computed for a sample of n = 200 pairs of independent
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N(0,1) distributed random variables. In Figure 3 the loca-
tion depth is plotted against the two variables. It can be
observed that the lowest values are in the tails and that the
maximum is reached in the center. In Figure 4 the points
with location depth less equal one are selected (r = 12
points) and the convex hull of these 12 points is drawn.

N(0,1)

N(0,1)

Fig. 4. Location Depth Method: Scatter plot of n = 200 samples
for two independent N(0,1) distributed random variables and convex
hull of points with Id; < 1.

This leads us directly to a procedure for determining cor-
ner models. The proposed Location Depth Corner Method
(LDCM) consists of three computational tasks (see Fig-
ure 5): (i) the computation of the location depth based
on the e-test parameter vectors, (ii) the choice of the cor-
ner wafers as points with location depth less equal 1 and
(iii) the transformation e2SPICE to generate the SPICE
parameter vectors for the corner wafers from the e-test pa-
rameter vectors and the typical parameter set.

The original sample consists of n wafers wy,...,w,
with e-test parameter vectors t(wi),...,t(wy,). The m-
dimensional data set for the location depth is then defined
as T = {t(w;)|i =1,...,n} and the location depth ld; of
an e-test parameter vector t(w;) can be computed as

ld; = ldepth(t(w;), T), i=1,...,n. (13)

We select wafers whose location depth is less or equal to
one, i.e. we define the set of corner wafers as

The set S of SPICE parameter vectors representing the
corner wafers can be written as

S

{e2SPICE (t(w;)) | w € Wy}

{A - t(w;)+b|weW}. (15)

C. Extended Location Depth Corner Method (ELDCM)

The set S of SPICE parameter vectors (15) resulting
from the location depth method is based on e-test parame-
ter values of real wafers. Therefore, by simulating a circuit
with the set S, the envelope of the process variation based
on the underlying data sample is determined.
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Fig. 5. Steps of the Location Depth Corner Method (LDCM).

To increase the robustness of the simulation setup one
has to find another set of SPICE parameter vectors that
also covers moderate future process shifts. For that reason
we introduce the Extended Location Depth Corner Method
(ELDCM) which enlarges the region in the e-test parameter
vector space by a certain percentage.

The Extended Location Depth Corner Method, like the
LDCM, starts by determining the location depth Id; of all
e-test parameter vectors and selecting the wafers W, (14)
on the boundary. The next step is to search for the center
of the data in the e-test parameter space. This search is
carried out by the algorithm of Struyf and Rousseeuw [14]
which finds the point with largest location depth, denoted
as deepest location. By applying the algorithm we establish
the deepest location and its corresponding e-test parameter
vector ;.

To enlarge the region covered by the boundary wafers
Wy, directions of decreasing location depth are deter-
mined. By direction of decreasing location depth, we de-
note vectors from the deepest location tg4; to the boundary
wafers w € Wy

ddecr("w) = t(w) - tdl . (16)
The vectors dge.-(w) allow for an enlargement of the

simulation region by adding a fixed portion ¢ of dgecr(w)
to the e-test parameter vector t(w). Consequently, we get

tem(w) t(UJ) +4q- ddecr(w)

(1+4q) t(w) —q-ta
as the generated e-test parameter vectors tewt(w), w €
W,. In contrast to the vectors t(w), the generated e-test

(17)
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parameter vectors te.:(w) do not represent measured pa-
rameter values any more. However, any extended parame-
ter set lies in the electrical neighborhood of a corner wafer
and the data envelope is extented in a natural way preserv-
ing the original correlation structure.
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1 I
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Fig. 6. Boundary Extension Method (ELDCM): Scatter plot for the
e-test parameters LEFFN and LEFFP (effective channel length for
NMOS and PMOS transistor).

The concept of enlarging the simulation region is visual-
ized in Figure 6. A two-dimensional scatter plot shows the
e-test parameter values for the effective channel length of
the NMOS (LEFFN) and PMOS (LEFFP) transistor for
the ring oscillator data set (see Section ITI-C). The circles
and triangles represent n = 48 data points where the tri-
angles indicate the values of r = 12 corner wafers w € W,
resulting from the LDCM method with mgy = 10 search
directions. Each wafer is characterized by its e-test param-
eter vector of dimension m = 14 and Figure 6 reflects the
two-dimensional projection to the parameters LEFFN and
LEFFP. The solid lines show the directions of decreasing lo-
cation depth dgeer(w) where the dotted lines represent the
extensions of the simulation region. The points obtained
when enlarging with a portion of ¢ = 0.2 are marked with
an X and those for ¢ = 0.5 are signified by an x in a square.
It is obvious that the data cloud is extended without sig-
nificantly changing the correlation structure.

The e-test parameter vectors .. (w),w € Wy, are trans-
formed to SPICE parameter vectors by e2SPICE (7)
defining the set S¢q; as

Sewt = {e2SPICE(t.(w)) | we W) (18)
= {1+q) - A-t(w)—q-A-ta|weWy}.

D. Determination of a Statistically Typical Wafer

Whenever a new process is introduced, process limits for
the production control parameters are specified. Based on
those limits and on the wafers produced during the first
months of production, a typical wafer (golden wafer) is
selected for parameter extraction such that its parameter
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values are near the mean values of a chosen set of key pa-
rameters (treshold voltage, oxide thickness, effective chan-
nel length, ...). However, for some other parameters not in
the set the corresponding values on the golden wafer may
be near the pass/fail limits. This can cause problems for
the designer in producing a circuit with high yield, because
he centers the design only according to the extracted pa-
rameter set and some basic design variables. Figure 14 in
Section V-C shows an example of a CMOS OpAmp lead-
ing to bad yield for the gain bandwidth due to the mobility
parameter u0 close to the lower limit.

The statistically typical wafer wsg; is defined as the wafer
with the largest location depth (deepest location) in the
e-parameter space, i.e. having its parameter vector near to
tq;, and can be considered as median of the multivariate
data set. Let W = {w; |i=1,...,n} be the set of wafers
analyzed, then wg; denotes the wafer with location depth

ldgy = max Id; .
wi €

(19)

A full SPICE parameter set (updated golden wafer ex-
traction) may now be extracted for wafer wg; which will
improve the quality of the simulation because of a better
design centering.

IV. IMPLEMENTATION
A. Parameter Generation and Tool Kit Integration

The techniques described above are now used to define
a flow to generate SPICE library files automatically. This
flow is shown in Figure 7.

The two essential parts of the generation flow are (i)
data manipulation and analysis with the statistical soft-
ware package S-PLUS™™ [15], and (ii) the creation of the
libraries by the library generation program PARMGR de-
veloped by austriamicrosystems AG.

The information about wafer production, i.e. the val-
ues of the e-test parameters, are stored in a production
database. From this database, values are exported and im-
ported into S-PLUS. Additionally, the extracted SPICE
parameter values of the typical wafer are stored in a
UNIX/M4-database where they can be exported from. S-
PLUS collects all data necessary for calculating the worst
case and statistical corner models. The computation in-
cludes the selection of appropriate wafers (Location Depth
Corner Method), the extension of the simulation region
(Extended Location Depth Corner Method), the determi-
nation of a statistically typical wafer and the transfor-
mation of e-test parameters to SPICE parameters using
e2SPICE (7). Finally, the model generation information
about the SPICE parameters of the wafers is exported to
generic data files (csv-format).

The generic files are then used by the UNIX parameter
generation program PARMGR to generate the simulation
model libraries for different analog simulators supported
by the foundry (e.g. Spectre™ | ELDO™™  HSPICETM,
etc.).

The simulation models corresponding to the statis-
tical corners are generated automatically from a com-
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Fig. 7. Automated parameter generation flow for Statistical Corner
Models.

mon database. For integration into the Cadence™

analog/mixed-signal design flow of the austriamicrosystems
AG design environment (HIT-Kit) the models are gener-
ated in native Spectre’™ format. Each statistical cor-
ner is defined as a section in the CMOS model library.
Additionally, a corner-definition file (dcf-file) is generated
which can be loaded into the Cadence Affirma” [16] cor-
ner simulation tool. After performing a standard simula-
tion and defining the necessary performance outputs, the
corner simulation is started. For that purpose the dcf-file
(corner definition file) is loaded and the performance spread
due to the process variation can be analyzed graphically.

V. VERIFICATION RESULTS
A. Ezploratory Data Analysis

To get a first impression about the distribution of e-
test parameters, an exploratory data analysis is performed.
First, we examine the one-dimensional distribution of each
e-test parameter. Figure 8 shows a typical characteristic
(sample size n = 521 wafers). The histogram and the den-
sity estimation of the effective channel length LEFFN of an
NMOS transistor (0.8m) indicate non-normal distribution
which is supported also by the low p-value (p = 4.4e~7) of
the Kolmogorov Smirnov test. We note that most other
e-test parameters have to be classified as non-normal dis-
tributed and thus the statistical methods based on normal
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distributional assumptions are not adequate.

T T T T T
0.579 0.594 0.608 0.623 0.637 0.652 0.667 0.681 0.696 0.710 0.725
LEFFN

Fig. 8. Histogram with density line for LEFFN.

Another property that is being examined is the corre-
lation structure of the e-test parameters. The standard
worst case methods combine one-dimensional e-test param-
eter limits to get the simulation limits, but do not consider
the correlations properly. An example is exhibited in Fig-
ure 9. The scatterplot of the substrate doping NSUBN
against the gate oxide thickness TGOXN shows some neg-
ative correlation, but the standard worst cases (see Ta-
ble IT in Section IIT) are combined by using the minimum
(worst case power) resp. the maximum (worst case speed)
parameter values according to the influence of the body
effect (substrate doping) on the threshold voltage and on
the drain saturation current. Of course, these limits are
misleading and do not represent the structure of the data.

= o ws ¢

TGOXN

84 86 88 90 92 94 96
NSUBN
Fig. 9. Scatter plot of NSUBN and TGOXN.

Our location depth approach (LDCM and ELDCM)
avoids the problems mentioned above. The proposed meth-
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ods are nonparametric, i.e. no distributional assumptions
of the data are made. Furthermore, by using the e-test
parameter vectors of real wafers, no artificial samples are
generated and the correlation structure is taken into ac-
count.

B. Digital Application - Ring Oscillator Delay

To check the results of the LDCM and the ELDCM on
digital circuits, we use the delay data for the CMOS Ring
Oscillator introduced in Section II-C to verify the useful-
ness of the transformation from e-test parameters to SPICE
parameters.

The NMOS and PMOS transistors are described by m =
14 e-test parameters (see Table I in Section II-C). Applying
the LDCM method to a data sample of n = 48 wafers,
r = 12 statistical corners have been identified, and the
k = 16 SPICE parameters for the BSIM3V3 model were
obtained by transformation e2SPICE (7).

b

80 100 120 140 160

——= Worst Case Limits
— Location Depth

15
J

10

Delay in ps

Fig. 10. Simulation results for CMOS ring oscillator delay: Location
Depth Corner Model (LDCM) vs. standard worst case.

Figures 10 and 11 contain the histogram for the simu-
lated delay of the ring oscillator. In Figure 10 the standard
worst case limits (worst case speed and worst case power,
dashed lines) are compared with the limits generated by
the Location Depth Corner Model (solid lines). The limits
of the LDCM correspond to the 2 extreme delay corners
out of all 12 statistical corners. The worst case limits are
far outside the range of the delay data whereas the limits
of the LDCM represent the statistical range of the delay
values by construction.

The simulation results for the ELDCM with different
portions (¢ = 0.1,0.2,0.3,0.4,0.5) are shown in Figure 11.
Clearly, increasing the portion enlarges the delay region
and provides more robust, but still suitable performance
limits.

C. Analog Application - Operational Amplifier Character-
1zation
Since the statistical models are employed within
an analog/mixed-signal design environment, a standard
CMOS operational amplifier is chosen as an analog valida-
tion example. The four characteristics bandwidth (BW),
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Fig. 11. Simulation results for CMOS ring oscillator delay: Extended
Location Depth Corner Method (ELDCM) with different g-values.

open loop gain (OLG), phase margin (PM) and gain band-
width (GBW) are analyzed for the worst case method, the
LDCM and the ELDCM with different g-values. Addi-
tionally, a statistically typical wafer ws; is selected by the
method described in Section III-D.

For a data set of n = 521 wafers m = 14 e-test parame-
ters per wafer have been analyzed (7 NMOS and 7 PMOS
parameters p, as described in Table I). The LDCM selects
r = 17 corner wafers (based on my = 10 search direc-
tions) which are also used for the ELDCM. For each corner
wafer the values of k& = 16 SPICE parameters (8 NMOS
and 8 PMOS parameters py) have been obtained by trans-
formation E2SPICE (7) which uses the extracted SPICE
parameter values of the typical wafer and the variation of
the corresponding e-test parameters p..
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Fig. 12. CMOS OpAmp: Histogram of Open Loop Gain [dB] and
simulated corners using LDCM and ELDCM.

The histogram bars in Figure 12 (Figure 13) represent
the simulated open loop gain values (phase margin values)
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of all n = 521 wafers where the solid lines represent the
values of the statistically typical wafer wg; (deepest wafer).
The simulated performance ranges of the wafers obtained
by the LDCM and the ELDCM (¢ = 0.3 and ¢ = 0.5) are
indicated as dashed lines.
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o
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40 60
1 1

68 69 2 73
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Fig. 13. CMOS OpAmp: Histogram of Phase Margin [deg]. and
simulated corners using LDCM and ELDCM.

The performance ranges of all four characteristics with
respect to the different models can be found in Table III.
All represents all n = 521 wafers of a given time period, Loc
the LDCM, 30 (50) the ELDCM with a percentage of 30%
(50%). WC shows the simulated range for the standard
worst case method.

The simulation results demonstrate that it is possible
to cover the process variation of three analog characteris-
tics by r = 17 statistical corners when using the ELDCM
method with a 50% safety-margin. Only gain bandwidth
could not be completely covered on the left tail. Once
again the corner models prove to be more realistic than
standard worst case models. The results of the standard
worst cases can deviate in both directions: they may be
too pessimistic (see CMOS ring oscillator delay - Figure
10), or too optimistic (see CMOS OpAmp open loop gain
and bandwidth in Table III). Since only five technologi-
cal corners are selected by the standard worst case method
based on the single device performance IDS this may lead
to an over-estimation of the circuit performance range, e.g.
for the ring oscillator delay where the IDS variation is of
special importance, due to pessimistic parameter ranges
(see ring oscillator delay in Figure 10). On the other hand
performances like the bandwidth are not covered although
they may be important for analog designs. In contrast,
the LDCM and the ELDCM do not rely on single device
performances, but they search for all corners (i.e. points
with location depth less equal one) of the underlying multi-
dimensional parameter space. As a consequence, the one-
dimensional projections of the established boundary cover
the range of the essential characteristics for both analog
and digital circuits.
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TABLE III
SIMULATION RESULTS FOR CMOS OPERATIONAL AMPLIFIER:
BANDWIDTH [Hz|, OPEN LOOP GAIN [DB], PHASE MARGIN [DEG]
AND GAIN BANDWIDTH [MHzZ].

| [ BW | OLG | PM | GBW |
All [ 205287 | 932952 | 69.6 72.1 | 12.9-16.9
Loc | 214-280 | 93.4-94.9 | 69.7-71.9 | 13.9-16.7
30 || 209-295 | 93.2-95.1 | 69.2-72.2 | 13.7-17.4
50 || 205-305 | 93.0-95.2 | 68.8-72.4 | 13.6-17.8
WC || 207280 | 93.5-94.7 | 67.0-74.5 | 13.6-16.3

To show the need for a proper selection of the typical
wafer in case of process shifts (see Section III-D), we ex-
amine the gain bandwidth for the same data as before. But
now we include a wafer chosen as typical at an early pro-
cess stage which remained typical for all parameters except
the mobility factor UON where the value was close to the
lower pass/fail limit. A look to the gain bandwidth shows
that the value of this wafer is even outside the range of the
actual data (left from the minimum, referenced as Typ.
Wafer in Figure 14). Clearly, a robust design centering
with this wafer value would be impossible. As an alterna-
tive we suggest to take the wafer wg; with highest location
depth (referenced as Deepest Wafer, solid line in Figure 14)
determined by the method described in Section ITI-D. The
selected wafer w, represents the median of multivariate
data and is well suited for analog design centering.
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Fig. 14. CMOS OpAmp: Deepest Wafer determination, Histogram
of Gain Bandwidth [MHz].

The example clearly demonstrates the need for a conse-
quent re-evaluation of the typical wafer (golden wafer) to
enable proper design centering intended for robust designs
with high yield.

D. Performance coverage and number of selected corner
wafers

The accuracy of corner wafers selected by the ELDCM
strongly depends on the number of search directions mg4 in
the approximate algorithm for the location depth described
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in Section III-B. A larger number of search directions leads
also to a larger number of selected corners. For the data
set used in the analog benchmark simulation (total num-
ber n = 521 wafers) the my = 10 search directions resulted
in r = 17 corner wafers. The specific choice was based
on an empirical study on the coverage of analog perfor-
mance specifications. For this we carried out simulations
with seven different numbers (2,5,10,12,15,20,25) of search
directions yielding (4,9,17,19,25,30,37) corner wafers. We
settled for r = 17 corner wafers, because a larger number
of corner points did not significantly improve the coverage
and hence could not compensate the increase in simulation
time.

VI. CONCLUSIONS

We introduced two statistical methods to determine sim-
ulation models that cover the process variation. The loca-
tion depth method (LDCM) was used to perform a multi-
variate ranking of the wafers in the e-test parameter space.
To calculate SPICE parameters easily, we defined the lin-
ear mapping e2SPICE (7) from the e-test parameter space
to the SPICE (simulation) parameter space. Owing to the
affine invariance of the location depth method and the lin-
earity of the mapping, the ranking does not change when
e-test parameters are transformed to SPICE parameters.

With the Location Depth Corner Method, a small set of
wafers (between 10 and 30) near the corners of the pro-
cess could be found. With the Extended Location Depth
Corner Method (ELDCM), the simulation region defined
by the wafers of the LDCM could be enlarged by adding a
safety-margin to the region. The corner models provided
by the two methods, allowed us to perform realistic and
fast simulations of electrical circuits.

To ensure a convenient generation of the simulation mod-
els by the LDCM and the ELDCM, the two models were
integrated into an automated SPICE parameter generation
flow. To facilitate the use of the LDCM and ELDCM sim-
ulation models for the designer, corner definition files have
been generated for an easy integration into the Cadence-
Affirma”™ design framework.

To verify the simulation models obtained with our statis-
tical methods, a representative digital design (Ring Oscil-
lator) and an analog design (Operational Amplifier) have
been simulated. The results show that the process varia-
tion is correctly described by the simulated range of corner
models for both digital and analog designs using a small
number of simulation runs (12 to 17).

Another important aspect addressed in this paper was
the determination of a statistically typical wafer. The his-
tograms in Section V-C show that because of process shifts
it may happen that a typical wafer may not be typical
in all parameters. Therefore, a design centering can be
facilitated by selecting a wafer with the largest location
depth (deepest wafer) as a statistically typical wafer. For
a regular validation and update of the statistical models
generated, suitable test circuits (process benchmarks) of
analog/mixed-signal reference designs (e.g. Ring Oscilla-
tors, Operational Amplifiers, Band Gaps etc.) must be
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available as process control structures which allow to verify
the link between production control parameters and SPICE
parameters.
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