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Outline

Mixed distributions

A mixed distribution is a mixture of two components:

a continuous distribution and

a discrete distribution

i.e. it is a continuous distribution where the range of Y also includes
discrete values with non-zero probabilities.

Bob Rigby, Mikis Stasinopoulos Flexible Regression and Smoothing 2013 3 / 38



Mixed distributions
Zero adjusted distributions on zero and the positive real line

[0,∞)

Zero adjusted distributions on zero and the positive real
line [0,∞)

They are a mixture of a discrete value 0 with probability p, and a
continuous distribution on the positive real line (0,∞) with probability
(1− p).
The probability (density) function of Y is fY (y) given by

fY (y) =

{
p if y = 0
(1− p)fW (y) if y > 0

(1)

for 0 ≤ y <∞, where 0 < p < 1 and fW (y) is a probability density
function defined on (0,∞), i.e. for 0 < y <∞.
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Mixed distributions
Zero adjusted distributions on zero and the positive real line

[0,∞)

Zero adjusted distributions on zero and the positive real
line [0,∞)

Appropriate when Y = 0 has non-zero probability and otherwise Y > 0.
For example when Y

measures the amount of rainfall in a day (where some days have zero
rainfall),

the river flow at a specific time each day (where some days the river
flow is zero),

the total amount of insurance claims in a year for individuals (where
some people do not claim at all and therefore their total claim is zero).
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Mixed distributions
Zero adjusted distributions on zero and the positive real line

[0,∞)

Zero adjusted gamma distribution, ZAGA(µ,σ,ν)

The zero adjusted gamma distribution is a mixture of

a discrete value 0 with probability ν, and

a gamma GA(µ, σ) distribution on the positive real line (0,∞) with
probability (1− ν).
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Mixed distributions
Zero adjusted distributions on zero and the positive real line

[0,∞)

Zero adjusted gamma distribution, ZAGA(µ,σ,ν)

The probability (density) function of the zero adjusted gamma distribution,
denoted by ZAGA(µ,σ,ν), is given by

fY (y |µ, σ, ν) =

{
ν if y = 0
(1− ν)fW (y |µ, σ) if y > 0

(2)

for 0 ≤ y <∞, where µ > 0 and σ > 0 and 0 < ν < 1, and
W ∼ GA(µ, σ) has a gamma distribution.
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Mixed distributions
Zero adjusted distributions on zero and the positive real line

[0,∞)

Zero adjusted gamma distribution
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Mixed distributions
Zero adjusted distributions on zero and the positive real line

[0,∞)

Zero adjusted gamma distribution, ZAGA(µ,σ,ν)

The default link functions relating the parameters (µ, σ, ν) to the
predictors (η1, η2, η3), which may depend on explanatory variables, are

logµ = η1

log σ = η2

log

(
ν

1− ν

)
= η3.
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Mixed distributions
Zero adjusted distributions on zero and the positive real line

[0,∞)

Zero adjusted gamma distribution, ZAGA(µ,σ,ν)

The ZAGA model is equivalent to

a gamma distribution GA(µ, σ) model for Y > 0 together

with a binary model for recoded variable Y1 iven by

Y1 =

{
0 if Y > 0
1 if Y = 0

(3)

i.e.

p(Y1 = y1) =

{
(1− ν) if y1 = 0
ν if y1 = 1

(4)

Bob Rigby, Mikis Stasinopoulos Flexible Regression and Smoothing 2013 10 / 38



Mixed distributions Distributions on the unit interval (0,1) inflated at 0 and 1

Distributions on the interval (0,1) inflated at 0 and 1

These distributions are appropriate when the response variable Y takes
values from 0 to 1 including 0 and 1, i.e. range [0,1].
They are a mixture of three components:

a discrete value 0 with probability p0,

a discrete value 1 with probability p1,

and a continuous distribution on the unit interval (0, 1) with
probability (1− p0 − p1).
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Mixed distributions Distributions on the unit interval (0,1) inflated at 0 and 1

Distributions on the interval (0,1) inflated at 0 and 1

The probability (density) function of Y is fY (y) given by

fY (y) =


p0 if y = 0
(1− p0 − p1)fW (y) if 0 < y < 1
p1 if y = 1

(5)

or 0 ≤ y ≤ 1, where 0 < p0 < 1, 0 < p1 < 1 and 0 < p0 + p1 < 1 and
fW (y) is a probability density function defined on (0, 1), i.e. for 0 < y < 1.
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Mixed distributions Distributions on the unit interval (0,1) inflated at 0 and 1

Beta Inflated distribution
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Mixed distributions Distributions on the unit interval (0,1) inflated at 0 and 1

Beta inflated distribution, BEINF(µ,σ,ν,τ)

The probability (density) function of the beta inflated distribution, denoted
by BEINF(µ,σ,ν,τ), is defined by

fY (y |µ, σ, ν, τ) =


p0 if y = 0
(1− p0 − p1)fW (y |µ, σ) if 0 < y < 1
p1 if y = 1

(6)

for 0 ≤ y ≤ 1, where W ∼ BE (µ, σ) has a beta distribution,
ν = p0/p2 and τ = p1/p2 where p2 = 1− p0 − p1.

Bob Rigby, Mikis Stasinopoulos Flexible Regression and Smoothing 2013 14 / 38



Mixed distributions Distributions on the unit interval (0,1) inflated at 0 and 1

BEINF: demo

1 demo.BEINF()
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Mixed distributions Distributions on the unit interval (0,1) inflated at 0 and 1

The default link functions relating the parameters (µ, σ, ν, τ) to the
predictors (η1, η2, η3, η4), which may depend on explanatory variables, are

log

(
µ

1− µ

)
= η1

log

(
σ

1− σ

)
= η2

log ν = log

(
p0
p2

)
= η3

log τ = log

(
p1
p2

)
= η4

.
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Mixed distributions Distributions on the unit interval (0,1) inflated at 0 and 1

The model is equivalent to

a beta distribution BE (µ, σ) model for 0 < Y < 1

a multinomial model MN3(ν, τ) with three levels for recoded variable
Y1 given by

Y1 =


0 if Y = 0
1 if Y = 1
2 if 0 < Y < 1

(7)

i.e.

p(Y1 = y1) =


p0 if y1 = 0
p1 if y1 = 1
1− p0 − p1 if y1 = 2

(8)

where ν = p0/p2 and τ = p1/p2 where p2 = 1− p0 − p1
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Mixed distributions Distributions on the unit interval (0,1) inflated at 0 and 1

Beta inflated at 0 distribution, BEINF0(µ,σ,ν)

The probability (density) function of the beta inflated at 0 distribution,
denoted by BEINF0(µ,σ,ν), is given by

fY (y |µ, σ, ν) =

{
p0 if y = 0
(1− p0)fW (y |µ, σ) if 0 < y < 1

(9)

for 0 ≤ y < 1, where W ∼ BE (µ, σ) has a beta distribution where
ν = p0/(1− p0).
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Mixed distributions Distributions on the unit interval (0,1) inflated at 0 and 1

Beta inflated at 1 distribution, BEINF1(µ,σ,ν)

The probability (density) function of the beta inflated at 1 distribution,
denoted by BEINF1(µ,σ,ν), is given by

fY (y |µ, σ, ν) =

{
p1 if y = 1
(1− p1)fW (y |µ, σ) if 0 < y < 1

(10)

for 0 < y ≤ 1, where W ∼ BE (µ, σ) has a beta distribution where
ν = p1/(1− p1).
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Mixed distributions Lung function data

3164 male observations of lung function data
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Mixed distributions Lung function data

The lung function data

Y = FEV1/FVC : the Spirometric lung function an established index for
diagnosing airway obstruction (3164 male)

age : the height in cm

Source: Stanojevic et al. 2009
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Mixed distributions Lung function data

Lung function data: distribution

A logitSST distribution inflated at 1 was used. The probability (density)
function of Y is fY (y) given by

fY (y |µ, σ, ν, τ, p) =

{
p if y = 1
(1− p)fW (y |µ, σ, ν, τ) if 0 < y < 1

(11)

for 0 < y ≤ 1, where W ∼ logitSST (µ, σ, ν, τ) has a logitSST distribution
with −∞ < µ <∞ and σ > 0, ν > 0, τ > 0 and where 0 < p < 1.
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Mixed distributions Lung function data

Lung function data: link functions

The default link functions relate the parameters (µ, σ, ν, τ, p) to the
predictors (η1, η2, η3, η4, η5), which are modelled as smooth functions of
lht = log(height), i.e.

µ = η1 = s(lht)

log σ = η2 = s(lht)

log ν = η3 = s(lht)

log τ = η4 = s(lht)

log

(
p

1− p

)
= η5 = s(lht)

.
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Mixed distributions Lung function data

The lung function data: fitted centile curves
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Finite mixtures

Finite mixtures: Why

Dealing with multimodal distributions

A way to introduce simple random effect models in GAMLSS

distinction between

Finite mixtures with no parameters in common
Finite mixtures with parameters in common
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Finite mixtures

Finite mixtures example: Enzyme data
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Finite mixtures

Finite mixtures: Distribution function

Suppose that the random variable Y comes from component k, having
probability (density) function fk(y), with probability πk for
k = 1, 2, . . . ,K , then the (marginal) density of Y is given by

fY (y) =
K∑

k=1

πk fk(y)

where 0 ≤ πk ≤ 1 is the prior (or mixing) probability of component k, for
k = 1, 2, . . . ,K and

∑K
k=1 πk = 1.
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Finite mixtures

Finite mixtures: Distribution function

The probability (density) function fk(y) for component k may depend on
parameters θk and explanatory variables xk , i.e. fk(y) = fk(y |θk , xk).
Similarly fY (y) depends on parameters ψ = (θ,π) where
θ = (θ1,θ2, . . . ,θK ) and πT = (π1,π2, . . . ,πK ) and explanatory
variables x = (x1, x2, . . . , xK ), i.e. fY (y) = fY (y |ψ, x), and

fY (y |ψ, x) =
K∑

k=1

πk fk(y |θk , xk)
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Finite mixtures

Finite mixtures: the log Likelihood

` = `(ψ, y) =
n∑

i=1

log

[
K∑

k=1

πk fk(yi )

]

We wish to maximize ` with respect to ψ, i.e. with respect to θ and π.
It turns out that it is easier to maximise using EM algorithm:

define the full likelihood

take expections

maximise
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Finite mixtures

Finite mixtures: the complete log Likelihood

δik =

{
1, if observation i comes from component k
0, otherwise

Let δTi = (δi1, δi2, . . . , δik) be the indicator vector for observation i .
Let δT = (δT1 , δ

T
2 , . . . , δ

T
n ) combine all the indicator variable vectors.

`c = `c(ψ, y, δ) =
n∑

i=1

K∑
k=1

δik log fk(yi ) +
n∑

i=1

K∑
k=1

δik log πk
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Finite mixtures

Finite mixtures: EM-steps

E-step

Q = Eδ

[
`c |y, ψ̂

(r)
]

=
K∑

k=1

n∑
i=1

ŵ
(r+1)
ik log fk(yi ) +

K∑
k=1

n∑
i=1

ŵ
(r+1)
ik log πk

M-step weighted log likelihood for GAMLSS model
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Finite mixtures

Finite mixtures: the weights

ŵ
(r+1)
ik = E

[
δik |y, ψ̂

(r)
]

=
π̂
(r)
k fk(yi |θ̂

(r)
k )∑K

k=1 π̂
(r)
k fk(yi |θ̂

(r)
k )
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Finite mixtures

Finite mixtures: the gamlssMX() function

m1 <- gamlssMX(act ~ 1, family = NO, K = 2)

m2 <- gamlssMX(act ~ 1, family = GA, K = 2)

m3 <- gamlssMX(act ~ 1, family = RG, K = 2)

m4 <- gamlssMX(act ~ 1, family = c(NO, GA), K = 2)

m5 <- gamlssMX(act ~ 1, family = c(GA, RG), K = 2)

AIC(m1, m2, m3, m4, m5)

df AIC

m3 5 96.29161

m5 5 101.04612

m2 5 102.42911

m4 5 112.89527

m1 5 119.28005

............................................................
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Finite mixtures

Finite mixtures: the gamlssMX() function

> m3

Mu Coefficients for model: 1

(Intercept)

1.127

Sigma Coefficients for model: 1

(Intercept)

-1.091

Mu Coefficients for model: 2

(Intercept)

0.1557

Sigma Coefficients for model: 2

(Intercept)

-2.641

Estimated probabilities: 0.3760177 0.6239823
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Finite mixtures

Finite mixtures: the gamlssMX() function

truehist(enzyme$act, h = 0.1)

fyRG <- dMX(y = seq(0, 3, 0.01),

mu = list( 1.127, 0.1557),

sigma = list(0.336, 0.0713),

pi = list(0.376, 0.624),

family = list("RG","RG"))

lines(seq(0, 3, 0.01), fyRG, col = "red", lty = 1)

lines(density(enzyme$act, width = "SJ-dpi"), lty = 2)
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Finite mixtures

Finite mixtures example: Enzyme data
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Finite mixtures

Finite mixtures: conclusions

Finite mixtures of K components, each having a GAMLSS model, can
be fitted using gamlssMX() if the K components have no parameters
in common

Modelling the mixing probabilities can be done (a multinomial logistic
model is used)

Finite mixtures with parameters in common can be fitted using the
function gamlssNP()

Mixed distributions are special case of finite mixtures

Bob Rigby, Mikis Stasinopoulos Flexible Regression and Smoothing 2013 37 / 38



Finite mixtures

END
for more information see

www.gamlss.org
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