Flexible Regression and Smoothing Discrete Distributions

Bob Rigby Mikis Stasinopoulos

Graz University of Technology, Austria, November 2016

- Discrete Distributions
 - Count distributions
 - Families modelling the variance-mean relationship
 - Examples
 - A stylometric application
 - The fish species data
 - Binomial response variables
 - Example
 - The hospital stay data
- 2 End

Count distributions

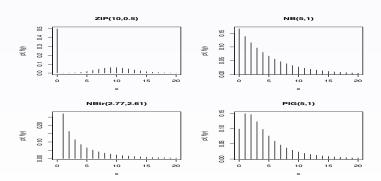
The three major problems encounter when modelling count data using the Poisson distribution.

- overdispersion
- excess (or shortage) of zero values
- long tails (rare events)

Discrete distribution modelling

Par.	Modelling	Distributions
1	Location	PO
2	Location and scale	NBI, NBII, PIG
2	Location and zero probability	ZALG, ZAP, ZIP, ZIP2
3	Location, scale and skewness	DEL, SI, SICHEL
3	Location, scale and zero probability	ZANBI, ZINBI, ZIPIG

Different count data distributions



Zero inflated distributions

Zero inflated distribution, $Y \sim \mathbf{ZID}$ is given by

Y = 0 with probability p

 $Y \sim \mathbf{D}$ with probability 1 - p.

Hence

$$P(Y = y) = \begin{cases} p + (1-p)P(Y_1 = 0) & \text{if } y = 0\\ (1-p)P(Y_1 = y) & \text{if } y = 1, 2, 3, \dots \end{cases}$$

where $Y_1 \sim \mathbf{D}$.

ZINBI distribution plots

Zero adjusted distributions

Zero adjusted distribution, $Y \sim ZAD$ is given by

Y = 0 with probability p

 $Y \sim \mathbf{Dtr}$ with probability 1 - p,

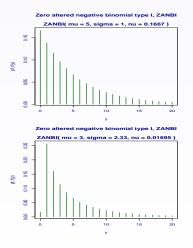
where \boldsymbol{Dtr} is a truncated distribution, \boldsymbol{D} truncated at zero.

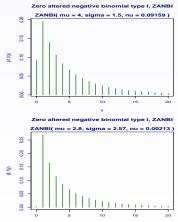
Hence

$$P(Y = y) = \begin{cases} p & \text{if } y = 0\\ (1 - p) \frac{P(Y_1 = y)}{1 - P(Y_1 = 0)} & \text{if } y = 1, 2, 3, \dots \end{cases}$$
 (1)

where $Y_1 \sim \mathbf{D}$.

ZANBI distribution plots





Different (overdispersed) count data approaches

- (a) Ad-hoc solutions
 - (i) quasi-likelihood (QL), Extended QL
 - (ii) Efron's Double Exponential
 - (iii) pseudo-likelihood (PL)
- (b) Discretized continuous distributions for example if $F_W(w)$ is the cdf a continuous random variable W defined in \Re^+ then $f_Y(y) = F_W(y+1) F_W(y)$
- (c) Random effect at the observation level solutions. $f_Y(y) = \int f(y|\gamma)f_{\gamma}(\gamma)d\gamma$.

(c) Random effect at the observation level

- (i) when an an explicit continuous mixture distribution, $f_Y(y)$, exists.
- (ii) when a continuous mixture distribution, $f_Y(y)$, is not explicit but is approximated by integrating out the random effect using approximations, e.g. Gaussian quadrature or Laplace approximation.
- (iii) when a 'non-parametric' mixture (effectively a finite mixture) is assumed for the response variable.

Random effect at the observation level case (i)

(i) Explicit continuous mixture distribution

$$\underbrace{f_{Y}(y)}_{\text{discrete}} = \int \underbrace{f(y|\gamma)}_{\text{discrete continuous}} \underbrace{f_{\gamma}(\gamma)}_{\text{dy}} d\gamma$$

- $Y \sim NBI(\mu, \sigma)$
- $Y|\gamma \sim PO(\gamma \mu)$
- $\gamma \sim \textit{GA}(1, \sigma^{1/2})$

Random effect at the observation level case (ii)

(ii) Non-explicit continuous mixture distribution

$$\underbrace{f_{Y}(y)}_{\text{discrete}} = \int \underbrace{f(y|\gamma)}_{\text{discrete continuous}} \underbrace{f_{\gamma}(\gamma)}_{\text{dy}} d\gamma$$

- $Y \sim PO Normal(\mu, \sigma)$
- $Y|\gamma \sim PO(\gamma \mu)$
- $\log(\gamma) \sim NO(1, \sigma)$

Random effect at the observation level case (iii)

(iii) Non-parametric mixture distribution

$$\underbrace{f_{Y}(y)}_{\text{discrete}} = \sum_{k=1}^{K} \underbrace{f(y|\gamma_{k})}_{\text{discrete}} \underbrace{p(\gamma = \gamma_{k})}_{\text{continuous}}$$

- $Y \sim PO NPFM(\mu, \sigma)$
- $Y|\gamma \sim PO(\gamma \mu)$
- $\log(\gamma) \sim NPFM(2)$

where NPFM(2) equals Non-Parametric Finite Mixture with 2 point probabilities

Explicit continuous mixture distribution

Distributions	R Name	mixing distribution for γ
Poisson	P0(μ)	-
Neg. bin. I	$ exttt{NBI}(\mu,\sigma)$	$GA(1,\sigma^{rac{1}{2}})$
Neg. bin. II	$ exttt{NBII}(\mu,\sigma)$	$GA(1,\sigma^{rac{1}{2}}/\mu)$
Poisson IG	$ exttt{PIG}(\mu,\sigma)$	$IG(1,\sigma^{rac{1}{2}})$
Sichel	$\mathtt{SICHEL}(\mu,\sigma, u)$	$GIG(1,\sigma^{rac{1}{2}}, u)$
Delaporte	$\mathtt{DEL}(\mu,\sigma, u)$	$SG(1,\sigma^{rac{1}{2}}, u)$
Zero inflated Poisson	$\mathtt{ZIP}(\mu, \sigma)$	$\mathtt{BI}(1,1-\sigma)$
Zero inflated Poisson 2	$\mathtt{ZIP2}(\mu, \sigma)$	$(1-\sigma)^{-1}$ BI $(1,1-\sigma)$
Zero inflated neg. bin.	$\mathtt{ZINBI}(\mu, \sigma, \nu)$	zero inflated gamma
Poisson-Tweedie	-	Tweedie family

Table: Discrete gamlss family distributions for count data

R Name	params	mean	variance
PO(μ)	1	μ	μ
$\mathtt{NBI}(\mu,\sigma)$	2	μ	$\mu + \sigma \mu^2$
$\mathtt{NBII}(\mu,\sigma)$	2	μ	$\mu + \sigma \mu$
$ exttt{PIG}(\mu,\sigma)$	2	μ	$\mu + \sigma \mu^2$
$\mathtt{SICHEL}(\mu, \sigma, \nu)$	3	μ	$\mu + h(\sigma, \nu)\mu^2$
$\mathtt{DEL}(\mu, \sigma, \nu)$	3	μ	$\mu + \sigma(1-\nu)^2\mu^2$
${\tt ZIP}(\mu,\sigma)$	2	$(1-\sigma)\mu$	$(1-\sigma)\mu + \sigma(1-\sigma)\mu^2$
${\tt ZIP2}(\mu,\sigma)$	2	μ	$\mu + \frac{\sigma}{(1-\sigma)}\mu^2$

Families modelling the variance-mean relationship

```
V[Y] = \mu + \mu^2 V[\gamma] where V[\gamma] = \upsilon(\sigma, \nu, \tau) is a function of the parameters of the mixing distribution f_{\gamma}(\gamma).
```

Alternative variance-mean relationship can be obtained by reparametrization.

i.e NB type I
$$V[Y] = \mu + \sigma \mu^2$$
.

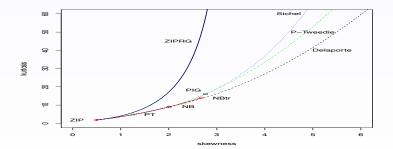
If
$$\sigma = \sigma_1/\mu$$
 then

$$V\left[Y
ight]=(1+\sigma_1)\mu$$
 (negative binomial type II)

$$\sigma = \sigma_1 \mu$$
 then $V[Y] = \mu + \sigma_1 \mu^3$.

More generally
$$\sigma = \sigma_1 \mu^{2-\nu}$$
 giving $V(Y) = \mu + \sigma_1 \mu^{\nu}$

Comparison of the marginal distributions using a (ratio moment) diagram of their skewness and kurtosis



A stylometric application

Data summary:

R data file: stylo in package gamlss.data of dimensions 64×2

source: Dr Mario Corina-Borja

variables

word: is the number of times a word appears in

a single text

freq : the frequency of the number of times

a word appears in a text

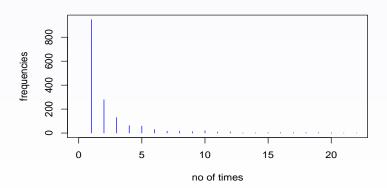
purpose: to demonstrate the fitting of a truncated discrete dist.

conclusion the truncated SICHEL distributions fits best

A stylometric application

```
library(gamlss.tr)
data(stylo)
plot(freq ~ word, data = stylo, type = "h", xlim =
+ c(0, 22), xlab = "no of times", ylab =
+ "frequencies", col = "blue")
```


The stylometric data



A stylometric application

```
> library(gamlss.tr)
> gen.trun(par = 0, family = P0, type = "left")
A truncated family of distributions from PO has been generated
 and saved under the names:
dPOtr pPOtr qPOtr rPOtr POtr
The type of truncation is left and the truncation parameter is
> gen.trun(par = 0, family = NBII, type = "left")
> gen.trun(par = 0, family = DEL, type = "left")
> gen.trun(par = 0, family = SICHEL, type = "left",
```

amlss

. . .

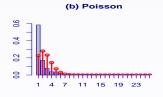
+ delta = 0.001)

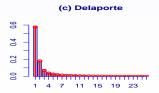
A stylometric application

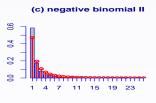
```
> mPO <- gamlss(word ~ 1, weights = freq, data = stylo,
+ family = POtr, trace = FALSE)
> mNBII <- gamlss(word ~ 1, weights = freq, data = stylo,
+ family = NBIItr, n.cyc = 50, trace = FALSE)
> mDEL <- gamlss(word ~ 1, weights = freq, data = stylo,
+ family = DELtr, n.cyc = 50, trace = FALSE)
> mSI <- gamlss(word ~ 1, weights = freq, data = stylo,
+ family = SICHELtr, n.cyc = 50, trace = FALSE)
> GAIC(mPO, mNBII, mDEL, mSI)
      дf
        ATC.
mSI 3 5148.454
mDEL 3 5160.581
mNBII 2 5311.627
mPO 1 9207.459
```

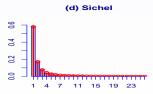
amlss

The stylometric data









The fish species data

Data summary: the fish species data

R data file: species in package gamlss.data of dimensions 70×2

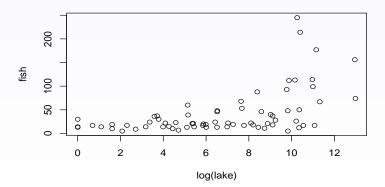
variables

fish: the number of different species in 70

lakes in the world

lake: the lake area

The fish species data



The fish species data

There are several questions that need to be answered.

- How does the mean of y depend on x?
- Is y overdispersed Poisson?
- How does the variance y depend on its mean?
- What is the distribution of y given x?
- Do the scale and shape parameters of the distribution of y depend on x?

Overdispersed count data approaches

Table: Comparison of models for the fish species data

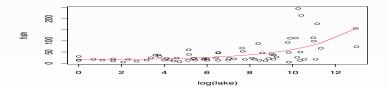
Model	$f_Y(y)$	μ	σ	ν	DEV	df	AIC	SBC
1	PO	x < 2 >	-	-	1849.3	3	1855.3	1862.0
2	NBI	Х	1	-	619.8	3	625.8	632.6
3	NBI	x < 2 >	1	-	614.3	4	622.3	631.3
4	NBI	cs(x,3)	1	-	611.9	6	623.9	637.4
5	NBI	x < 2 >	Х	-	605.0	5	615.0	626.2
6	NBI-fam	x < 2 >	1	1	606.0	5	616.0	627.3
7	NBI-fam	x < 2 >	Х	1	604.9	6	616.9	630.4

Overdispersed count data approaches

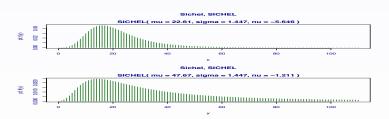
Model	$f_Y(y)$	μ	σ	ν	DEV	df	AIC	SBC
8	PIG	x < 2 >	1	-	613.3	4	621.3	630.3
9	SI	x < 2 >	1	X	597.7	6	609.7	623.2
10	DEL	x < 2 >	1	X	600.6	6	612.6	626.1
11	DEL	x < 2 >	-	X	600.6	5	610.6	621.9
12	PO-Normal	x < 2 >	1	-	615.2	4	623.2	632.2
13	NBI-Normal	x < 2 >	Х	1	603.7	6	615.7	629.2
14	PO-NPFM(5)	x < 2 >	-	_	601.9	13	627.9	657.2
15	NB-NPFM(2)	x < 2 >	1	_	611.9	6	623.9	637.4
16	doublePO	x < 2 >	X	-	616.4	5	626.4	637.6
17	IGdisc	x < 2 >	1	-	603.3	4	611.3	620.3

agamlss

Fitted mean of the Sichel distribution



Fitted Sichel distributions for observations (a) 40 and (b) 67



Binomial response variables

There are only two distributions here

- binomial
- beta binomial

Data summary:

```
R data file: aep in package gamlss of dimensions 1383 \times 8 source: Gange et al. (1996)
```

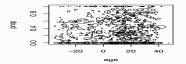
los: total number of days

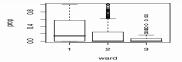
variables

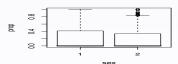
```
noinap : number of inappropriate days patient stay
in hospital

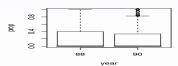
loglos : the log of los/10
sex : the gender of patient
ward : type of ward in the hospital (medical, surgical or
year : 1988 or 1990
age : age of the patient subtracted from 55
y : the response variable, a matrix with columns
(noinap, los-noinap)

Agamiss
```










```
> mI <- gamlss(y ~ ward + year + loglos, sigma.fo = ~year,</pre>
+ family = BB, data = aep)
> mII <- gamlss(y ~ ward + year + loglos, sigma.fo = ~year +</pre>
+ ward, family = BB, data = aep)
> mIII <- gamlss(y ~ ward + year + cs(loglos, 1),</pre>
+ sigma.fo = "year+ward, family = BB, data = aep)
> mIV <- gamlss(y ~ ward + year + cs(loglos, 1) + cs(age, 1),
+ sigma.fo = "year + ward, family = BB, data = aep)
> GAIC(mI, mII, mIII, mIV, k = 0)
           df
                   A T.C.
mIV 12.00010 4454.362
mIII 10.00045 4459.427
mII 9.00000 4483.020
```

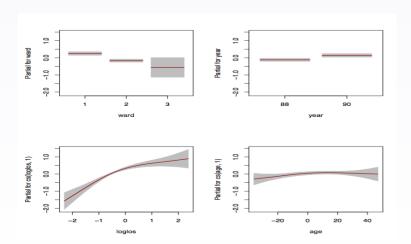
agamlss

mI 7.00000 4519.441

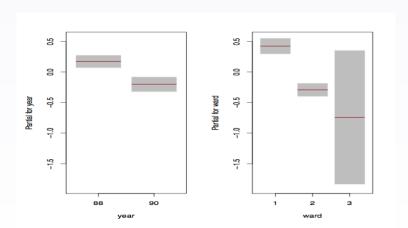
Models	Links	Terms	GD
			(AIC)
			[SBC]
I	$logit(\mu)$	1+ward+loglos+year	4519.4
	$\log(\sigma)$	1+year	(4533.4)
			[4570.1]
П	$logit(\mu)$	1+ward+loglos+year	4483.0
	$\log(\sigma)$	1+year $+$ ward	(4501.0)
			[4548.1]
III	$logit(\mu)$	1+ward $+$ cs $(loglos,1)+$ year	4459.4
	$\log(\sigma)$	1+year+ward	(4479.4)
			[4531.8]
IV	$logit(\mu)$	1+ward $+$ cs(loglos,1) $+$ year $+$ cs(age,1)	4454.4
	$\log(\sigma)$	1+year+ward	(4478.4)
			[4541 ₂ 2]

```
> op <- par(mfrow = c(2, 2))
> term.plot(mIV, se = T)
> par(op)
> op <- par(mfrow = c(2, 1))
> term.plot(mIV, "sigma", se = T)
> par(op)
> rqres.plot(mIV)
```

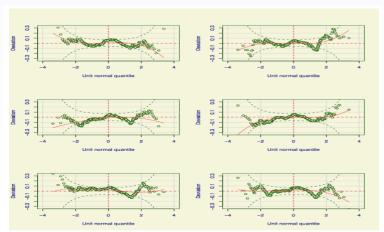

The hospital stay data: fitted model fop μ



The hospital stay data: fitted model for σ



The hospital stay data: normalised randomised quantile residuals



END

for more information see

www.gamlss.org

