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© Mixed distributions
@ Zero adjusted distributions on zero and the positive real line [0, co)
e Distributions on the unit interval (0,1) inflated at 0 and 1
@ Lung function data

© Finite mixtures
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Mixed distributions

A mixed distribution is a mixture of two components:

@ a continuous distribution and

@ a discrete distribution

i.e. it is a continuous distribution where the range of Y also includes
discrete values with non-zero probabilities.
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Zero adjusted distributions on zero and the positive real

line [0, c0)

They are a mixture of a discrete value 0 with probability p, and a
continuous distribution on the positive real line (0, 00) with probability

(1-p).
The probability (density) function of Y is fy(y) given by

p ify=0
fy = . 1
={ C- put) ity 0 @
for 0 <y < oo, where 0 < p < 1 and fiy(y) is a probability density
function defined on (0, c0), i.e. for 0 < y < occ.
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Zero adjusted distributions on zero and the positive real
line [0, c0)

Appropriate when Y = 0 has non-zero probability and otherwise Y > 0.
For example when Y

@ measures the amount of rainfall in a day (where some days have zero
rainfall),

@ the river flow at a specific time each day (where some days the river
flow is zero),

@ the total amount of insurance claims in a year for individuals (where
some people do not claim at all and therefore their total claim is zero).
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Zero adjusted gamma distribution, ZAGA(j1,0,v)

The zero adjusted gamma distribution is a mixture of

@ a discrete value 0 with probability v, and

e a gamma GA(u, o) distribution on the positive real line (0, 00) with
probability (1 — v).
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Zero adjusted gamma distribution, ZAGA(j1,0,v)

The probability (density) function of the zero adjusted gamma distribution,
denoted by ZAGA(u,o,v), is given by

v ify=20

fY(y’N7U7 V) = { (]_ — V)fW(}/|N7U) ify>0

for 0 <y < oo, where y>0and o >0and 0 < v <1, and
W ~ GA(w, o) has a gamma distribution.
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Zero adjusted gamma distribution
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Zero adjusted gamma distribution, ZAGA(j1,0,v)

The default link functions relating the parameters (u, o, v) to the
predictors (11, 12,73), which may depend on explanatory variables, are

log u =m
logo =

| v
og =173.
1—v 3

B e

=
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Zero adjusted gamma distribution, ZAGA(j1,0,v)

The ZAGA model is equivalent to
@ a gamma distribution GA(u, o) model for Y > 0 together

@ with a binary model for recoded variable Y7 iven by

0 ifY>0
Yl_{1 if Y =0 (3
i.e.
oy _J@Q-v) ify1=0
P(Yl—)/l)—{ N iy =1 (4)
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Distributions on the unit interval (0,1) inflated at 0 and 1
Distributions on the interval (0,1) inflated at 0 and 1

These distributions are appropriate when the response variable Y takes
values from 0 to 1 including 0 and 1, i.e. range [0,1].
They are a mixture of three components:

@ a discrete value 0 with probability pg,

@ a discrete value 1 with probability p;,

@ and a continuous distribution on the unit interval (0, 1) with
probability (1 — po — p1).
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Distributions on the unit interval (0,1) inflated at 0 and 1
Distributions on the interval (0,1) inflated at 0 and 1

The probability (density) function of Y is fy(y) given by

Po ify=20
fy(y)=4 (1—po—p1)fw(y) ifO<y<1 (5)
p1 ify=1

or0<y<1 where0<pp<1l,0<pr<land0<py+p1 <1and
fw(y) is a probability density function defined on (0,1), i.e. for 0 <y < 1.
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Distributions on the unit interval (0,1) inflated at 0 and 1
Beta Inflated distribution
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Distributions on the unit interval (0,1) inflated at 0 and 1
Beta inflated distribution, BEINF(u,0,v,7)

The probability (density) function of the beta inflated distribution, denoted
by BEINF(u,0,v,7), is defined by

Po ify=20
fy(ylp,o,v,7) =< (1 —po— p1)fw(ylp, o) if0<y<1 (6)
P1 ify=1

for 0 <y <1, where W ~ BE(u, o) has a beta distribution,
v =po/p2 and 7 = p1/p2 where pp =1 — py — p1.
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Distributions on the unit interval (0,1) inflated at 0 and 1
BEINF: demo

© demo.BEINF()
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(\WOEL IS EM  Distributions on the unit interval (0,1) inflated at 0 and 1

The default link functions relating the parameters (u, o, v, 7) to the
predictors (11, 172,13, M4), which may depend on explanatory variables, are

o
| _— =
Og<1—u> "
lo 7 )=
gl )=m

log v = log (Po) =13
P2

log T = log <p> =1
p2
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(\WOEL IS EM  Distributions on the unit interval (0,1) inflated at 0 and 1

The model is equivalent to

@ a beta distribution BE(u,0) model for 0 < Y < 1

e a multinomial model MN3(v, 7) with three levels for recoded variable

Y; given by
0 ifY=0
Yi={ 1 ify=1 (7)
2 fo<Y«l
i.e.
Po ify1 =0
p(Yi=y1)=1¢ p1 ify1 =1 (8)

l—po—p1 ify1=2

where v = po/p2 and 7 = p1/p> where pp =1 — po — p1 Agamlss
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Distributions on the unit interval (0,1) inflated at 0 and 1
Beta inflated at 0 distribution, BEINFO(,0,v)

The probability (density) function of the beta inflated at 0 distribution,
denoted by BEINFO(y,0,v), is given by

fy(ylp,o,v) = { (1—po)fw(ylu,0) ifo<y<1

(9)

for 0 <y <1, where W ~ BE(u, o) has a beta distribution where
v=po/(1— po).
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Distributions on the unit interval (0,1) inflated at 0 and 1
Beta inflated at 1 distribution, BEINF1(1,0,v)

The probability (density) function of the beta inflated at 1 distribution,
denoted by BEINF1(u,0,v), is given by

ify=1

_) P
iyl o) = { (1= p)fw(ylp,0) ifO<y<1 (10)
for 0 <y <1, where W ~ BE(u, o) has a beta distribution where
v=p1/(1-p1)
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Lung function data
3164 male observations of lung function data
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Lung function data
The lung function data

Y = FEV4/FVC : the Spirometric lung function an established index for
diagnosing airway obstruction (3164 male)

age : the height in cm

Source: Stanojevic et al. 2009
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Lung function data
Lung function data: distribution

A logitSST distribution inflated at 1 was used. The probability (density)
function of Y is fy(y) given by

p ify=1 (11)

frlylu, 0,07, ) = { 1-p)fw(ylg,ov,7) ifO<y<1

for 0 <y <1, where W ~ logitSST (u,o,v,7) has a logitSST distribution
with —co < p<ocoand ¢ >0, v >0, 7> 0 and where 0 < p < L.
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Lung function data
Lung function data: link functions

The default link functions relate the parameters (u, o, v, T, p) to the
predictors (11, 172,13, M4, 75), which are modelled as smooth functions of
Iht = log(height), i.e.
p=m = s(lht)
log o = ny = s(lht)
log v = n3 = s(/ht)
log T = na = s(lht)

log <1fp> =15 = s(lht)
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Lung function data
The lung function data: fitted centile curves
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Finite mixtures: Why

@ Dealing with multimodal distributions

@ A way to introduce simple random effect models in GAMLSS
@ distinction between

e Finite mixtures with no parameters in common
o Finite mixtures with parameters in common
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Finite mixtures example: Enzyme data

30

00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

enzymes$act
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Finite mixtures: Distribution function

Suppose that the random variable Y comes from component k, having
probability (density) function fx(y), with probability 7y for
k=1,2,...,K, then the (marginal) density of Y is given by

K
fr(y) = Zﬂkfk()/)
k=1
where 0 < 7, < 1 is the prior (or mixing) probability of component k, for

k=1,2,...,K and K  me = 1.

Agamlss
Bob Rigby, Mikis Stasinopoulos Flexible Regression and Smoothing 2013 27 / 38



Finite mixtures: Distribution function

The probability (density) function fx(y) for component k may depend on
parameters 0 and explanatory variables xg, i.e. fx(y) = fk(y|O«k, x«)-
Similarly fy(y) depends on parameters @ = (0, 7) where

0 =(601,0>,...,0k) and 77 = (71, m2,..., k) and explanatory
variables x = (x1,X2,...,Xk), i.e. fy(y) = fy(y|,x), and

K
Fr(yl,x) = D mufi(y|0kx«)

k=1

Agamlss
Bob Rigby, Mikis Stasinopoulos Flexible Regression and Smoothing 2013 28 / 38



Finite mixtures: the log Likelihood

n K
0=L(sh,y) =) log [Z kak(yl')]
=1 Lk=1

We wish to maximize ¢ with respect to 1, i.e. with respect to 8 and .
It turns out that it is easier to maximise using EM algorithm:

o define the full likelihood
@ take expections

@ maximise
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Finite mixtures: the complete log Likelihood

S — 1, if observation i comes from component k
k= o, otherwise

Let 5,-T = (dj1,9i2,--.,0ik) be the indicator vector for observation i.
Let 67 = (87,87 ,...,8]) combine all the indicator variable vectors.

n K

Ce(h,y,8) =D > S log fulyi +Zzé,klogm

i=1 k=1 i=1 k=1
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Finite mixtures: EM-steps

E-step

° =& [tcly, ]
K n

= ZZW Iogfk i) JrZZWerr)Iogwk

k=1 i=1 k=1 i=1

M-step weighted log likelihood for GAMLSS model
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Finite mixtures: the weights

"A"i(er) = E [5ik|y,12’(r)}
ﬁir)fk(yf'léy))
~(r ~(r)
Zl}le 771(<)fk()’i|9k
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Finite mixtures: the gamlssMX() function

ml
m2
m3
m4
mb5

<- gamlssMX(act
<- gamlssMX(act
<- gamlssMX(act
<- gamlssMX(act ~
<- gamlssMX(act

AIC(m1, m2, m3, m4, mb)

m3
mb
m2
mé
ml

df AIC

96.29161

5

5 101.04612
5 102.42911
5 112.89527
5 119.28005

1, family = NO, K = 2)
1, family = GA, K = 2)
1, family = RG, K = 2)
1, family = c(NO, GA), K = 2)
1, family = c(GA, RG), K = 2)
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Finite mixtures: the gamlssMX() function

> m3

Mu Coefficients for model: 1
(Intercept)

1.127

Sigma Coefficients for model: 1
(Intercept)

-1.091

Mu Coefficients for model: 2
(Intercept)

0.1557

Sigma Coefficients for model: 2
(Intercept)

-2.641

Estimated probabilities: 0.3760177 0.6239823
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e mixtuees
Finite mixtures: the gamlssMX() function

truehist (enzyme$act, h = 0.1)
fyRG <- dMX(y = seq(0, 3, 0.01),
mu = list( 1.127, 0.1557),
sigma = 1ist(0.336, 0.0713),
pi = 1ist(0.376, 0.624),
family = 1list("RG","RG"))
lines(seq(0, 3, 0.01), fyRG, col = "red", lty = 1)
lines(density(enzyme$act, width = "SJ-dpi"), lty = 2)
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Finite mixtures example: Enzyme data

30

00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

enzymes$act
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Finite mixtures: conclusions

o Finite mixtures of K components, each having a GAMLSS model, can
be fitted using gamlssMX () if the K components have no parameters
in common

@ Modelling the mixing probabilities can be done (a multinomial logistic
model is used)

@ Finite mixtures with parameters in common can be fitted using the
function gamlssNP ()

@ Mixed distributions are special case of finite mixtures
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END

for more information see

www.gamlss.org
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