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Discrete Distributions Count distributions

Count distributions

The three major problems encounter when modelling count data using the
Poisson distribution.

overdispersion

excess (or shortage) of zero values

long tails (rare events)
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Discrete Distributions Count distributions

Discrete distribution modelling

Par. Modelling Distributions
1 Location PO

2 Location and scale NBI, NBII, PIG

2 Location and zero probability ZALG, ZAP, ZIP, ZIP2

3 Location, scale and skewness DEL, SI, SICHEL

3 Location, scale and zero probability ZANBI, ZINBI, ZIPIG
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Discrete Distributions Count distributions

Different count data distributions
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Discrete Distributions Count distributions

Zero inflated distributions

Zero inflated distribution, Y ∼ ZID is given by
Y = 0 with probability p
Y ∼ D with probability 1− p.
Hence

P(Y = y) =

{
p + (1− p)P(Y1 = 0) if y = 0
(1− p)P(Y1 = y) if y = 1, 2, 3, ...

where Y1 ∼ D.
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Discrete Distributions Count distributions

ZINBI distribution plots
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Discrete Distributions Count distributions

Zero adjusted distributions

Zero adjusted distribution, Y ∼ ZAD is given by
Y = 0 with probability p
Y ∼ Dtr with probability 1− p,
where Dtr is a truncated distribution, D truncated at zero.
Hence

P(Y = y) =

{
p if y = 0

(1− p) P(Y1=y)
1−P(Y1=0) if y = 1, 2, 3, ...

(1)

where Y1 ∼ D.
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Discrete Distributions Count distributions

ZANBI distribution plots
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Discrete Distributions Count distributions

Different (overdispersed) count data approaches

(a) Ad-hoc solutions

(i) quasi-likelihood (QL), Extended QL
(ii) Efron’s Double Exponential
(iii) pseudo-likelihood (PL)

(b) Discretized continuous distributions
for example if FW (w) is the cdf a continuous random variable W
defined in <+ then fY (y) = FW (y + 1)− FW (y)

(c) Random effect at the observation level solutions.
fY (y) =

∫
f (y |γ)fγ(γ)dγ.
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Discrete Distributions Count distributions

(c) Random effect at the observation level

(i) when an an explicit continuous mixture distribution, fY (y),
exists.

(ii) when a continuous mixture distribution, fY (y), is not explicit
but is approximated by integrating out the random effect
using approximations, e.g. Gaussian quadrature or Laplace
approximation.

(iii) when a ’non-parametric’ mixture (effectively a finite mixture)
is assumed for the response variable.
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Discrete Distributions Count distributions

Random effect at the observation level case (i)

(i) Explicit continuous mixture distribution

fY (y)︸ ︷︷ ︸
discrete

=

∫
f (y |γ)︸ ︷︷ ︸
discrete

fγ(γ)︸ ︷︷ ︸
continuous

dγ

Y ∼ NBI (µ, σ)

Y |γ ∼ PO(γµ)

γ ∼ GA(1, σ1/2)
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Discrete Distributions Count distributions

Random effect at the observation level case (ii)

(ii) Non-explicit continuous mixture distribution

fY (y)︸ ︷︷ ︸
discrete

=

∫
f (y |γ)︸ ︷︷ ︸
discrete

fγ(γ)︸ ︷︷ ︸
continuous

dγ

Y ∼ PO − Normal(µ, σ)

Y |γ ∼ PO(γµ)

log(γ) ∼ NO(1, σ)
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Discrete Distributions Count distributions

Random effect at the observation level case (iii)

(iii) Non-parametric mixture distribution

fY (y)︸ ︷︷ ︸
discrete

=
K∑

k=1

f (y |γk)︸ ︷︷ ︸
discrete

p(γ = γk)︸ ︷︷ ︸
continuous

Y ∼ PO − NPFM(µ, σ)

Y |γ ∼ PO(γµ)

log(γ) ∼ NPFM(2)

where NPFM(2) equals Non-Parametric Finite Mixture with 2 point
probabilities
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Discrete Distributions Count distributions

Explicit continuous mixture distribution

Distributions R Name mixing distribution for γ

Poisson PO(µ) -

Neg. bin. I NBI(µ, σ) GA(1, σ
1
2 )

Neg. bin. II NBII(µ, σ) GA(1, σ
1
2 /µ)

Poisson IG PIG(µ, σ) IG(1, σ
1
2 )

Sichel SICHEL(µ, σ, ν) GIG(1, σ
1
2 , ν)

Delaporte DEL(µ, σ, ν) SG(1, σ
1
2 , ν)

Zero inflated Poisson ZIP(µ, σ) BI(1, 1− σ)

Zero inflated Poisson 2 ZIP2(µ, σ) (1− σ)−1BI(1, 1− σ)

Zero inflated neg. bin. ZINBI(µ, σ, ν) zero inflated gamma

Poisson-Tweedie - Tweedie family
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Discrete Distributions Count distributions

Table: Discrete gamlss family distributions for count data

R Name params mean variance

PO(µ) 1 µ µ

NBI(µ, σ) 2 µ µ+ σµ2

NBII(µ, σ) 2 µ µ+ σµ

PIG(µ, σ) 2 µ µ+ σµ2

SICHEL(µ, σ, ν) 3 µ µ+ h(σ, ν)µ2

DEL(µ, σ, ν) 3 µ µ+ σ(1− ν)2µ2

ZIP(µ, σ) 2 (1− σ)µ (1− σ)µ+ σ(1− σ)µ2

ZIP2(µ, σ) 2 µ µ+ σ
(1−σ)µ

2
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Discrete Distributions Families modelling the variance-mean relationship

Families modelling the variance-mean relationship

V [Y ] = µ+ µ2V [γ] where V [γ] = υ(σ, ν, τ) is a function of the
parameters of the mixing distribution fγ(γ).
Alternative variance-mean relationship can be obtained by
reparametrization.
i.e NB type I V [Y ] = µ+ σµ2.
If σ = σ1/µ then
V [Y ] = (1 + σ1)µ (negative binomial type II)
σ = σ1µ then V [Y ] = µ+ σ1µ

3.
More generally σ = σ1µ

2−ν giving V (Y ) = µ+ σ1µ
ν
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Discrete Distributions Families modelling the variance-mean relationship

Comparison of the marginal distributions using a (ratio
moment) diagram of their skewness and kurtosis
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Discrete Distributions Examples

A stylometric application

Data summary:

R data file: stylo in package gamlss.data of dimensions 64× 2

source: Dr Mario Corina-Borja

variables

word : is the number of times a word appears in
a single text

freq : the frequency of the number of times
a word appears in a text

purpose: to demonstrate the fitting of a truncated discrete dist.

conclusion the truncated SICHEL distributions fits best
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Discrete Distributions Examples

A stylometric application

library(gamlss.tr)

data(stylo)

plot(freq ~ word, data = stylo, type = "h", xlim =

+ c(0, 22), xlab = "no of times", ylab =

+ "frequencies", col = "blue")
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Discrete Distributions Examples

The stylometric data
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Discrete Distributions Examples

A stylometric application

> library(gamlss.tr)

> gen.trun(par = 0, family = PO, type = "left")

A truncated family of distributions from PO has been generated

and saved under the names:

dPOtr pPOtr qPOtr rPOtr POtr

The type of truncation is left and the truncation parameter is 0

> gen.trun(par = 0, family = NBII, type = "left")

...

> gen.trun(par = 0, family = DEL, type = "left")

...

> gen.trun(par = 0, family = SICHEL, type = "left",

+ delta = 0.001)

...
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Discrete Distributions Examples

A stylometric application

> mPO <- gamlss(word ~ 1, weights = freq, data = stylo,

+ family = POtr, trace = FALSE)

> mNBII <- gamlss(word ~ 1, weights = freq, data = stylo,

+ family = NBIItr, n.cyc = 50, trace = FALSE)

> mDEL <- gamlss(word ~ 1, weights = freq, data = stylo,

+ family = DELtr, n.cyc = 50, trace = FALSE)

> mSI <- gamlss(word ~ 1, weights = freq, data = stylo,

+ family = SICHELtr, n.cyc = 50, trace = FALSE)

> GAIC(mPO, mNBII, mDEL, mSI)

df AIC

mSI 3 5148.454

mDEL 3 5160.581

mNBII 2 5311.627

mPO 1 9207.459
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Discrete Distributions Examples

The stylometric data
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Discrete Distributions Examples

The fish species data

Data summary: the fish species data

R data file: species in package gamlss.data of dimensions 70× 2

variables

fish : the number of different species in 70
lakes in the world

lake : the lake area

Bob Rigby, Mikis Stasinopoulos Flexible Regression and Smoothing 2013 25 / 41



Discrete Distributions Examples

The fish species data
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Discrete Distributions Examples

The fish species data

There are several questions that need to be answered.

How does the mean of y depend on x?

Is y overdispersed Poisson?

How does the variance y depend on its mean?

What is the distribution of y given x?

Do the scale and shape parameters of the distribution of y depend on
x?
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Discrete Distributions Examples

Overdispersed count data approaches

Table: Comparison of models for the fish species data

Model fY (y) µ σ ν DEV df AIC SBC

1 PO x < 2 > - - 1849.3 3 1855.3 1862.0

2 NBI x 1 - 619.8 3 625.8 632.6

3 NBI x < 2 > 1 - 614.3 4 622.3 631.3

4 NBI cs(x , 3) 1 - 611.9 6 623.9 637.4

5 NBI x < 2 > x - 605.0 5 615.0 626.2

6 NBI-fam x < 2 > 1 1 606.0 5 616.0 627.3

7 NBI-fam x < 2 > x 1 604.9 6 616.9 630.4
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Discrete Distributions Examples

Overdispersed count data approaches

Model fY (y) µ σ ν DEV df AIC SBC

8 PIG x < 2 > 1 - 613.3 4 621.3 630.3

9 SI x < 2 > 1 x 597.7 6 609.7 623.2

10 DEL x < 2 > 1 x 600.6 6 612.6 626.1

11 DEL x < 2 > - x 600.6 5 610.6 621.9

12 PO-Normal x < 2 > 1 - 615.2 4 623.2 632.2

13 NBI-Normal x < 2 > x 1 603.7 6 615.7 629.2

14 PO-NPFM(5) x < 2 > - − 601.9 13 627.9 657.2

15 NB-NPFM(2) x < 2 > 1 − 611.9 6 623.9 637.4

16 doublePO x < 2 > x - 616.4 5 626.4 637.6

17 IGdisc x < 2 > 1 - 603.3 4 611.3 620.3
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Discrete Distributions Examples

Fitted mean of the Sichel distribution
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Discrete Distributions Examples

Fitted Sichel distributions for observations (a) 40 and
(b) 67
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Discrete Distributions Binomial response variables

Binomial response variables

There are only two distributions here

binomial

beta binomial
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Discrete Distributions Example

The hospital stay data

Data summary:

R data file: aep in package gamlss of dimensions 1383× 8

source: Gange et al. (1996)

variables

los : total number of days
noinap : number of inappropriate days patient stay

in hospital
loglos : the log of los/10

sex : the gender of patient
ward : type of ward in the hospital (medical, surgical or other)
year : 1988 or 1990
age : age of the patient subtracted from 55
y : the response variable, a matrix with columns

(noinap, los-noinap)
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Discrete Distributions Example

The hospital stay data
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Discrete Distributions Example

The hospital stay data

> mI <- gamlss(y ~ ward + year + loglos, sigma.fo = ~year,

+ family = BB,data = aep)

> mII <- gamlss(y ~ ward + year + loglos, sigma.fo = ~year +

+ ward, family = BB, data = aep)

> mIII <- gamlss(y ~ ward + year + cs(loglos, 1),

+ sigma.fo = ~year+ward, family = BB, data = aep)

> mIV <- gamlss(y ~ ward + year + cs(loglos, 1) + cs(age, 1),

+ sigma.fo = ~year + ward, family = BB, data = aep)

> GAIC(mI, mII, mIII, mIV, k = 0)

df AIC

mIV 12.00010 4454.362

mIII 10.00045 4459.427

mII 9.00000 4483.020

mI 7.00000 4519.441
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Discrete Distributions Example

The hospital stay data

Models Links Terms GD
(AIC)
[SBC]

I logit(µ) 1+ward+loglos+year 4519.4
log(σ) 1+year (4533.4)

[4570.1]

II logit(µ) 1+ward+loglos+year 4483.0
log(σ) 1+year+ward (4501.0)

[4548.1]

III logit(µ) 1+ward+cs(loglos,1)+year 4459.4
log(σ) 1+year+ward (4479.4)

[4531.8]

IV logit(µ) 1+ward+cs(loglos,1)+year+cs(age,1) 4454.4
log(σ) 1+year+ward (4478.4)

[4541.2]
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Discrete Distributions Example

The hospital stay data

> op <- par(mfrow = c(2, 2))

> term.plot(mIV, se = T)

> par(op)

> op <- par(mfrow = c(2, 1))

> term.plot(mIV, "sigma", se = T)

> par(op)

> rqres.plot(mIV)
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Discrete Distributions Example

The hospital stay data: fitted model fop µ

Bob Rigby, Mikis Stasinopoulos Flexible Regression and Smoothing 2013 38 / 41



Discrete Distributions Example

The hospital stay data: fitted model for σ
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Discrete Distributions Example

The hospital stay data: normalised randomised quantile
residuals
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End

END
for more information see

www.gamlss.org
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