Zeros of a two-parameter random walk

Pál Révész
Technical University Vienna

This is joint work with D. Khoshnevisan. Let

$$
\{X(i, j), i=1,2, \ldots, j=1,2, \ldots\}
$$

be an array of i.i.d. r.v.'s with

$$
\mathbf{P}\{X(i, j)=1\}=\mathbf{P}\{X(i, j)=-1\}=1 / 2
$$

and put

$$
\begin{gathered}
S(m, n)=\sum_{i=1}^{m} \sum_{j=1}^{n} X(i, j) \\
I(m, n)= \begin{cases}1 & \text { if } S(m, n)=0 \\
0 & \text { otherwise },\end{cases} \\
\gamma(A)=\sum_{(m, n) \in A} I(m, n)
\end{gathered}
$$

where $A \subset \mathbb{Z}^{2}$. Our first aim is to study the number of zeros

$$
\gamma_{N}=\gamma\left([0, N]^{2}\right)
$$

of $S(\cdot, \cdot)$ in $[0, N]^{2}$.
Theorem 1. For any $\varepsilon>0$

$$
N^{1-\varepsilon} \leq \gamma_{N} \leq N^{1+\varepsilon} \quad \text { a.s. }
$$

if N is large enough.
We are also interested in the location of the zeros on the diagonal of $[0, n] \times$ $[0, n]$. Let

$$
N_{n}=\sum_{1 \leq i \leq n} \mathbf{1}_{\{S(2 i, 2 i)=0\}}
$$

Theorem 2.

$$
\lim _{n \rightarrow \infty} \frac{N_{n}}{\log n}=\left(\frac{2}{\pi}\right)^{1 / 2} \quad \text { a.s. }
$$

