A central limit theorem for one-dimensional random walk on random scenery

George Deligiannidis

University of Nottingham

Let X, X_1, X_2, \ldots be iid, \mathbb{Z} -valued random variables whose characteristic function satisfies

$$f(t) = E[e^{itX}] = 1 - \gamma |t| + R(t), \qquad t \in [-\pi, \pi),$$

where R(r) = o(|t|). Suppose that $S_n = \sum_{i=1}^n X_i$, that $\xi(\alpha), \alpha \in \mathbb{Z}$ are iid realvalued with mean zero and finite positive variance σ^2 , and that $Z_n = \sum_{i=1}^n \xi(S_i)$. It is shown that $Z_n/\sqrt{n \log n}$ satisfies a central limit theorem and in particular that the laws of

$$Y_n(t) = \sqrt{\pi \gamma} Z_{[nt]} / \sqrt{2n \log n}, \quad t \in [0, 1]$$

converge weakly in D[0,1] to the Wiener measure.