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Abstract

Let η be a real random variable whose logarithmic moment generating function λ(β) :=

ln(E exp(βη)) exists for all β > 0, and also such that E|η| < ∞. Let νd denote the point to line

last passage time constant of a once-oriented first passage site percolation in d + 1 dimensions.

Here once-oriented refers to the condition that it is always the first coordinate of a path that

is increased among oriented paths along sites in Z(d+1). One can relate νd to the free energy of

a directed polymer model in the random field of i.i.d. copies of η at low temperature (inverse

temperature β near infinity). Here we define the partition function of the directed polymer in the

random environment {η(k, y)}, k ≥ 0, y ∈ Zd, by Zn(β) = E exp(β
∑n

k=1 η(k, Sk)) for a random

walk {Sk} in Zd, where E denotes the expectation relative to this random walk. The free energy

is then given by f(β) := limn→∞ (ln Zn(β)) /n. The connection between νd and f(β), namely

limβ→∞ f(β)/β = νd, was already recognized by Comets and Yoshida [6]. Here we emphasize

the fact that for a class of distributions with upper tail P(η > x) = exp(−xv(x) + δ(x)), such

that: v(x) ↗ ∞ and δ(x) = O(x) as x → ∞, u(x) := xv(x) is strictly convex for large x,

lim infx→∞ xv′(x) > 0, and v satisfies a regularity condition that makes exp(−u(x)) convex for

large x, we may obtain an asymptotic evaluation of νd as d → ∞. These conditions admit the

Poisson case where v(x) = ln(x) − 1 and δ(x) = O(ln(x)). The proof involves a simple linear

estimate on the free energy of the directed polymer model, namely, f(β) ≥ νdβ − ln(2d), that is

valid for all d ≥ 1. Our condition on the upper tail of η is reminiscent but more detailed than

a similar condition given by Ben-Ari [1]. We show that νd ∼ Emax(η1, . . . , η2d) ∼ U(ln(2d)),

where U is the inverse of u. In the Poisson and Gaussian cases we obtain νd ∼ ln(2d)/ ln ln(2d)

and νd ∼
√

2 ln(2d), respectively, as d → ∞. It follows in particular that if a given distribution

of the above class is mixed with a distribution with a lighter upper tail in an appropriate sense

then the last passage time constant is ruled asymptotically as d → ∞ by the distribution with

the heavier upper tail.

1 Introduction

Let η be a real random variable whose logarithmic moment generating function λ(β) := ln(E exp(βη))
exists for all β > 0. We assume also that E|η| <∞, and, since adding a constant to η will only affect
our time constant by the same additive constant, we also assume that Eη ≥ 0. Let νd denote the
point to line last passage time constant (see (1.2)) of a once-oriented first passage site percolation
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in d+ 1 dimensions. Here once-oriented refers to the condition that it is always the first coordinate
of a path that is increased among oriented paths along sites in Z(d+1). One can relate νd to the
free energy of a directed polymer model in the random field of i.i.d. copies of η at low temper-
ature (inverse temperature β near infinity). Here we define the partition function of the directed
polymer in the random environment {η(k, y)}, k ≥ 0, y ∈ Zd by Zn(β) = E exp(β

∑n
k=1 η(k, Sk))

for a random walk {Sk} in Zd, where E denotes the expectation relative to this random walk. The
free energy is then given by f(β) := limn→∞(1/n) lnZn(β). The connection between νd and f(β),
namely limβ→∞ f(β)/β) = νd, was already recognized by Comets and Yoshida, [6], Sect. 7. Here
we emphasize the fact that we may obtain an asymptotic evaluation of νd as d → ∞ by using a
simple linear estimate on the free energy of the directed polymer model, namely, f(β) ≥ νd− ln(2d)
(Proposition 1, below), that is valid for all d ≥ 1. This bound is closely related in spirit to Tala-
grand’s [19] Proposition 1.1.3 (see also [3], Proposition 1.4). To establish our asymptotic evaluation
of νd for large d we assume a condition on the upper tail of η reminiscent of a similar condition
in [1] that turns our estimation into an interesting calculus problem. Indeed we show perhaps not
surprisingly that νd ∼ Emax(η1, . . . , η2d), which in the Gaussian case may be shown directly to
be given asymptotically by

√
2 ln(2d), as d → ∞. By this method it follows in particular that if a

distribution of a certain class is mixed with a distribution with a lighter upper tail then the last
passage time constant is ruled asymptotically by the distribution with the heavier upper tail; see the
remarks after the proof of Theorem 1 at the end of the paper. Although our method does give some
estimates on first passage time constants (see [15]) these turn out to be weaker in the Bernoulli case
than can be found by application of [12].

We first introduce the once-oriented first passage site percolation model. Define the cone of
sites K = Kd+1 := {z = (t, y) ∈ Z+ × Zd : t ≥ 0 and |y|1 ≤ t}, for y = (y1, . . . , yd) ∈ Zd and
|y|1 := |y1|+ · · ·+ |yd|. For a non-negative integer n let γ = (γ0, γ1, . . . , γn) be a sequence of nearest
neighbor positions in Zd, with γ0 = 0 ∈ Zd. This means that for each t = 0, 1, . . . , n − 1, the
increment γt+1 − γt = ±ei for some ith unit coordinate vector ei in Zd. The sequence of sites (t, γt),
t = 0, 1, . . . , n, describes a once-oriented path −→γn = −→γn(γ) of length n in the cone K. When d = 1
this model is equivalent to the usual directed site percolation on Z2

+. Here the usual directed site
percolation model on Zd+1

+ assumes that exactly one coordinate of a path increases by 1 at each step
instead of our assumption that it is always the first coordinate of −→γn that must increase. Thus for
oriented paths in d+ 1 = 3 and higher space dimensions the two models are not equivalent because
in the once-oriented case there are 2d choices for each step of the path compared to d + 1 choices
in the usual directed case. Our motivation for the once-oriented case is in fact its relation to the
usual directed polymer model that we introduce below. Introduce an i.i.d. field of random variables
{η(z)} over z ∈ K, where the common distribution of the field is given by η and where we denote
the probability and expectation relative to this field by P and E respectively. Denote the passage
time over −→γn by

T (−→γn) :=
n∑

t=1

η((t, γt)),

and define the last passage time to pass from the origin at the vertex of K to (n,0) ∈ K by

T̃0,n := maxT (−→γn),

where the maximum is extended over all once-oriented paths of length n with γ0 = γn = 0 ∈ Zd.

2



We define for any 0 ≤ m < n a once-oriented path (m, γ0), (m + 1, γ1), . . . , (n, γn−m) in K, with
(γ0, γ1, . . . ) as above, and define T̃m,n := maxγ0=γn−m=0

∑n−m
t=1 η((m + t, γt). Then obviously the

collection of times {T̃m,n} is superadditive. By superadditivity we have that there exists a constant
µd, called the point to point last passage time constant, such that

lim
n→∞

ET̃0,n/n = µd = sup
n

ET̃0,n/n,

and, by Kingman’s ergodic theorem, limn→∞ T̃0,n/n = µd, P-a.s. and in L1.
We also introduce the “origin to line” last passage times

H̃m,n := max
γ0=0

n−m∑

t=1

η((m+ t, γt)), (1.1)

where the nearest neighbor sequence of positions (γ0, γ1, . . . ) in Zd is as before, but there is no
condition on the “height” γn−m. Even though the collection {H̃m,n} is not superadditive, so that
Kingman’s ergodic theorem does not directly apply, the collection of expectations {EH̃0,n} is super-
additive, so that the corresponding point to line last passage time constant

νd = νd(η) := lim
n→∞

EH̃0,n/n = sup
n≥1

EH̃0,n/n (1.2)

is well defined. We may want to know whether the point to line time constant νd is equal to the
point to point time constant µd. One way to determine this is to use the shape theorem of Martin
[13], Thm. 5.1, since as pointed out in [11] we have that the shape theorem implies νd = µd. Note
that Martin studies the usual directed percolation on Zd+1

+ ; the proofs for the once-oriented case
are obtained in the same way by the concentration inequality Lemma 3.1 of [13]. Yet, due to its
simplicity, it is instructive to see the equality of µd and νd for the present oriented case by the
original approach of Hammersley and Welsh [8] as shown in Smythe and Wierman [18], Thm. 5.3.
For completeness we summarize briefly this argument as follows. Since by definition we already have
µd ≤ νd, the basic idea is to show that for each k ≥ 1,

EH̃0,k/k ≤ µd. (1.3)

To do this, for a given configuration we take successive point to line last-passage-time oriented routes
over intervals in the oriented x-direction of length k, so that successive routes span successive con-
gruent small cones connected vertex to base along the oriented direction via successive translations
of the initial small cone K(0) ⊂ K, where K(0) := {(x, y) ∈ Kd+1 : 0 ≤ x ≤ k, |y|1 ≤ x}. The
vertex of the second small cone is placed at the position (k,h(0)), where h(0) is the “height” such
that the initial point to line last passage time H̃(0)

0,k := H̃0,k over K(0) is achieved for (k,h(0)) as the
final point on a path with, say, smallest 1-norm |h(0)|1. Note that h(0) has a symmetric distribution
in Zd. Coming back now to the original configuration, we denote the point to line last passage
time across the second small cone by H̃

(1)
k,2k := maxγ0=(k,h(0))

∑k
t=1 η((k + t, γt)), and we denote

by (2k,h(0) + h(1)) the final point along a path of length k for which H̃
(1)
k,2k is achieved, again say

with smallest 1-norm |h(1)|1. Continuing in this way we construct n such successive passage times
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H̃
(j)
jk,jk+k , j = 0, 1, . . . , n− 1, and corresponding i.i.d. heights h(j). In the present model the heights

are bounded in Euclidean norm, ‖h(j)‖ ≤
√
dk, so that in particular

√
E‖h(0)‖2 ≤

√
dk. Therefore,

since the mean square of the Euclidean norm of the sum of these heights is given by nE‖h(0)‖2, we
have that the 1-norm of the average height Ln := (h(0) + h(1) + · · · + h(n−1))/n converges to zero
in mean: E|Ln|1 → 0 as n → ∞. Finally construct an oriented path −→rn from (kn, nLn) back to
(kn+ n|Ln|1,0) ∈ K of length n|Ln|1, to obtain an estimate

n−1∑

j=0

H̃
(j)
jk,jk+k + T (−→rn) ≤ T̃0,kn+n|Ln|1 (1.4)

Now divide (1.4) by kn. Since T̃0,kn+n|Ln|1/(kn) ≤ (supN T̃0,N/N)(1 + |Ln|1/k) = µd(1 + |Ln|1/k),
P-a.s., and since ET (−→rn)/(kn) = (Eη)E|Ln|1/k → 0 as n → ∞, then (1.3) follows after taking the
expectation E on both sides and letting n → ∞. Thus after taking k → ∞ in (1.3) we find also
νd ≤ µd.2

In the special cases of the exponential and geometric distributions, the last passage time constants
have been evaluated explicitly for d+ 1 = 2 as follows. If η is unit exponential then ν1(η) = 2. If η
is geometric (p), then ν1(η) = (1 +

√
1 − p)/p. For both these special cases a Shape Theorem holds:

lim
n→∞

(1/n)T̃0,(nx,ny) = g(x, y)

where, formulated on Z2
+, if η ∼ exp, then g(x, y) = (

√
x +

√
y)2, and if η ∼ geo(p), then g(x, y) =(

x+ y + 2
√
xy(1 − p)

)
/p ; see [14]. By setting x = y = 1/2 we obtain the values for the time

constants ν1 above. Also in these special cases (T̃0,n − nν1)/n1/3 converges in distribution to the
Tracy-Widom law F2, [10]. Thus in these cases and for d + 1 = 2 (the 2 dimensional case), the
variance of the last passage times T̃0,n grows only at the rate n2/3. It is unknown how this variance
grows in higher dimensions. For related results in the 2 dimensional case see [16].

Our method hinges on the relationship of last passage times to the limiting behavior in the limit
of low temperature of the directed polymer model. We now introduce this polymer model; see [5]
for a physical motivation. We define the (random) partition function Zn at level n as a function of
the inverse temperature β > 0 by

Zn(β) := (2d)−n
∑

γ

exp(βT (−→γn)),

where the sum is over all (2d)n nearest neighbor sequences (γ0, γ1, . . . , γn) in Zd starting from the
origin as above. An alternative representation of the partition function is given by

Zn(β) = E exp(β
n∑

k=1

η(k, Sk)),

where {Sk} is a simple symmetric random walk in Zd and where E denotes the expectation with
respect to this random walk. Thus Zn(β) is the partition function of a directed polymer in a random
environment; the environment is the field {η(z)} and, in the formula Zn = ave. exp[−energy], the
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energy of the path −→γn is simply: energy = −βT (−→γn). Finally we define the (random) Gibbs measure
on the collection of nearest neighbor sequences γ = (γ0, γ1, . . . , γn) by

µn(γ) := (2d)−n exp(βT (−→γn))/Zn(β),

and write Ẽ for the integration operation with respect to µn. When β = 0 we simply obtain uniform
measure on γ (independent of the environment) that is of course the measure of the simple symmetric
random walk. In a series of papers going back to [2], where Bolthausen gives a martingale proof
of the original result of Imbrie and Spencer [9] on the diffusive behavior of the height γn for small
β > 0 and high dimensions (d+ 1 ≥ 4), namely Ẽ|γn|2/n→ 1, P-a.s., a martingale theory has been
established for the directed polymer in a random environment (see [5],[6]). Here we emphasize that
the logarithmic moment generating function λ(β) := lnE exp(βη) is assumed to exist for all β ≥ 0.
Obviously we have that EZn(β) = exp(nλ(β)). It turns out that the martingale theory leads to a
dichotomy: for all β ≥ 0, limn→∞ Zn(β) exp(−nλ(β)) = Z̃∞(β) exists, and either

(i) Z̃∞(β) > 0 P-a.s. or, (ii) Z̃∞(β) = 0 P-a.s.

In case (i) it is said that weak disorder holds, while under (ii) it is said that strong disorder holds.
For example weak disorder holds if d+ 1 ≥ 4 and β > 0 is small, and, further, if (ii) holds for some
β > 0 then there is a critical inverse temperature βc above which the strong disorder holds [6]. For
d = 1, Comets and Yoshida [6] show that by contrast with the high dimensional case, βc = 0, so
that in the plane there is sufficient interaction among the oriented paths to yield the strong disorder
no matter how high the temperature.

By writing lnZn+m = lnZn + ln
∑
y µn(γn = y)Zyn,m, one finds by Jensen’s inequality and the

fact that E lnZyn,m = E lnZm, that E lnZn is superadditive (see [4], Proposition 1.5). Hence by
superadditivity the so-called free energy f(β) exists as follows:

lim
n

E(lnZn)/n = f(β) = sup
n

E(lnZn)/n. (1.5)

Jensen’s inequality applied with respect to E immediately gives that f(β) ≤ λ(β). By [4] one also
obtains a concentration inequality: P(|(1/n) lnZn−f(β)| > δ) ≤ exp(−δ2n/c), so that in particular
by the Borel-Cantelli lemma,

lim
n→∞

(1/n) lnZn = f(β) P-a.s. (1.6)

It is well known that f(β) is convex in β (see below). Further it is shown by [6] using an FKG
inequality that the so-called Lyapunov exponent ψ(β) := λ(β) − f(β) is non-decreasing. Comets
and Yoshida ([6], Theorem 3.2) use this monotonicity property together with the martingale theory
developed in [5] to establish that a phase transition from weak disorder to strong disorder occurs at
most once and that ψ(β) = 0 for 0 ≤ β ≤ βc. For d ≥ 2 an open problem is whether there exists a
second phase transition βψc > βc such that ψ(β) = 0 for β < βψc and ψ(β) > 0 for β > βψc (see [6],
Remark 3.2). In d = 1 Comets and Vargas [7] have shown that there is no such second transition so
that ψ(β) > 0 for all β > 0.

2 Bound on the free energy

Our object in this Section is to obtain a bound on the free energy (Proposition 1, below) that we
can then apply to the problem of estimating νd in general. To see how the free energy is related to

5



the time constant, consider in essence the double limit limn,β→∞ (lnZn(β)) /(nβ) as in [6], Sect. 7.
We proceed as follows. First estimate

∑
γ exp(βT (−→γn)) from below by the maximum term:

E(lnZn) = E ln[(2d)−n
∑

γ

exp(βT (−→γn))] ≥ βEH̃0,n − n ln(2d).

Next estimate also the average above by the largest term:

βEH̃0,n = max
γ

(βT (−→γn)) ≥ E(lnZn).

By dividing by n and taking n → ∞, in each of these last two relations, and by recalling the
definitions (1.2) and (1.5), we have thus proved the following.

Proposition 1 We have the following linear lower bound for the free energy:

f(β) ≥ βνd − ln(2d), for all β ≥ 0.

Furthermore,
lim
β→∞

f(β)/β = νd = sup
n≥1

EH̃0,n/n.

We remark that a slightly different approach to Proposition 1 similar in spirit to that above
may be made by working with quantities before taking expectations under the assumption that the
exponential moment E exp(βη) exists for all β > 0. Indeed, since there is always at least one oriented
path along which H̃0,n is attained, we have the simple estimate

ln[exp(βH̃0,n)1/(2d)n]/(nβ) ≤ lnZn(β)/(nβ) ≤ H̃0,n/n.

Therefore, we have for all n ≥ 1 and β > 0

H̃0,n/n− ln(2d)/β ≤ lnZn(β)/(nβ) ≤ H̃0,n/n. (2.1)

Thus the conclusion of Proposition 1 follows from (1.6) and (2.1) once we can prove that

lim
n→∞

H̃0,n/n = νd P-a.s. (2.2)

But since under the exponential moment assumption we have in particular that the second moment
of H̃0,n exists for all n, we have that (2.2) follows from Cor. 5.5 and Thm. 2.9 of [18].

In the Gaussian case (η ∼ N (0, 1)) we have by [3] that for β > 0,

f(β) ≤ min
(
β2/2, β

√
2 ln(2d)

)
, (2.3)

so in this case one immediately obtains by Proposition 1 that

νd(N (0, 1)) ≤
√

2 ln(2d). (2.4)

Remark 1 One can show directly (see [15])that Emax(g1, . . . , g2d) =
√

2 ln(2d) + o(1) as d → ∞,
where g1, . . . , g2d denote i.i.d. N (0, 1) r.v.’s. So by (1.2) with n = 1 and (2.3) we obtain in the
Gaussian case that likewise, νd =

√
2 ln(2d) + o(1) as d→ ∞.
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In Theorem 1, below, we extend this Gaussian example to an asymptotic evaluation of νd for a
certain class of distributions with upper tails smaller than the tail of the exponential distribution.

Finally we note in this vein that even though we asymptotically evaluate νd in Theorem 1 below
for a class of distributions such that νd → ∞ as d → ∞, it is still open to determine whether in
any given case νd > 0 for small d. Whenever this is true then, since µd = νd, we also get the shape
theorem as in [13].

It is well known that fn(β) := E lnZn(β) is convex (since the second derivative in β is a variance
with respect to Gibbs measure). Since Eη ≥ 0, we have that fn(β) is non-negative and non-
decreasing for β ≥ 0. Indeed for ∆β := β1 − β0 > 0

fn(β1) = fn(β0) + (1/n)E lnE exp(∆βT ) [exp(β0T )/E exp(β0T )]

= fn(β0) + (1/n)E ln Ẽ exp(∆βT ) ≥ fn(β0) + EẼ(∆β)T/n ≥ fn(β0),

where at the last step Jensen’s inequality was applied w.r.t. Ẽ. Here E is the uniform measure
on directed paths and Ẽ is simply the Gibbs measure expectation. Also we have written T for
short in place of T (−→γ n). Thus taking limits in (1.5) we obtain these properties for f(β). Thus the
Proposition 1 simply gives a bound on the constant Cd for the tangent line λ = νdβ +Cd of f(β) at
β = ∞; namely, Cd ≥ − ln(2d). Notice that in the Gaussian case we have that βψc ≤ νd by λ′(β) = β

and convexity of f(β).
We also remark that the inequality (2.4) may be obtained from the convexity of f(β) and f(β) ≤

λ(β) = β2/2 using Proposition 1 as follows. The tangent line to the graph of λ(β) at β = νd is given
by λ = νdβ − ν2

d/2, with slope νd. Since the graph of λ(β) lies above that of f(β) which in turn by
Proposition 1 lies above the line λ = νdβ− ln(2d), we have that the λ-intercepts of the two lines are
in the relation −ν2

d/2 ≥ − ln(2d), so (2.4) follows. In addition, by Remark 1 the constant ln(2d) in
Proposition 1 is asymptotically best possible as d → ∞ in the Gaussian case.

We conclude this section by illustrating Proposition 1 to obtain an asymptotic evaluation of the
last passage time constant in the unit exponential case. The novelty of our approach is its simplicity.
First define

md := Emax(η1, . . . , η2d). (2.5)

Since md = EH̃0,1, we have by (1.2) that νd ≥ md. We show that in fact νd ∼ md as d → ∞, as
follows. First write G(t) := t2d for t = t(x) := P(η ≤ x) = 1 − exp(−x), x ≥ 0. By the change of
variables t = t(x) we have md =

∫ 1

0
− ln(1 − t)dG(t). But − ln is a convex function. So by Jensen’s

inequality we find md ≥ − ln(
∫ 1

0 (1 − t)dG(t)) = − ln(1 − 2d/(2d + 1)) = ln(2d) + o(1) as d → ∞.
Next we use Proposition 1 to show also that νd ≤ ln(2d)(1 + o(1)). We have that

λ(β) ≥ f(β) ≥ βνd − ln(2d). (2.6)

Now λ(β) = − ln(1 − β), β < 1. Choose β = 1 − 1/ ln(2d). By (2.6) we therefore have that
ln ln(2d) ≥ νd(1− 1/ ln(2d))− ln(2d). It follows that νd ≤ ln(2d) +O(ln ln(2d)). Hence we find that
in the unit exponential case

νd = ln(2d)(1 + o(1)) as d→ ∞.
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3 Asymptotic evaluation of νd as d → ∞
In this section we generalize our asymptotic evaluation of the last passage time constant νd by
assuming a nice form of the upper tail of the distribution of η, namely conditions (3.4)-(3.7) below,
that appears in the same guise but in less detailed form in [1]. We start with a series of assumptions
on the distribution of η, mainly that the upper tail decays at least exponentially, but that will
also include the discrete case, to get a lower bound for the moment md of (2.5). Denote the
distribution function F (x) of η by F (x) := P(η ≤ x). We assume that F (x) takes the form F (x) =
1 − exp(−u(x)), where u(x) is non-decreasing. We also assume that there exist two distribution
functions Fi(x) := 1 − exp(−ui(x)), i = 0, 1, such that the associated exponents ui(x) are strictly
increasing continuously differentiable positive functions for all x ∈ [x0,∞), with some x0 > 0, such
that for x ≥ x0, u(x) falls between these two exponents and is asymptotic to each at infinity:

u0(x) ≤ u(x) ≤ u1(x), with u′i(x) > 0, x ≥ x0, and u1(x) = (1 + o(1))u0(x), as x → ∞. (3.1)

Note that the upper tail for exponent u1 is smaller than the upper tail for exponent u0, so F1(x) ≥
F0(x), x ≥ x0, and a random variable under F1 will take smaller values x near infinity than another
variable under F0 under a coupling for these distributions. We also assume the exponential tail
condition that

lim inf
x→∞

u′i(x) > 0, i = 0, 1. (3.2)

Finally we assume that each of the distribution functions Fi(x) is concave for x ≥ x0, a condition
that is equivalent under the existence of second derivatives of the ui to:

−u′2i (x) + u′′i (x) ≤ 0, x ≥ x0. (3.3)

Define U as the function inverse of u; U := u−1, so that U(u) is nondecreasing to ∞, for u ≥ u(x0).

Lemma 1 Assume the conditions (3.1)-(3.3) and also that E|η| <∞. Then we have that

md ≥ U(ln(2d))(1 + o(1)), as d→ ∞.

For convenience, before we prove this lemma we also state here the exponential moment condition
that we will use to prove our Theorem 1 below. Assume that the exponent −u(x) of the distribution
function F (x) is given by the form

u(x) = xv(x) + δ(x), x ≥ x0, (3.4)

where v(x) is twice continuously differentiable and satisfies the following shape conditions:

v(x), x ≥ x0, is strictly increasing to ∞, and xv(x), x ≥ x0, is strictly convex, (3.5)

as well as the following growth condition:

lim inf
x→∞

xv′(x) > 0. (3.6)

We assume that δ(x) = O(x), as x→ ∞. Finally we assume that v satisfies a regularity condition:

lim inf
x→∞

(xv(x))′2/(xv(x))′′ > 1. (3.7)
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where the prime denotes differentiation with respect to x. After a bit of computation with u0(x) :=
xv(x) −Mx and u1(x) := xv(x) +Mx for a suitably large constant M > 0, we can see that (3.1)-
(3.2) hold by (3.4) and (3.6). Further (3.3) holds in addition by applying (3.7) in conjunction with
(3.4) and (3.6). Thus (3.4), (3.6), and (3.7) are sufficient for Lemma 1. We will use condition (3.5)
together with (3.4) and (3.6) to prove Lemma 2 below.

We define V as the function inverse of v; V := v−1, so V (v) increases to ∞, for v ≥ v(x0). Notice
that the exponential and Gaussian cases correspond to v(x) = 1 and v(x) = x/2, or U(u) = u and
U(u) =

√
2u, respectively, even though the exponential case does not satisfy (3.6). Furthermore

the Poisson case corresponds to v(x) = ln(x) − 1 and δ(x) = O(ln(x)), so that U(u) ∼ u/ ln(u) as
u→ ∞. By the growth condition (3.6) we can see that the Poisson distribution is a boundary case
for Theorem 1.

Proof of Lemma 1. The proof is by an application of Jensen’s inequality in a similar way as shown in
the example at the end of the last paragraph of Section 2. As before denote by F (x) the cumulative
distribution function of η: F (x) := P(η ≤ x). We have that md =

∫ ∞
−∞ xdF 2d(x). Now we make the

substitution t = F (x) to write the last integral as md =
∫ 1

0
F−1(t)d(t2d). Denote t0 := F (x0) and

note that t0 < 1. We split the last integral for md as
(∫ t0

0
+

∫ 1

t0

)
F−1(t)d(t2d) = I + II . Rewrite

I =
∫ x0

−∞ 2dxF 2d−1(x)dF (x), and assume that d ≥ 2 since we are eventually going to take d → ∞.
We note that due to the assumption E|η| <∞, we have that M0 := supx≤x0

|xF (x)| <∞. Hence we
may estimate that |I | ≤ M0

∫ x0

−∞ 2dF 2d−2(x)dF (x) = (2d/(2d− 1))M0t
2d−1
0 = o(1) as d → ∞. We

next estimate II from below by first using the left hand inequality in F−1
1 (t) ≤ F−1(t) ≤ F−1

0 (t),
t ≥ t0, and second by using that F−1

1 (t), is convex on [t0, 1) by (3.3). Hence by writing II ≥
(1 − t2d0 )

∫ 1

t0
F−1

1 (t)d
(
t2d/(1 − t2d0 )

)
, we have by Jensen’s inequality applied to F−1

1 that

II ≥ (1 − t2d0 )F−1
1

(∫ 1

t0

td
(
t2d/(1 − t2d0 )

))
.

Hence, putting together our estimates we have shown that

md ≥ o(1) + (1 + o(1))F−1
1

(
(2d/(2d+ 1))(1 +O(t2d0 ))

)
, as d→ ∞ (3.8)

It remains to get a suitable estimate for F−1
1 (t) as t → 1. For t ≥ t0 let us write t = 1 − p

for p = p(x) := exp(−u1(x)). Therefore − ln(p(x)) = u1(x), and x = U1(− ln(p(x))). Now set
p = (1 + O(t2d0 ))/(2d + 1) and find that x = U1(ln(2d) + O(1/d)). Finally by condition (3.2), we
have that u′1(x) ≥ c > 0, for all large x and some constant c > 0, so that U ′

1(u) ≤ (1/c), for all
large u. Therefore U1(ln(2d) + O(1/d)) = U1(ln(2d)) + O(1/d) = (1 + o(1))U1(ln(2d)). Thus also
II ≥ (1 + o(1))U1(ln(2d)). Finally, since the term I = o(1) is clearly o(1)U1(ln(2d)), to complete
the proof we need only establish that U(u) ∼ U1(u), as u → ∞. However the growth condition
(3.2) again implies that the change in x, ∆x > 0, such that u0(x + ∆x) ≥ u0(x)(1 + ε) satisfies
∆x ≤ (ε/c)x for a constant c > 0 and all large x. Hence this gives that U1(u) = (1 + o(1))U0(u) as
u→ ∞. Since we also have that U0(u) ≥ U(u) ≥ U1(u) for all large u, this completes the proof. 2

The object of the present section is to prove the following.
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Theorem 1 Assume that conditions (3.4)-(3.7) hold and that E|η| < ∞. Then the once-oriented
last passage time constant νd satisfies

νd ∼ U(ln(2d)), as d→ ∞.

Remark 2 By Lemma 1 and the relation νd ≥ md, it follows by Theorem 1 that we may also write
νd ∼ md as d→ ∞.

Before we can prove this theorem, we will need an estimate of the logarithmic moment generating
function λ(β). To simplify the computations we define a random variable η+ taking values in [x0,∞)
to have the distribution function F+(x) := P(η ≤ x|η ≥ x0), so that

F+(x) = 1 − C0 exp(−u(x)), x ≥ x0, (3.9)

for C0 = exp(u(x0)). Then since η+ is stochastically larger than η, we have that νd(η+) ≥ νd(η).
Thus by using λ+(β) ≥ f+(β) ≥ νd(η+)β − ln(2d) ≥ νd(η)β − ln(2d), where f+ denotes the free
energy of η+, it will suffice to estimate the logarithmic moment generating function λ+(β) of η+ at
an appropriately chosen value of β. Denote:

w(x) := (xv(x))′ = xv′(x) + v(x), (3.10)

and note that w(x) ↗ ∞. Denote also, with a slight abuse of notation, U(u) as the function inverse
of the nice exponent u = xv(x).

Lemma 2 Assume that the conditions (3.4)-(3.6) hold. Then for β = βd := w(U(ln(2d)))−M , for
some constant M > 0, we have that λ+(βd) ≤ (U2v′(U))(ln(2d))(1 + o(1)), as d→ ∞.

Proof of Lemma 2. We write by integration by parts that

exp(λ+(β)) = −
∫ ∞

x0

exp(βx)d(1−F+(x)) = −[exp(βx)(1−F+(x))]∞x0
+C0β

∫ ∞

x0

exp(βx−u(x))dx,

where the integrated term is zero by (3.5). Hence by substituting for u(x) by (3.4), we have

exp(λ+(β)) = C0β

∫ ∞

x0

exp(βx− xv(x) + δ(x))dx.

Substitute v = v(x) or x = V (v), to rewrite this integral as

exp(λ+(β)) = C0β

∫ ∞

v(x0)

exp(−(v − β)V (v) + δ(V (v)))V ′(v)dv.

Break this integral into two pieces, I + II , where

I := C0β

∫ 2β

v(x0)

exp(−(v − β)V (v) + δ(V (v)))V ′(v)dv,

and II := exp(λ+(β)) − I . Now, using that the term (v − β)V (v) ≥ V (v) for v ≥ 2β, and that
V ′ > 0, we immediately obtain, using −βV (v) + δ(V (v)) ≤ −(β/2)V (v) for large v, that

II = C0β

∫ ∞

2β

exp(−V (v) + δ(V (v)))V ′(v)dv ≤ 2C0 exp(−(β/2)V (2β)) = o(1), as β → ∞.
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It remains to estimate I . We have the simple estimate obtained by maximizing the exponent as
follows:

I ≤ C0β exp
(

max
v(x0)≤v≤2β

{V (v)(β +M − v)}
)

[V (2β) − x0], (3.11)

for a suitably large constant M > 0 such that |δ(x)| ≤Mx, x ≥ x0. The exponent to be maximized
is of course none other than (β+M)x−xv(x) written as a function of v = v(x). By the assumption
that xv(x) is strictly convex we have that there is a unique maximum obtained at a large value of
v when β is large. Indeed the value of v that maximizes this exponent is found by differentiation to
be determined by the equation

w(V (v)) = β +M or v + (V/V ′)(v) = β +M. (3.12)

The equation (3.12) for v may also be written as w(x) = β + M . Now we choose β implicitly by
specifying the value of x or v = v(x) that must correspond to that choice of β through (3.12) as:
v = v(xβ) for xβ := U(ln(2d)). This therefore determines β := w(xβ)−M = w(U(ln(2d))−M . Note
that this value of β tends to ∞ with d tending to ∞, since in particular by (3.6) w(x) ≥ c+ v(x) for
all large x and a constant c > 0. Since the solution for v in (3.12) is clearly in the interval [v(x0), 2β]
for large β (again by w(x) ≥ c+ v(x) for large x) we have solved the maximization problem for the
upper bound of I in (3.11) with the given choice of β = w(U(ln(2d))−M with large d and the unique
critical value v = v(U(ln(2d)). Since by (3.12) we have β + M − v(xβ) = (V/V ′)(v(xβ)), we find
that the value of the maximum exponent is: (V 2/V ′)(v) = x2

βv
′(xβ) = U(w(U) − v(U)) = U2v′(U),

for U = U(ln(2d)). We thus have that

I ≤ C0w(x)V (2w(x)) exp(x2v′(x)), for x = U(ln(2d)).

We need finally to estimate w(x)V (2w(x)) to handle the term before the exponential in this upper
bound for I . However we can do this using (3.6) as follows. First we note the following observation.

Observation. If f(x) ↗ ∞ and g(x) ↗ ∞ and if f and g are differentiable with f ′(x), g′(x) > 0, for
all large x, and finally, if f ′(x) = o(1)g′(x) as x → ∞, then f(x) = o(g(x)), as x → ∞. Indeed this
can easily be shown by a proof by contradiction.

Now we set up two functions f and g for this context. Since by (3.6), we have 1/(yv′(y)) ≤ C

for a constant C > 0 and all large y, we have that (V ′/V )(v(y)) = 1/(yv′(y)) ≤ C. Thus, since
v(y) stands for any large value of the argument we have that (V ′/V )(Aw(x)) ≤ C, for all large
x, and any constant A > 0. Now multiply both sides of this last relation by Aw′(x) where we
recall that w′(x) = (xv(x))′′. Since by (3.4) w′(x) > 0, we therefore have: (V ′/V )(Aw(x)) ×
Aw′(x) ≤ ACw′(x) = o(1)xw′(x). But by a straightforward computation xw′(x) = (x2v′(x))′,
and of course (V ′/V )(Aw(x)) × Aw′(x) = (ln(V (Aw(x))))′ . Hence by our observation above ap-
plied with f(x) := ln(V (Aw(x))) and g(x) := x2v′(x), we have that ln(V (Aw(x))) = o(x2v′(x)).
Alternatively we have shown that V can grow at most exponentially, so ln(V (w(x))) << w(x),
but since xw′(x) = (x2v′(x))′, we have that w′(x) = o(1)(x2v′(x))′. So by the observation,
w(x) = o(x2v′(x)), and we end up with the same conclusion. Thus because as noted already
x2v′(x) ↗ ∞ as x → ∞, we have by our estimation of I in (3.11) and II = o(1) above that indeed
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λ+(βd) = ln(I + II) ≤ x2
βv

′(xβ)(1 + o(1)) for xβ = U(ln(2d)) and βd = w(xβ) −M . 2

Proof of Theorem 1. The proof of Theorem 1 now follows by Lemmas 1 and 2 and the relations
λ+(β) ≥ νdβ − ln(2d) and νd ≥ md mentioned above. Thus, writing U in place of U(ln(2d)) and
u(U) in place of ln(2d) for the nice exponent u = xv(x), we have by Lemma 2 that

U2v′(U)(1 + o(1)) ≥ (w(U) −M)νd − ln(2d), or, (u(U) + U2v′(U))(1 + o(1)) ≥ w(U)(1 + o(1))νd.

But now since u(U) +U2v′(U) = Uw(U), we have shown that νd ≤ U · (1 + o(1)). Since by Lemma
1 we also have that νd ≥ U · (1 + o(1)), the proof is complete. 2

We illustrate Theorem 1 in the unit Poisson case. By Stirling’s formula ln(x!) = c+ o(1) + (x+
1/2) ln(x)−x, we find that the Poisson case is represented by v(x) = ln(x)−1 with δ(x) = O(ln(x)).
The growth condition (3.6) is just satisfied: xv′(x) = 1, and the regularity condition (3.7) is easily
satisfied since here (xv(x))′2/(xv(x))′′ ∼ x ln(x)2. We have that U is the inverse of xv(x) ∼ x ln(x),
or U(u) ∼ u/ ln(u). Therefore in the Poisson case

νd ∼ ln(2d)/ ln ln(2d), as d→ ∞.

Finally, we apply Theorem 1 to the case when the distribution F (x) of η is a mixture: F (x) =
pF0(x) + qF1(x) for Fi(x) = 1 − exp(−ui(x)), i = 0, 1. Assume that u0 satisfies the conditions of
Theorem 1, and that −u1(x) + u0(x) ≤ Mx for all large x and some constant M > 0. Then one
easily calculates that the distribution F (x) continues to have an exponent −u0(x) with a different
error term δ(x) in (3.4). Therefore the last passage time constant for the mixture F is asymptotically
the same as that for the distribution F0. Thus the time constant is ruled by the distribution of the
mixture with the heavier upper tail.
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