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Abstract

N. Wiener conjectured a necessary and sufficient condition for a sta-

tionary process to have a one sided representation (causal and possi-

bly nonlinear) in terms of independent identically distributed random

variables—that the process be purely nondeterministic (infinite past triv-

ial). The sub-domains in which the conjecture holds or fails are discussed.

This article is dedicated to the memory of Walter Philipp who con-

tributed so much to the field of stochastics. I also dedicate this paper to

my dear wife Ady who sadly died this June 4, 2009 at the inpatient unit

of the San Diego Hospice.

1



Introduction

Consider a stationary sequence {Xn,−∞ < n < ∞} with

Bn = B{Xj , j ≤ n} (1)

the σ-field generated by Xj , j ≤ n. The sequence {ξn,−∞ < n < ∞}

is a sequence of independent, identically distributed random variables. In

Wiener (1958) under what circumstances a stationary process {xn} could

have a one-sided representation

xn = f(ξn, ξn−1, . . . ) (2)

in terms of an iid sequence was considered. Wiener conjectured that a

necessary and sufficient condition for such a representation was that the

backward tail field

B−∞ = ∩nBn = {∅, Ω}

be trivial. Here ∅ is the empty set and Ω the whole space. In Rosenblatt

(1960) this was shown to be true for countable state Markov chains. An

extension for a class of continuous state Markov sequences was given in

Hanson (1963). Hanson’s condition was that {Xn} is a real-valued sta-

tionary Markov sequence with (i) trivial tail field B−∞ and (ii) there are

Borel sets A, B and a nonnegative measure φ such that P (B), φ(A) > 0

and for all x ∈ B and Borel A′ ⊂ A one has P (x,A′) ≥ φ(A′). It is

obvious that if {xn} has the representation (2) B−∞ is trivial.
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Bernoulli processes, K-automorphisms, and

the T, T−1 transformation

Our object is to provide a more detailed discussion than that given in

Rosenblatt (2009) showing that the T, T−1 transformation provides a

counterexample to Wiener’s conjecture.

Let us first note that the condition (2) for a stationary process {Xn}

is natural to consider as a nonlinear version of having the process purely

nondeterministic.

An invertible measure preserving transformation T acting on a prob-

ability measure space (M,M, µ) (with M a σ-algebra of subsets of M),

µ(TA) = µ(T−1A) = µ(A) for A ∈ M is called an automorphism. Here

(M,M, µ) is assumed to be a Lebesgue space. Let X be the set of real

numbers, B the collection of Borel subsets of X and λ a probability mea-

sure on B. Take M to be the set of all sequences x = {xn} with xn ∈ X.

Let T be the shift on M , Tx = x′, with x′

n = xn+1. And set µ on M

equal to the product measure of λ on M. The shift T is called a Bernoulli

automorphism acting on the Bernoulli sequence.

The case discussed most often is that in which λ has support on a

countable set of points of X with the measure λ having finite entropy.

Ornstein refers to the case in which the entropy is infinite as a generalized

Bernoulli shift.

Consider automorphisms T1 and T2 acting on (M1,M1, µ1) and (M2,M2, µ2)

respectively with µ1 and µ2 invariant measures on the spaces. The two sys-

tems are said to be isomorphic if there is an isomorphism φ : (M1,M1, µ1) →

(M2,M2, µ2), φ
−1 : (M2,M2, µ2) → (M1,M1, µ1) such that T2φx(1) =
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φT1x
(1), T1φ

−1x(2) = φ−1T2x
(2) for all x(1) ∈ M1, x

(2) ∈ M2. It is un-

derstood that these relations are to hold almost everywhere. Any system

isomorphic to a Bernoulli system is also called a Bernoulli system.

The entropy of a finite partition P of the space with elements Pi is

H(P ) = −
X

µ(Pi) log µ(Pi)

The entropy per unit time of the partition P with respect to the au-

tomorphism T is

h(T, P ) = lim
n→∞

1

n
H(P ∨ T

−1
P ∨ · · · ∨ T

−n+1
P ) (3)

(
Wn−1

k=0 T−kP is the partition generated by the intersections of T−iP, i =

0, . . . , n − 1.)

The entropy of the system {T n} is

H(T ) = suph(T, P )

with the supremum taken over all finite partitions P of M . This agrees

with the entropy as defined earlier for a Bernoulli system in terms of

the product measure of λ. The great achievement of the results of Kol-

mogorov, Sinai, and Ornstein is that Bernoulli automorphisms with the

same entropy are shown to be isomorphic (see Ornstein (1974)).

A family of automorphisms called K-automorphisms were once thought

to be Bernoulli automorphisms. All Bernoulli automorphisms are K-

automorphisms. Ornstein constructed K-automorphisms that are not

Bernoulli and these are the first counterexamples. There are several equiv-

alent formulations of K-automorphisms and we shall give one. The auto-

morphism T is called a K-automorphism if there is a σ-subalgebra C ⊂ M
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such that

(1) TC ⊃ C

(2)
∞
_

n=−∞

T
nC = M (4)

(3)

∞
^

n=−∞

T
nC = N

with N the trivial σ-algebra consisting of sets of measures 0 and 1.

Meilijson (1974) showed that a number of transformations which are

special kinds of skew-products are K-automorphisms. The “T, T−1” trans-

formation is an example of this kind of skew-product. Set Q = (1,−1)

and let the random variables {wi}i∈Z be independent and identically dis-

tributed (iid) with

wi =

8

>

>

<

>

>

:

1 with probability 1
2

−1 with probability 1
2
.

(5)

T is the shift (Tw)i = wi+1 for each w = {wi}i∈Z in Ω = Qz. Let the

transformation S on Ω1 × Ω2 be set up so that

S((1w, 2w)) =

8

>

>

<

>

>

:

(T (1w), T (2w)) if 2w0 = 1

(T−1(1w), T (2w)) if 2w0 = −1

(6)

Further let

(1w
′
,2 w

′)n = (Sn(1w,2 w))0 (7)

Introduce

X(i, w) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0 if i = 0

Pi−1
j=0 wj if i > 0

−
Pi

j=−1 wj if i < 0

(8)
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Then one can show that

2w
′

i = 2wi, 1w
′

i = 1wX(i,2w) (9)

The “T, T−1” transformation S is an automorphism. Let C be the

σ-algebra generated by the random variables (1w
′,2 w′)n, n ≤ 0. Clearly

SC ⊃ C while SC 6= C. Also ∨∞

n=−∞SnC is equal to the σ-algebra M

determined by (1w,2 w)n,−∞ < n < ∞. Meilijson shows that for each

bounded real M measurable function f

sup
g

|E(gS
n
f) − E(g)E(f)| → 0 as n → ∞

with the sup taken over all real functions g bounded by one in absolute

value and measurable with respect to S−1C. By taking the g’s indicator

functions of sets in S−1C and the fact that S is an automorphism one

can see that
V

∞

n=−∞
SnC = N . Thus S is a K-automorphism and the

sequence (1w
′,2 w′)n is a stationary sequence that is purely nondetermin-

istic.

Meilijson deals with the more general case of 1T an automorphism

on (1Ω,1 B, 1P ),2 T with η a countable partition of 2Ω whose 2T iterates

are 2P independent and span 2B. Given X a one-to-one integer valued

function on η S is defined on (1Ω ×2 Ω,1 B ×2 B,1 P ×2 P ) by

S(1w,2 w) = (1T
X(2w)

1w, 2T 2w) (10)

He shows that if 1T is totally ergodic, S is a K-automorphism. Total

ergodicity of a measure preserving transformation is ergodicity of all its

positive integer powers.

Notice that in looking at T, T−1 transformation acting on (1w, 2w)
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in Ω1 × Ω2 the second coordinate dictates which way to shift the first

coordinate. For this reason the first coordinate is often referred to as the

“scenery” and the second coordinate as the “path”. So we have a simple

example of a “random walk in a random environment”.

Factors and B-automorphisms

Let T, T ′ be automorphisms of the measure spaces (M,M, µ) and (M ′,M′, µ′)

respectively. If there is a homomorphism φ : M → M ′ such that φ(Tx) =

T ′φ(x) for all x ∈ M, T ′ is referred to as a factor automorphism of T . Let

M be the set of all real sequences ξ = {ξn},M the product σ-algebra of

the components ξn and µ the product measure generated by the marginal

measures of the ξn’s. Let T be the shift operator acting on the ξ’s. Now

suppose a stationary process {xn} has the one-sided representation (2) in

terms of the ξ vector of iid random variables. Then

xn = f(T n
ξ) (11)

and x = (xn, n = . . . ,−1, 0, 1, . . . ). Let T1 be the shift operator on x

sequences.M1 the space of x sequences, M1 the σ-algebra on x sequences

with µ1 the measure on M1 induced by (M,M, µ). Set

φ(ξ) = (xn(ξ), n = . . . ,−1, 0, 1, . . . ).

Then

φ(Tξ) = (xn+1(ξ), n = . . . ,−1, 0, 1, . . . ) (12)

= T1φ(ξ)

and so φ : M → M1 is a homomorphism and T1 a factor automor-
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phism of the Bernoulli automorphism T . But it is known that a factor-

automorphism of a Bernoulli automorphism is a Bernoulli automorphism

(see Ornstein (1974)).

Kalikow (1982) has shown that the “T, T−1” transformation is not

loosely Bernoulli (a weaker condition than Bernoulli) and so not Bernoulli.

So “T, T−1” is a K-automorphism but not Bernoulli. We already know

that the stationary sequence (1w
′, 2w

′)n is purely nondeterministic by

Meilijson’s argument. If it had a representation of the form (2), the process

would have to be Bernoulli by the argument given on factors of Bernoulli

automorphisms. But it can’t be Bernoulli by Kalikow’s result. Thus we

have a purely nondeterministic stationary sequence which doesn’t have

a representation of the form (2) providing a counterexample to Wiener’s

conjecture.

The natural question is that of characterizing the class of nondeter-

ministic processes that have a representation of the form (2) and those

purely nondeterministic processes that don’t have such a representation.

Remarks made by Kalikow suggest that if the path is still a Bernoulli sym-

metric two shift with equal probabilities to left or right and the scenery

Bernoulli of arbitrary entropy the corresponding transformation is still a

K-automorphism but not Bernoulli.

Some remarks on recent results for random walks in a random envi-

ronment can be found in den Hollander and Steif (2006).
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