Convexity points in linear regression

Richard M. Dudley
Massachusetts Institute of Technology

This is joint work with Xia Hua. Consider the simple linear regression model $Y_{j}=a+b x_{j}+\varepsilon_{j}$ where $x_{1}<x_{2}<\cdots<x_{n}$ are non-random design points, Y_{j} are also observed, the "errors" ε_{j} are unobserved i.i.d. $N\left(0, \sigma^{2}\right), n \geq 2$, and σ^{2} is unknown. It's well known that a and b can be uniquely estimated by least squares or equivalently by maximum likelihood, giving \hat{a} and \hat{b}. We then observe the residuals $r_{j}=Y_{j}-\hat{a}-\hat{b} x_{j}$. For numbers s_{1}, \ldots, s_{n} which may be either $\varepsilon_{1}, \ldots, \varepsilon_{n}$ or r_{1}, \ldots, r_{n}, say that there is a turning point at $j=2, \ldots, n-1$ if $\left(s_{j-1}-s_{j}\right)\left(s_{j+1}-s_{j}\right)>$ 0 , or a convexity point if $\left(s_{j}-s_{j-1}\right) /\left(x_{j}-x_{j-1}\right)<\left(s_{j+1}-s_{j}\right) /\left(x_{j+1}-x_{j}\right)$. There is a convexity point in the errors at j if and only if there is one in the residuals. That is not true for turning points but it becomes approximately true for large n. Thus the indicators t_{j} of having a turning point at j are weakly dependent. The indicators c_{j} of having a convexity point at j in the errors and thus in the residuals are 2 -dependent. Suppose for simplicity that the spacings $x_{j}-x_{j-1}$ are all equal. The variables $X_{j}=c_{2 j}+c_{2 j+1}-1$ are 1 -dependent and symmetric. The talk will focus on the distribution of the total number of convexity points.

