Flexible Regression and Smoothing

Mixed Distributions

Bob Rigby Mikis Stasinopoulos

Graz University of Technology, Austria, November 2016

- Mixed distributions
 - ullet Zero adjusted distributions on zero and the positive real line $[0,\infty)$
 - Distributions on the unit interval (0,1) inflated at 0 and 1
 - Lung function data

2 Finite mixtures

Mixed distributions

A mixed distribution is a mixture of two components:

- · a continuous distribution and
- a discrete distribution

i.e. it is a continuous distribution where the range of Y also includes discrete values with non-zero probabilities.

Zero adjusted distributions on zero and the positive real line $[0,\infty)$

They are a mixture of a discrete value 0 with probability p, and a continuous distribution on the positive real line $(0,\infty)$ with probability (1-p).

The probability (density) function of Y is $f_Y(y)$ given by

$$f_Y(y) = \begin{cases} p & \text{if } y = 0\\ (1 - p)f_W(y) & \text{if } y > 0 \end{cases}$$
 (1)

for $0 \le y < \infty$, where $0 and <math>f_W(y)$ is a probability density function defined on $(0, \infty)$, i.e. for $0 < y < \infty$.

amlss

Zero adjusted distributions on zero and the positive real line $[0,\infty)$

Appropriate when Y=0 has non-zero probability and otherwise Y>0. For example when Y

- measures the amount of rainfall in a day (where some days have zero rainfall),
- the river flow at a specific time each day (where some days the river flow is zero),
- the total amount of insurance claims in a year for individuals (where some people do not claim at all and therefore their total claim is zero).

Zero adjusted gamma distribution, **ZAGA**(μ,σ,ν)

The zero adjusted gamma distribution is a mixture of

- a discrete value 0 with probability ν , and
- a gamma $GA(\mu, \sigma)$ distribution on the positive real line $(0, \infty)$ with probability $(1-\nu)$.

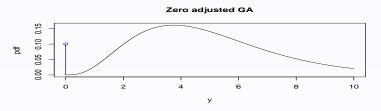
Zero adjusted gamma distribution, **ZAGA**(μ,σ,ν)

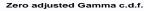
The probability (density) function of the zero adjusted gamma distribution, denoted by **ZAGA**(μ,σ,ν), is given by

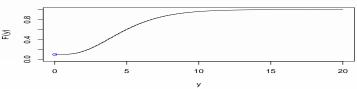
$$f_Y(y|\mu,\sigma,\nu) = \begin{cases} \nu & \text{if } y = 0\\ (1-\nu)f_W(y|\mu,\sigma) & \text{if } y > 0 \end{cases}$$
 (2)

for $0 \le y \le \infty$, where $\mu > 0$ and $\sigma > 0$ and $0 \le \nu \le 1$, and $W \sim GA(\mu, \sigma)$ has a gamma distribution.

Zero adjusted gamma distribution







Zero adjusted gamma distribution, **ZAGA**(μ,σ,ν)

The default link functions relating the parameters (μ, σ, ν) to the predictors (η_1, η_2, η_3) , which may depend on explanatory variables, are

$$\log \mu = \eta_1$$
 $\log \sigma = \eta_2$ $\log \left(\frac{\nu}{1-\nu}\right) = \eta_3.$

Zero adjusted gamma distribution, **ZAGA** (μ, σ, ν)

The ZAGA model is equivalent to

- a gamma distribution $GA(\mu, \sigma)$ model for Y > 0 together
- \bullet with a binary model for recoded variable Y_1 iven by

$$Y_1 = \begin{cases} 0 & \text{if } Y > 0 \\ 1 & \text{if } Y = 0 \end{cases} \tag{3}$$

i.e.

$$p(Y_1 = y_1) = \begin{cases} (1 - \nu) & \text{if } y_1 = 0\\ \nu & \text{if } y_1 = 1 \end{cases}$$
 (4)

Distributions on the interval (0,1) inflated at 0 and 1

These distributions are appropriate when the response variable Y takes values from 0 to 1 including 0 and 1, i.e. range [0,1].

They are a mixture of three components:

- a discrete value 0 with probability p_0 ,
- a discrete value 1 with probability p_1 ,
- and a continuous distribution on the unit interval (0,1) with probability $(1-p_0-p_1)$.

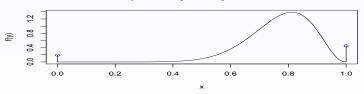
Distributions on the interval (0,1) inflated at 0 and 1

The probability (density) function of Y is $f_Y(y)$ given by

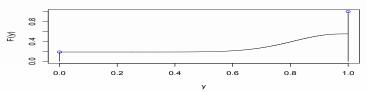
$$f_Y(y) = \begin{cases} p_0 & \text{if } y = 0\\ (1 - p_0 - p_1)f_W(y) & \text{if } 0 < y < 1\\ p_1 & \text{if } y = 1 \end{cases}$$
 (5)

or $0 \le y \le 1$, where $0 < p_0 < 1$, $0 < p_1 < 1$ and $0 < p_0 + p_1 < 1$ and $f_W(y)$ is a probability density function defined on (0,1), i.e. for 0 < y < 1.

Beta Inflated distribution



cumulative distribution function



Beta inflated distribution, **BEINF**(μ, σ, ν, τ)

The probability (density) function of the beta inflated distribution, denoted by $\mathbf{BEINF}(\mu, \sigma, \nu, \tau)$, is defined by

$$f_{Y}(y|\mu,\sigma,\nu,\tau) = \begin{cases} p_{0} & \text{if } y = 0\\ (1 - p_{0} - p_{1})f_{W}(y|\mu,\sigma) & \text{if } 0 < y < 1\\ p_{1} & \text{if } y = 1 \end{cases}$$
 (6)

for $0 \le y \le 1$, where $W \sim BE(\mu, \sigma)$ has a beta distribution, $\nu = p_0/p_2$ and $\tau = p_1/p_2$ where $p_2 = 1 - p_0 - p_1$.

BEINF: demo

demo.BEINF()

The default link functions relating the parameters (μ, σ, ν, τ) to the predictors $(\eta_1, \eta_2, \eta_3, \eta_4)$, which may depend on explanatory variables, are

$$\log\left(\frac{\mu}{1-\mu}\right) = \eta_1$$

$$\log\left(\frac{\sigma}{1-\sigma}\right) = \eta_2$$

$$\log\nu = \log\left(\frac{p_0}{p_2}\right) = \eta_3$$

$$\log\tau = \log\left(\frac{p_1}{p_2}\right) = \eta_4$$

The model is equivalent to

- a beta distribution $BE(\mu, \sigma)$ model for 0 < Y < 1
- a multinomial model $MN3(\nu, \tau)$ with three levels for recoded variable Y_1 given by

$$Y_1 = \begin{cases} 0 & \text{if } Y = 0 \\ 1 & \text{if } Y = 1 \\ 2 & \text{if } 0 < Y < 1 \end{cases}$$
 (7)

i.e.

$$p(Y_1 = y_1) = \begin{cases} p_0 & \text{if } y_1 = 0\\ p_1 & \text{if } y_1 = 1\\ 1 - p_0 - p_1 & \text{if } y_1 = 2 \end{cases}$$
 (8)

where $\nu = p_0/p_2$ and $\tau = p_1/p_2$ where $p_2 = 1 - p_0 - p_1$

agamlss

Beta inflated at 0 distribution, **BEINFO** (μ, σ, ν)

The probability (density) function of the beta inflated at 0 distribution, denoted by **BEINFO**(μ, σ, ν), is given by

$$f_{Y}(y|\mu,\sigma,\nu) = \begin{cases} p_{0} & \text{if } y = 0\\ (1-p_{0})f_{W}(y|\mu,\sigma) & \text{if } 0 < y < 1 \end{cases}$$
 (9)

for $0 \le y < 1$, where $W \sim BE(\mu, \sigma)$ has a beta distribution where $\nu = p_0/(1-p_0)$.

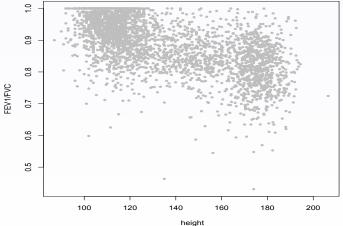
Beta inflated at 1 distribution, **BEINF1**(μ, σ, ν)

The probability (density) function of the beta inflated at 1 distribution, denoted by $\mathbf{BEINF1}(\mu,\sigma,\nu)$, is given by

$$f_Y(y|\mu,\sigma,\nu) = \begin{cases} p_1 & \text{if } y = 1\\ (1-p_1)f_W(y|\mu,\sigma) & \text{if } 0 < y < 1 \end{cases}$$
 (10)

for $0 < y \le 1$, where $W \sim BE(\mu, \sigma)$ has a beta distribution where $\nu = \rho_1/(1-\rho_1)$.

3164 male observations of lung function data



The lung function data

 $Y = FEV_1/FVC$: the Spirometric lung function an established index for diagnosing airway obstruction (3164 male)

age: the height in cm

Source: Stanojevic et al. 2009

Lung function data: distribution

A logitSST distribution inflated at 1 was used. The probability (density) function of Y is $f_Y(y)$ given by

$$f_{Y}(y|\mu,\sigma,\nu,\tau,p) = \begin{cases} p & \text{if } y = 1\\ (1-p)f_{W}(y|\mu,\sigma,\nu,\tau) & \text{if } 0 < y < 1 \end{cases}$$
 (11)

for $0 < y \le 1$, where $W \sim logitSST(\mu, \sigma, \nu, \tau)$ has a logitSST distribution with $-\infty < \mu < \infty$ and $\sigma > 0$, $\nu > 0$, $\tau > 0$ and where $0 < \rho < 1$.

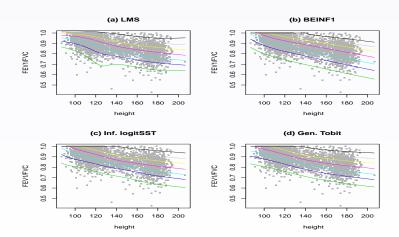
Lung function data: link functions

The default link functions relate the parameters $(\mu, \sigma, \nu, \tau, p)$ to the predictors $(\eta_1, \eta_2, \eta_3, \eta_4, \eta_5)$, which are modelled as smooth functions of lht = log(height), i.e.

$$\mu = \eta_1 = s(Iht)$$
 $\log \sigma = \eta_2 = s(Iht)$
 $\log \nu = \eta_3 = s(Iht)$
 $\log \tau = \eta_4 = s(Iht)$
 $\log \left(\frac{p}{1-p}\right) = \eta_5 = s(Iht)$

gamlss

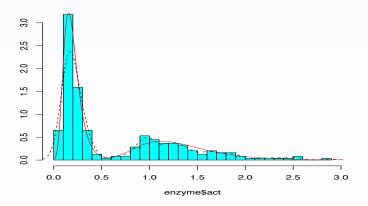
The lung function data: fitted centile curves



Finite mixtures: Why

- Dealing with multimodal distributions
- A way to introduce simple random effect models in GAMLSS
- distinction between
 - Finite mixtures with no parameters in common
 - Finite mixtures with parameters in common

Finite mixtures example: Enzyme data



Finite mixtures: Distribution function

Suppose that the random variable Y comes from component k, having probability (density) function $f_k(y)$, with probability π_k for k = 1, 2, ..., K, then the (marginal) density of Y is given by

$$f_Y(y) = \sum_{k=1}^K \pi_k f_k(y)$$

where $0 \le \pi_k \le 1$ is the prior (or mixing) probability of component k, for $k = 1, 2, \dots, K$ and $\sum_{k=1}^K \pi_k = 1$.

Finite mixtures: Distribution function

The probability (density) function $f_k(y)$ for component k may depend on parameters θ_k and explanatory variables \mathbf{x}_k , i.e. $f_k(y) = f_k(y|\theta_k,\mathbf{x}_k)$. Similarly $f_Y(y)$ depends on parameters $\psi = (\theta,\pi)$ where $\theta = (\theta_1,\theta_2,\ldots,\theta_K)$ and $\pi^T = (\pi_1,\pi_2,\ldots,\pi_K)$ and explanatory variables $\mathbf{x} = (\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_K)$, i.e. $f_Y(y) = f_Y(y|\psi,\mathbf{x})$, and

$$f_Y(y|\psi,\mathbf{x}) = \sum_{k=1}^K \pi_k f_k(y|\theta_k,\mathbf{x}_k)$$

Finite mixtures: the log Likelihood

$$\ell = \ell(\boldsymbol{\psi}, \mathbf{y}) = \sum_{i=1}^{n} \log \left[\sum_{k=1}^{K} \pi_k f_k(y_i) \right]$$

We wish to maximize ℓ with respect to ψ , i.e. with respect to θ and π . It turns out that it is easier to maximise using EM algorithm:

- define the full likelihood
- take expections
- maximise

Finite mixtures: the complete log Likelihood

$$\delta_{ik} = \begin{cases} 1, & \text{if observation } i \text{ comes from component } k \\ 0, & \text{otherwise} \end{cases}$$

Let $\boldsymbol{\delta}_i^T = (\delta_{i1}, \delta_{i2}, \dots, \delta_{ik})$ be the indicator vector for observation i. Let $\boldsymbol{\delta}^T = (\boldsymbol{\delta}_1^T, \boldsymbol{\delta}_2^T, \dots, \boldsymbol{\delta}_n^T)$ combine all the indicator variable vectors.

$$\ell_c = \ell_c(\boldsymbol{\psi}, \mathbf{y}, \boldsymbol{\delta}) = \sum_{i=1}^n \sum_{k=1}^K \delta_{ik} \log f_k(y_i) + \sum_{i=1}^n \sum_{k=1}^K \delta_{ik} \log \pi_k$$

Finite mixtures: EM-steps

E-step

$$Q = E_{\delta} \left[\ell_{c} | \mathbf{y}, \hat{\psi}^{(r)} \right]$$

$$= \sum_{k=1}^{K} \sum_{i=1}^{n} \hat{w}_{ik}^{(r+1)} \log f_{k}(y_{i}) + \sum_{k=1}^{K} \sum_{i=1}^{n} \hat{w}_{ik}^{(r+1)} \log \pi_{k}$$

M-step weighted log likelihood for GAMLSS model

Finite mixtures: the weights

$$\hat{w}_{ik}^{(r+1)} = E\left[\delta_{ik}|\mathbf{y}, \hat{\psi}^{(r)}\right]
= \frac{\hat{\pi}_{k}^{(r)} f_{k}(y_{i}|\hat{\boldsymbol{\theta}}_{k}^{(r)})}{\sum_{k=1}^{K} \hat{\pi}_{k}^{(r)} f_{k}(y_{i}|\hat{\boldsymbol{\theta}}_{k}^{(r)})}$$

Finite mixtures: the gamlssMX() function

```
family = NO, K = 2)
m1 <- gamlssMX(act ~ 1,
m2 <- gamlssMX(act ~ 1,
                        family = GA, K = 2)
m3 \leftarrow gamlssMX(act ~ 1, family = RG, K = 2)
m4 \leftarrow gamlssMX(act ~1, family = c(NO, GA), K = 2)
                        family = c(GA, RG), K = 2)
m5 <- gamlssMX(act ~ 1,
AIC(m1, m2, m3, m4, m5)
           ATC
       df
  5 96.29161
m3
m5
  5 101.04612
m2
       102.42911
m4
  5 112.89527
       119.28005
m1
```

gamlss

Finite mixtures: the gamlssMX() function

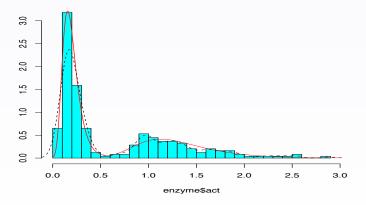
```
> m3
Mu Coefficients for model: 1
(Intercept)
1.127
Sigma Coefficients for model: 1
(Intercept)
-1.091
Mu Coefficients for model: 2
(Intercept)
0.1557
Sigma Coefficients for model: 2
(Intercept)
-2.641
Estimated probabilities: 0.3760177 0.6239823
```

agamlss

Finite mixtures: the gamlssMX() function

```
truehist(enzyme$act, h = 0.1)
fyRG <- dMX(y = seq(0, 3, 0.01),
    mu = list( 1.127, 0.1557),
    sigma = list(0.336, 0.0713),
    pi = list(0.376, 0.624),
    family = list("RG","RG"))
lines(seq(0, 3, 0.01), fyRG, col = "red", lty = 1)
lines(density(enzyme$act, width = "SJ-dpi"), lty = 2)</pre>
```


Finite mixtures example: Enzyme data



Finite mixtures: conclusions

- Finite mixtures of K components, each having a GAMLSS model, can be fitted using gamlssMX() if the K components have no parameters in common
- Modelling the mixing probabilities can be done (a multinomial logistic model is used)
- Finite mixtures with parameters in common can be fitted using the function gamlssNP()
- Mixed distributions are special case of finite mixtures

END

for more information see

www.gamlss.org

