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Aggregation of
AR(2) Processes

DIPLOMARBEIT

zur Erlangung des akademischen Grades Diplomingenieur der

Studienrichtung Technische Mathematik

Technische Universität Graz

Betreuer:

Univ.-Prof. István Berkes

Institut für Statistik

Technische Universität Graz



Abstract

We consider the least square estimators of the classical AR(2) process when

the underlying variables are aggregated sums of independent random coeffi-

cient AR(2) models. We establish the asymptotic of the corresponding statis-

tics and show that in general these estimators are not consistent estimators

of the expected values of the autoregressive coefficients when the number

of aggregated terms and the sample size tend to infinity. Furthermore the

asymptotic behavior of some statistics which can be used to estimate param-

eters and a central limit theorem for the case that the number of aggregated

terms is much larger than the number of observations is given. A method

how parameters of a distribution of the random coefficients can be estimated

and examples for possible distributions are given.

Keywords: random coefficient AR(2), least square, aggregation, parameter

estimation, central limit theorem
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this diploma thesis in the course of a stay abroad at the University of Utah,

who supported me actively with their knowledge and competence and who

taught me a lot.

Florian Kölbl

Graz, 1.April 2006

2



Contents

1 Introduction 4

2 Introduction to Time Series 6

2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Important Time Series . . . . . . . . . . . . . . . . . . . . . . 9

3 Properties of AR(2) Processes 12

3.1 Representations and Stationarity . . . . . . . . . . . . . . . . 12

3.2 Least Square Estimators . . . . . . . . . . . . . . . . . . . . . 18

4 Aggregation of AR(2) Processes 20

4.1 Motivation for Aggregation . . . . . . . . . . . . . . . . . . . . 20

4.2 Basic Definitions, Assumptions and Properties . . . . . . . . . 21

4.3 Asymptotic Behavior and Properties of the Least Square Es-

timators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Asymptotic Results for some Useful Statistics . . . . . . . . . 29

4.5 Differences of Covariances . . . . . . . . . . . . . . . . . . . . 32

5 Estimators for Distribution Parameters 34

5.1 Ideas to Find Estimators . . . . . . . . . . . . . . . . . . . . . 34

5.2 Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Estimators for Beta-Distributed Coefficients . . . . . . . . . . 38

5.4 Estimators for Standard Two-Sided Power-Distributed Coef-

ficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3



Chapter 1

Introduction

This thesis is concerned with the aggregation of second-order autoregressive

processes with random coefficients.

Aggregated observations are very common data sets in the studies of macroe-

conomic time series. Usually to describe such data, classical autoregression

(AR) or autoregressive moving average (ARMA) models are used. Granger

and Morris (1976) explained how more complicated time series models can

arise from an aggregation of simpler models. For example, adding N inde-

pendent AR(1) models can produce the ARMA(N , N − 1) model. This was

a starting point to consider aggregation of infinitely many simple AR models

with random coefficients, which can produce a time series with long memory,

see Granger (1980) and the earlier contribution by Robinson (1978). This

approach was later generalized by a number of authors, see e.g. Oppen-

heim and Viano (2004), Zaffaroni (2004) and especially Horváth and Leipus

(2005). Horváth and Leipus (2005) studied the behavior of the least square

estimator under the aggregation of N independent random coefficient AR(1)

models when the number of observations and the number of aggregated mod-

els tend to infinity. They have shown that the least square estimator of the

classical AR(1) model can not be used as an estimator for the expected value
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Ea in the aggregated model and they proposed a consistent estimator for Ea.
Moreover they gave a central limit theorem for the case when the number of

observations is much larger than the number of aggregated terms. Usually

the opposite case appears. In practice the number of aggregated terms is

much larger than the number of observations. Moreover, in the literature

the aggregation of higher order autoregressive processes is rarely discussed.

These two facts have motivated the consideration of the aggregation of AR(2)

models and the discussion of the case when the number of aggregated terms is

much larger than the number of observations. Therefore this thesis is consid-

ering the aggregation of second-order autoregessive models, the asymptotic

behavior of the least square estimators is discussed, it is shown that in gen-

eral the least square estimators are no longer consistent estimators for the

expected values Ea1 and Ea2 of the random coefficients. Furthermore we

give methods how parameters of parametric distributions of the random co-

efficients can be estimated and we present a central limit theorem for the

important case when the number of aggregated terms is much larger than

the number of observations.

The structure of this thesis is the following. In Chapter 2 we give a short in-

troduction in time series. In Chapter 3 some important properties of AR(2)

processes are discussed. The asymptotic behavior of the least square es-

timators, the asymptotic behavior of some statistics which can be used to

estimate parameters and a central limit theorem for the case that the number

of aggregated terms is much larger than the number of observations is given

in Chapter 4. A method how parameters of a distribution of the random co-

efficients can be estimated and examples for possible distributions are given

in Chapter 5.
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Chapter 2

Introduction to Time Series

Much of economics is concerned with modeling dynamics. There has been

an explosion of research in this area in the last twenty years, as ”time se-

ries econometrics” has practically come to be synonymous with ”empirical

macroeconomics”. This section is an introduction to the basic ideas of time

series analysis and stochastic processes. Of particular importance are the

concepts of stationarity and autocovariance. Important examples of time

series models are presented.

2.1 Basic Definitions

The first step in the analysis of a time series is the selection of a suitable

mathematical model (or class of models) for the data. To allow for the

possibly unpredictable nature of future observations it is natural to suppose

each observation xt is the observed value of a certain random variable Xt.

The time series {xt, t ∈ T0} is then a realization of the family of random

variables {Xt, t ∈ T}. These considerations suggest modeling the data as the

realization (or part of a realization) of a stochastic process {Xt, t ∈ T0} where

T0 ⊆ T . To clarify these ideas we need to define precisely what is meant by

a stochastic process and its realizations.
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Definition 2.1.1 (Stochastic Process) A stochastic process is a family of

random variables {Xt, t ∈ T} defined on a probability space (Ω,F ,P).

Remark 2.1.1 In the following T will be the set Z where Z = {0,±1,±2, ...}.

Recalling the definition of a random variable we note that for each fixed

t ∈ T , Xt is in fact a function Xt(·) on the set Ω. On the other hand, for

each fixed ω ∈ Ω, X·(ω) is a function on T.

Definition 2.1.2 (Realization of a Stochastic Process) The functions

{X·(ω), ω ∈ Ω} on T are known as the realizations or sample paths of the

process {Xt, t ∈ T}.

In time series analysis we usually want to describe a stochastic process

{Xt, t ∈ T1} with the knowledge of a realization {xt, t ∈ T0} where T0 = [l, k]

and T1 = (k,∞) where l < k <∞.

When dealing with a finite number of random variables, it is often useful to

compute the covariance matrix in order to gain insight into the dependence

between them. For a time series {Xt, t ∈ Z} we need to extend the concept of

covariance matrix to deal with infinite collections of random variables. The

autocovariance function provides us with the required extension.

Definition 2.1.3 (The Autocovariance Function) If {Xt, t ∈ Z} is a pro-

cess such that V ar(Xt) <∞ for each t ∈ Z, then the autocovariance function

ϕX(r, s) of {Xt, t ∈ Z} is defined by

ϕX(r, s) = Cov(Xr, Xs) = E ((Xr − EXr)(Xs − EXs)) with r, s ∈ Z.

One of the most important concepts in time series analysis is the concept of

stationarity.
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Definition 2.1.4 (Stationarity) The time series {Xt, t ∈ Z} is said to be

stationary if

(i) EX2
t <∞ for all t ∈ Z,

(ii) EXt = µ for all t ∈ Z and where µ is a constant,

(iii) ϕX(r, s) = ϕX(r + t, s+ t) for all r, s, t ∈ Z.

This means that neither the mean µ nor the autocovariances ϕX(r, s) of the

process {Xt, t ∈ Z} depend on the date t.

Remark 2.1.2 Stationary as just defined is frequently referred to in the liter-

ature as weak stationary, covariance stationary, stationary in the wide sense

or second-order stationary.

Definition 2.1.5 (Strict Stationarity) The time series {Xt, t ∈ Z} is said

to be strictly stationary if the joint distribution of the vector (Xt1 , ..., Xtk)

and (Xt1+h
, ..., Xtk+h

) are the same for all positive integers k and for all

t1, ..., tk ∈ Z.

Definition 2.1.6 If {Xt, t ∈ Z} is a stationary process, define

ϕk = ϕX(r, s)

with k = |r − s| for all r, s ∈ Z.

Proposition 2.1.1 If ϕ is the autocovariance function of a stationary pro-

cess {Xt, t ∈ Z}, then

(i) ϕ0 ≥ 0

(ii) |ϕk| ≤ ϕ0 for all k ∈ {0, 1, 2, ...}.
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Proof: The first property is a statement of the obvious fact that V ar(Xt) ≥
0. The second is an immediate consequence of the Cauchy-Schwarz inequal-

ity.

|Cov(Xt, Xt+h)| ≤ (V ar(Xt))
1
2 · (V ar(Xt+h))

1
2

2

Definition 2.1.7 (Gaussian Time Series) The process {Xt, t ∈ Z} is a

Gaussian time series if and only if the distribution function of (Xt1 , ..., Xts)

are all multivariate normal.

2.2 Important Time Series

This section introduces some important classes of time series {Xt, t ∈ Z} de-

fined in terms of linear difference equations. The so defined processes are

used in the following sections.

The basic building block for all the processes considered in this work is the

so called white noise process.

Definition 2.2.1 (White Noise Process) A white noise process is a se-

quence {εt, t ∈ Z} whose elements have zero mean and variance σ2,

Eεt = 0

Eε2t = σ2

and for which the ε´s are uncorrelated

Eεtεs = 0 for t 6= s .

If we replace the last condition with the slightly stronger condition that the

ε´s are independent, the sequence is called independent white noise process.
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Finally, an independent white noise where the ε´s are normally distributed

εt ∼ N(0, σ2)

is called Gaussian white noise process.

A time series is a collection of observations indexed by the time of each

observation. Usually we have collected data beginning with some particular

time (say, t = 0) and ending at another time (say, t = n)

(X0, X1, ..., Xn).

We often imagine that we also have could earlier observations (..., X−2, X−1)

or later observations (Xn+1, Xn+2, ...), had the process been observed for more

time. The observed sample (X0, X1, ..., Xn) could be viewed as a finite seg-

ment of a doubly infinite sequence, denoted {Xt, t ∈ Z}.

Typically, a time series {Xt, t ∈ Z} is identified by describing the t-th ele-

ment.

Definition 2.2.2 (Moving Average Process) A p-th order moving aver-

age process, denoted MA(p) is a stochastic process {Xt, t ∈ Z} characterized

by

Xt = εt + a1εt−1 + ...+ apεt−p

where {εt, t ∈ Z} is an independent white noise process and a1, ..., ap are any

real numbers.

Definition 2.2.3 (Autoregressive Process) A p-th order autoregressive

process, denoted AR(p) is a stochastic process {Xt, t ∈ Z} characterized by

Xt = a1Xt−1 + ...+ apXt−p + εt

where {εt, t ∈ Z} is an independent white noise process and a1, ..., ap are any

real numbers.
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Remark 2.2.1 In the further sections, necessary and sufficient conditions

for the stationarity of an autoregressive process are given.

An ARMA process includes both autoregressive and moving average terms.

Definition 2.2.4 (ARMA Process) An ARMA(p,q) process is a stochas-

tic process {Xt, t ∈ Z} characterized by

Xt = a1Xt−1 + ...+ apXt−p + εt + b1εt−1 + ...+ bqεt−q

where {εt, t ∈ Z} is an independent white noise process and a1, ..., ap, b1, ..., bq

could be any real numbers.
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Chapter 3

Properties of AR(2) Processes

The main part of this work deals with AR(2) processes, so it is necessary

to discuss some properties of an AR(2) process. For example, conditions for

the stationarity are given, useful representations are introduced and the least

square estimators of the coefficients a1 and a2 are computed.

3.1 Representations and Stationarity

We consider a second order autoregressive process given by

Xt = a1Xt−1 + a2Xt−2 + εt (3.1)

where {εt, t ∈ Z} is an independent white noise process.

We will show that under certain conditions Xt can be written as the infi-

nite sum

Xt =
∞∑
i=0

αiεt−i (3.2)

with appropriate coefficients αi for i = 0, 1, ... .
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That means that an AR(2) process can be written as a MA(∞)-process.

The question is how to find the coefficients αi as a function of the parameters

a1 and a2 and under what conditions this representation is valid. The first

method to find the αi´s is to use the following recursion

α0 = 1

α1 = a1

αi = a1αi−1 + a2αi−2 for i ≥ 2.

With this recursion all αi´s can be computed, if the representation exists.

Nevertheless it is very useful to have an explicit representation of all αi´s as

a function of a1 and a2.

Theorem 3.1.1 Let λ1 and λ2 be the roots of the so called characteristic

equation λ2− a1λ− a2 = 0. If λ1 and λ2 lie inside the unit circle and λ1 and

λ2 are distinct then Xt can be written as

Xt =
∞∑
i=0

αiεt−i

with

αi =
λi+1

1 − λi+1
2

λ1 − λ2

.

Proof: First we write (3.1) in a different way. Define

ψt =

(
Xt

Xt−1

)

F =

(
a1 a2

1 0

)

vt =

(
εt

0

)
.
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Then (3.1) can be written as

ψt = Fψt−1 + vt .

Furthermore we get

ψt = Fψt−1 + vt = F (Fψt−2 + vt−1) + vt = ...

= F pψt−p + F p−1vt−p+1 + ...+ Fvt−1 + vt .

If F p converges to

(
0 0

0 0

)
for p→∞, then ψt is given by

ψt =
∞∑
i=0

F ivt−i .

Let

F i =

(
f

(i)
11 f

(i)
12

f
(i)
21 f

(i)
22

)
,

then (
Xt

Xt−1

)
=

∞∑
i=0

(
f

(i)
11 f

(i)
12

f
(i)
21 f

(i)
22

)
·

(
εt−i

0

)

and therefore

Xt =
∞∑
i=0

f
(i)
11 εt−i .

Now we look at the eigenvalues of F which are the values of λ which satisfy

|F − λI2| = 0 (3.3)

where I2 the (2×2)-matrix

(
1 0

0 1

)
and | · | denotes the determinant. Then

(3.3) gives ∣∣∣∣∣ a1 − λ a2

1 −λ

∣∣∣∣∣ = λ2 − a1λ− a2 = 0
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hence

λ1 =
a1 +

√
a2

1 + 4a2

2

λ2 =
a1 −

√
a2

1 + 4a2

2
.

Under the assumption that the eigenvalues of F are distinct we can assume,

without loss of generality, that λ1 > λ2. By standard facts in linear algebra

there exists a nonsingular matrix T which satisfies

F = TΛT−1 where Λ =

(
λ1 0

0 λ2

)
.

Observe that

F 2 = TΛT−1TΛT−1 = TΛ2T−1,

and so F i can be written as

F i = TΛiT−1 where Λ =

(
λi

1 0

0 λi
2

)
. (3.4)

Hence if λ1 and λ2 lie inside the unit circle, F i converges as i → ∞ to the

(2× 2) zero matrix.

Now we can use (3.4) to compute f
(i)
11 explicitly

F i =

(
t11 t12

t21 t22

)
·

(
λi

1 0

0 λi
2

)
·

(
t11 t12

t21 t22

)

that gives us

f
(i)
11 = (t11t

11)λi
1 + (t12t

21)λi
2 .

Define c1 = t11t
11 and c2 = t12t

21 and observe that c1 + c2 is nothing else

than the (1,1)-element of the matrix TT−1 = I1. It follows that c1 + c2 = 1
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what gives with t11t
11λ1 + t12t

21λ2 = a1 = λ1 + λ2 the unique solution for c1

and c2

c1 =
λ1

λ1 − λ2

c2 =
−λ2

λ1 − λ2

.

This and

f
(i)
11 = c1λ

i
1 + c2λ

i
2

give the following representation of Xt

Xt =
∞∑
i=0

(
λi+1

1 − λi+1
2

λ1 − λ2

· εt−i

)
. (3.5)

2

Remark 3.1.1 In the following sections the coefficients a1 and a2 will be

random variables. We will consider continuously distributed coefficients,

hence the roots λ1 and λ2 of the characteristic equation are also continu-

ously distributed so that the case λ1 = λ2 will occur with probability 0.

Remark 3.1.2 Note that the representation given in (3.5) is in general not

unique, because there is also the possibility to write Xt in terms related to

{εt, εt+1, εt+2, ...} i.e.

Xt =
∞∑
i=0

βiεt+i .

We are usually looking at past observations and so we are interested in the

representation related to the past

Xt =
∞∑
i=0

αiεt−i .

If we are only looking at representations where Xt ∈ σ(εi, i ≤ t) where

σ(εi, i ≤ t) is the σ-algebra generated by {εi, i ≤ t}, then the representation

given in (3.5) is unique.
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Proposition 3.1.1 Let {εt, t ∈ Z} be an independent white noise process. If

the roots λ1, λ2 of the characteristic equation lie inside the unit circle then

{Xt, t ∈ Z} is a stationary process.

Proof:

EXt = E

(
∞∑
i=0

αiεt−i

)
=

∞∑
i=0

αiEεt−i = 0

EX2
t = E

(
∞∑
i=0

∞∑
j=0

αiαjεt−iεt−j

)

=
∞∑
i=0

∞∑
j=0

αiαjEεt−iεt−j = σ2

∞∑
i=0

α2
i

since Eεt−i = 0 and Eεt−iεt−j = σ2 for i = j and 0 otherwise. Further,

EXtXt+h =
∞∑
i=0

∞∑
j=0

αiαjEεt−iεt+h−j

= σ2

∞∑
i=0

αiαi+h

since Eεt−iεt+h−j = σ2 for i = j − h and 0 otherwise. Note that we have

already used that the sums
∑∞

i=0 αi,
∑∞

i=0 α
2
i and

∑∞
i=0 αiαi+h are finite, this

follows from the fact that λ1 and λ2 lie inside the unit circle and αi is given

by
λi+1
1 −λi+1

2

λ1−λ2
and therefore the sums converge.

2

In the sequel, it will be useful to have nice representations for
∑∞

i=0 αi,∑∞
i=0 α

2
i and

∑∞
i=0 αiαi+h. Observe that
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∞∑
i=0

αi =
∞∑
i=0

λi+1
1 − λi+1

2

λ1 − λ2

=
1

λ1 − λ2

∞∑
i=1

(λi
1 − λi

2) (3.6)

=
1

λ1 − λ2

∞∑
i=0

(λi
1 − λi

2) =
1

λ1 − λ2

(
1

1− λ1

− 1

1− λ2

)

=
1

(1− λ1)(1− λ2)

∞∑
i=0

α2
i =

1

(λ1 − λ2)2

∞∑
i=0

(λi+1
1 − λi+1

2 )2 (3.7)

=
1

(λ1 − λ2)2

∞∑
i=0

(λi
1 − λi

2)
2

=
1

(λ1 − λ2)2

(
1

1− λ2
1

+
1

1− λ2
2

− 2

1− λ1λ2

)

=
1 + λ1λ2

(1− λ2
1)(1− λ2

2)(1− λ1λ2)

∞∑
i=0

αiαi+h =
1

(λ1 − λ2)2

(
λh

1

1− λ2
1

+
λh

2

1− λ2
2

− λh
1 + λh

2

1− λ1λ2

)
(3.8)

Note that λ1 and λ2 are the roots of the equation λ2 − a1λ − a2 = 0 and

therefore a1 = λ1 + λ2 and a2 = −λ1λ2 so that

∞∑
i=0

α2
i =

1− a2

(1 + a2)((1− a2)2 − a2
1)
. (3.9)

3.2 Least Square Estimators

In time series theory we usually have observations of past realizations de-

noted by (X0, ..., Xn) of the process {Xt, t ∈ Z} and if we assume that the

process {Xt, t ∈ Z} is an AR(2) process we are interested in estimators for

the parameters a1 and a2. This can be done by least square estimation. It
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can be shown that for an AR(2) process the below presented least square

estimators are consistent estimators for the parameters a1 and a2. (see e.g.

Brockwell and Davis (1991), p.257-258)

To find the least square estimators we have to minimize

n∑
t=2

(Xt − a1Xt−1 − a2Xt−2)
2 .

Partial differentiation gives

∂
∑n

t=2(Xt − a1Xt−1 − a2Xt−2)
2

∂a1

= −2
n∑

t=2

Xt−1(Xt − a1Xt−1 − a2Xt−2)

∂
∑n

t=2(Xt − a1Xt−1 − a2Xt−2)
2

∂a2

= −2
n∑

t=2

Xt−2(Xt − a1Xt−1 − a2Xt−2) .

Setting the differentials equal to zero gives the estimators we are looking for

â1 =

n−1∑
t=1

XtXt−1

n−2∑
t=0

X2
t −

n−1∑
t=1

XtXt−1

n∑
t=2

XtXt−2(
n−2∑
t=0

X2
t

)2

−

(
n−1∑
t=1

XtXt−1

)2

â2 =

n∑
t=2

XtXt−2

n−2∑
t=0

X2
t −

(
n−1∑
t=1

XtXt−1

)2

(
n−2∑
t=0

X2
t

)2

−

(
n−1∑
t=1

XtXt−1

)2 .
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Chapter 4

Aggregation of AR(2)

Processes

4.1 Motivation for Aggregation

Aggregated observations are very common data sets in the studies of macroe-

conomic time series. For example there are government reports of sectors of

the economy in which only the performance of a sector is reported. The data

comes from an aggregation of a huge number of single processes (e.g. com-

panies) so that the number of aggregated terms is very large. The number of

observations is usually small (e.g. quarterly reports). Therefore we discuss

especially the case when the number of aggregated terms is much larger than

the number of observations.

This chapter discusses the aggregation of AR(2) processes, asymptotic re-

sults for the least square estimators are given, it is shown that the least

square estimators, which are consistent estimators in the nonaggregated case

are in general not consistent any more for the aggregated case. Moreover a

central limit theorem when the number of aggregated terms is much larger

than the number of observations is given.
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4.2 Basic Definitions, Assumptions and Prop-

erties

We consider the aggregated process Y
(N)
t defined by

Y
(N)
t =

1

N

(
X

(1)
t +X

(2)
t + ...+X

(N)
t

)
(4.1)

where {
X

(i)
t , t ∈ Z

}
i=1,...,N

(4.2)

are independent identically distributed random coefficient AR(2) processes.

This means that for any i = 1, ..., N

X
(i)
t = a

(i)
1 X

(i)
t−1 + a

(i)
2 X

(i)
t−2 + ε

(i)
t , t ∈ Z (4.3)

where {
ε
(i)
t , t ∈ Z

}
i=1,...,N

(4.4)

are independent identically distributed random variables with Eεt = 0 and

Eε2t = σ2 where 0 < σ2 <∞ ,{
a

(i)
1

}
i=1,...,N

and
{
a

(i)
2

}
i=1,...,N

(4.5)

are independent identically continuously distributed random variables and{
ε
(i)
t , t ∈ Z

}
i=1,...,N

,
{
a

(i)
1

}
i=1,...,N

and
{
a

(i)
2

}
i=1,...,N

(4.6)

are independent of each other. We will further assume

P (|a1| < 2, |a2| < 1, 1− a1 − a2 > 0, 1 + a1 − a2 > 0) = 1 (4.7)

where P (A) denotes the probability of the event A. Furthermore

E
1− a2

(1 + a2)((1− a2)2 − a2
1)
<∞ . (4.8)
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Proposition 4.2.1 If (4.1)–(4.8) are satisfied, all roots of the characteris-

tic equation (see Chapter 3) lie inside the unit circle and are distinct with

probability 1.

Proof: The roots of the characteristic equation λ2−a1λ−a2 = 0 are given by

λ1 =
a1 +

√
a2

1 + 4a2

2

λ2 =
a1−

√
a2

1 + 4a2

2

The roots are real when a2
1 + 4a2 ≥ 0. In this case we have to show that

|a1 +
√
a2

1 + 4a2| < 2 and (4.9)

|a1 −
√
a2

1 + 4a2| < 2 (4.10)

where
√
a2

1 + 4a2 ≥ 0. We know that λ1+λ2 = a1 and−λ1λ2 = a2. Therefore

the following must hold

|a1| < 2 , |a2| < 1 .

Now to guarantee (4.9) and (4.10) the following must be satisfied

a1 +
√
a2

1 + 4a2 < 2 what is equivalent to 1 + a1 − a2 > 0

a1 −
√
a2

1 + 4a2 > −2 what is equivalent to 1− a1 − a2 > 0 .

The roots are complex when a2
1 + 4a2 ≥ 0. In this case we have to show that

|a1 + i ·
√
−a2

1 − 4a2| < 2 (4.11)

|a1 − i ·
√
−a2

1 − 4a2| < 2 . (4.12)

Now to guarantee (4.11) and (4.12) the following must be satisfied

(2− a1)
2 >

(
i ·
√
−a2

1 − 4a2

)2

what is equivalent to 1− a1 − a2 > 0

(2 + a1)
2 >

(
i ·
√
−a2

1 − 4a2

)2

what is equivalent to 1 + a1 − a2 > 0 .

2
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Remark 4.2.1 If (4.1)–(4.8) are satisfied, it follows immediately that the

system is stationary with probability 1.

4.3 Asymptotic Behavior and Properties of

the Least Square Estimators

We assume that Y
(N)
1 , Y

(N)
2 , ..., Y

(N)
n are observed from the aggregated pro-

cess
{
Y

(N)
t , t ∈ Z

}
given in (4.1).

The ”least square” estimators are (see Chapter 3)

T
(1)
n,N =

(
n−1∑
t=2

Y
(N)
t Y

(N)
t−1

)(
n−2∑
t=1

(
Y

(N)
t

)2
)
−

(
n−1∑
t=2

Y
(N)
t Y

(N)
t−1

)(
n∑

t=3

Y
(N)
t Y

(N)
t−2

)
(

n−2∑
t=1

(
Y

(N)
t

)2
)2

−

(
n−1∑
t=2

Y
(N)
t Y

(N)
t−1

)2

T
(2)
n,N =

(
n∑

t=3

Y
(N)
t Y

(N)
t−2

)(
n−2∑
t=1

(
Y

(N)
t

)2
)
−

(
n−1∑
t=2

Y
(N)
t Y

(N)
t−1

)2

(
n−2∑
t=1

(
Y

(N)
t

)2
)2

−

(
n−1∑
t=2

Y
(N)
t Y

(N)
t−1

)2 .

Remark 4.3.1 If (4.1)–(4.8) are satisfied, then by Proposition 3.1.1, λ1 and

λ2 are different and lie inside the unit circle. Now from (3.7) and (3.9) we

get that

E
1− a2

(1 + a2)((1− a2)2 − a2
1)

= E
1 + λ1λ2

(1− λ2
1)(1− λ2

2)(1− λ1λ2)
> 0

By
p→ we denote convergence in probability and by

d→ we denote convergence

in distribution.

The following theorems describe the asymptotic behavior of T
(1)
n,N and T

(2)
n,N .
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Theorem 4.3.1 If (4.1)–(4.8) hold then for any fixed n ≥ 3 we have

T
(1)
n,N

d→ T̃ (1)
n and

T
(2)
n,N

d→ T̃ (2)
n for N →∞

where

T̃ (1)
n =

n−1∑
t=2

ξtξt−1

n−2∑
t=1

ξ2
t −

n−1∑
t=2

ξtξt−1

n∑
t=3

ξtξt−2(
n−2∑
t=1

ξ2
t

)2

−

(
n−1∑
t=2

ξtξt−1

)2

T̃ (2)
n =

n∑
t=3

ξtξt−2

n−2∑
t=1

ξ2
t −

(
n−1∑
t=2

ξtξt−1

)2

(
n−2∑
t=1

ξ2
t

)2

−

(
n−1∑
t=2

ξtξt−1

)2

and (ξ1, ξ2, ..., ξn) is a n-variate normal vector with mean Eξt = 0 and co-

variances

ϕk = Eξiξi+k = σ2E
(

1

(λ1 − λ2)2

[
λk

1

1− λ2
1

+
λk

2

1− λ2
2

− λk
1 + λk

2

1− λ1λ2

])
.

Proof: First we write

n∑
t=1

(
Y

(N)
t

)2

=
1

N2

n∑
t=1

(
N∑

i=1

X
(i)
t

)(
N∑

j=1

X
(j)
t

)
n∑

t=2

Y
(N)
t Y

(N)
t−1 =

1

N2

n∑
t=2

(
N∑

i=1

X
(i)
t

)(
N∑

j=1

X
(j)
t−1

)
n∑

t=3

Y
(N)
t Y

(N)
t−2 =

1

N2

n∑
t=3

(
N∑

i=1

X
(i)
t

)(
N∑

j=1

X
(j)
t−2

)
.

Set

YN =
(
Y

(N)
1 , Y

(N)
2 , ..., Y (N)

n

)
.
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We want to use the multivariate central limit theorem. First we observe that

X
(1)
t , ..., X

(N)
t are independent identically distributed random variables for all

t ∈ Z. Let ϕk = EXiXi+k. We know that

ϕ0 = σ2 · E 1− a2

(1 + a2)((1− a2)2 − a2
1)
.

(4.8) yields that ϕ0 <∞. Now we show that |ϕk| ≤ ϕ0. The Cauchy-Schwarz

inequality gives

|ϕk| = |Cov(Xt, Xt+k)| ≤ (V ar(Xt))
1
2 (V ar(Xt+k))

1
2 = ϕ0 ,

and therefore the covariance matrix is given by

Σ = (σij)i,j = (ϕ|i−j|)i,j .

Note that EXt = 0. Now we can use the multivariate central limit theorem

which gives

√
N · YN

d→ (ξ1, ..., ξn) (4.13)

where (ξ1, ..., ξn) is a multivariate normal vector with zero mean and covari-

ance matrix

Σ = (σij)i,j = (ϕ|i−j|)i,j

where ϕ|i−j| is given by

ϕk = σ2 · E
(

1

(λ1 − λ2)2

[
λk

1

1− λ2
1

+
λk

2

1− λ2
2

− λk
1 + λk

2

1− λ1λ2

])
. (4.14)

The continuous mapping theorem yields now the result.

2

Remark 4.3.2 If

E
1

(1− λ)3
<∞ (4.15)

where λ = max(|λ1|, |λ2|) and λ1, λ2 are the roots of the characteristic equa-

tion then (4.8) is satisfied.
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Sometimes it is easier to check this condition instead of (4.8).

Proof:∣∣∣∣E 1− a2

(1 + a2)((1− a2)2 − a2
1)

∣∣∣∣ =

∣∣∣∣E 1 + λ1λ2

(1− λ2
1)(1− λ2

2)(1− λ1λ2)

∣∣∣∣
≤ E

∣∣∣∣ 1 + λ1λ2

(1− λ2
1)(1− λ2

2)(1− λ1λ2)

∣∣∣∣
≤ C · E 1

(1− |λ1|)(1− |λ2|)(1− |λ1λ2|)

≤ C · E 1

(1− λ)3

with some constant C.

2

Theorem 4.3.2 If (4.1)–(4.8) are satisfied and

E
1

(1− λ)5
<∞ (4.16)

where λ = max(|λ1|, |λ2|) and λ1, λ2 are the roots of the characteristic equa-

tion then

T̃ (1)
n

p→ ϕ0ϕ1 − ϕ1ϕ2

ϕ2
0 − ϕ2

1

,

T̃ (2)
n

p→ ϕ0ϕ2 − ϕ2
1

ϕ2
0 − ϕ2

1

as n →∞.

Proof: By the Gaussianity and the assumptions of the theorem we have

(see. Shirayev (1996), p.293)

|Eξtξt−1ξsξs−1 − Eξtξt−1Eξsξs−1| = |EξtξsEξt−1ξs−1 + Eξtξs−1Eξsξt−1| ≤
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≤ C ·

[
E

(
1

(λ1 − λ2)2

[
λ
|t−s|
1

1− λ2
1

+
λ
|t−s|
2

1− λ2
2

− λ
|t−s|
1 + λ

|t−s|
2

1− λ1λ2

])]2

≤ C ·

∣∣∣∣∣E
(

1

(λ1 − λ2)2

[
λ
|t−s|
1

1− λ2
1

+
λ
|t−s|
2

1− λ2
2

− λ
|t−s|
1 + λ

|t−s|
2

1− λ1λ2

])∣∣∣∣∣
with some constant C. We will show that

1

n

n∑
t=1

ξtξt−1
p→ ϕ1

for n→∞. Now we use the Chebyshev inequality to get

P

(∣∣∣∣∣ 1n
n∑

t=1

ξtξt−1 − Eξ0ξ1

∣∣∣∣∣ > δ

)
≤ 1

n2δ2
· V ar

(
n∑

t=1

ξtξt−1

)
We have to show that

V ar

(
n∑

t=1

ξtξt−1

)
≤ C · n2−α

with some α > 0 and some constant C. We have

V ar

(
n∑

t=1

ξtξt−1

)
=

n∑
t=1

n∑
s=1

(Eξtξt−1ξsξs−1 − Eξtξt−1Eξsξs−1) ≤

≤ C ·
n∑

s,t=1

∣∣∣∣∣E
(

1

(λ1 − λ2)2

[
λ
|t−s|
1

1− λ2
1

+
λ
|t−s|
2

1− λ2
2

− λ
|t−s|
1 + λ

|t−s|
2

1− λ1λ2

])∣∣∣∣∣
≤ C · n ·

∞∑
t=1

∣∣∣∣E ( 1

(λ1 − λ2)2

[
λt

1

1− λ2
1

+
λt

2

1− λ2
2

− λt
1 + λt

2

1− λ1λ2

])∣∣∣∣
= C · n ·

∞∑
t=1

∣∣∣∣∣E
(

1

(λ1 − λ2)2

∞∑
i=1

(
λt+2i

1 + λt+2i
2 − λt

1(λ1λ2)
i − λt

2(λ1λ2)
i
))∣∣∣∣∣

= C · n ·
∞∑

t=1

∣∣∣∣∣E
(

1

(λ1 − λ2)2

∞∑
i=1

(
λt+i

1 [λi
1 − λi

2] + λt+i
2 [λi

2 − λi
1]
))∣∣∣∣∣

= C · n ·
∞∑

t=1

∣∣∣∣∣E
(

1

(λ1 − λ2)2

∞∑
i=1

(
[λt+i

1 − λt+i
2 ][λi

1 − λi
2]
))∣∣∣∣∣
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≤ C · n ·
∞∑

t=1

∣∣∣∣∣E
(

1

(λ1 − λ2)2
· (λ1 − λ2)

2

∞∑
i=1

(
[t+ i] · |λ|t+i · i · |λ|i

))∣∣∣∣∣
≤ C · n · E

(
∞∑

t=1

∞∑
i=1

(
[t+ i] · |λ|t+i · i · |λ|i

))

≤ C · n · E

(
∞∑

t=1

t · |λ|t
(

∞∑
i=1

i · |λ|i +
∞∑
i=1

i2 · |λ|i
))

≤ C · n · E
(

1

(1− |λ|)2

(
1

(1− |λ|)2
+

1

(1− |λ|)3

))

≤ C · n · E 1

(1− |λ|)5

≤ C · n

Analogously we get that

1

n

n∑
t=0

ξ2
t

p→ ϕ0

1

n

n∑
t=2

ξtξt−2
p→ ϕ2

and therefore
n∑

t=2

ξtξt−1

n∑
t=1

ξ2
t −

n∑
t=2

ξtξt−1

n∑
t=3

ξtξt−2(
n∑

t=1

ξ2
t

)2

−

(
n∑

t=2

ξtξt−1

)2

p→ ϕ0ϕ1 − ϕ1ϕ2

ϕ2
0 − ϕ2

1

n∑
t=3

ξtξt−2

n∑
t=1

ξ2
t −

(
n∑

t=2

ξtξt−1

)2

(
n∑

t=1

ξ2
t

)2

−

(
n∑

t=2

ξtξt−1

)2

p→ ϕ0ϕ2 − ϕ2
1

ϕ2
0 − ϕ2

1

.

2
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From Theorem 4.3.1 and 4.3.2 it follows immediately that T
(1)
n,N and T

(2)
n,N

cannot be used as estimators for Ea1 and Ea2 because usually the limits of

T
(1)
n,N and T

(2)
n,N , namely ϕ0ϕ1−ϕ1ϕ2

ϕ2
0−ϕ2

1
and

ϕ0ϕ2−ϕ2
1

ϕ2
0−ϕ2

1
are not equal to Ea1 and Ea2.

This means that only in very special cases, the least square estimators will

converge to the right limit, for example if the coefficients a1 and a2 are non-

random constants.

4.4 Asymptotic Results for some Useful Statis-

tics

In this section we introduce some statistics which are used in the next chap-

ter to estimate distribution parameters. We give asymptotic results for these

statistics and present a central limit theorem for the important case when the

number of aggregated terms is much larger than the number of observations.

We consider the following statistics:

S
(k)
n,N =

N

n− k

n∑
t=k

Y
(N)
t Y

(N)
t−k .

Remark 4.4.1 From the proof of Theorem 4.3.1 it follows that S
(k)
n,N con-

verges in distribution to S̃
(k)
n for N →∞, where

S̃(k)
n =

1

n− k

n∑
t=k

ξtξt−k

and the ξ‘s have the same properties as in Theorem 4.3.1, provided that all

conditions of the theorem are satisfied.

Remark 4.4.2 From the proof of Theorem 4.3.2 it follows that the quantity

S̃
(k)
n = 1

n−k

∑n
t=k ξtξt−k converges in probability to Eξtξt−k = ϕk for n → ∞,

provided that all conditions of the theorem are satisfied.
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We are interested in the case when the number of aggregated terms is much

larger than the number of observations since this is the case that occurs in

practice. The following theorem gives a central limit theorem for the given

statistics which can be used for the estimation of distribution parameters

and in addition for statistical tests.

Theorem 4.4.1 If (4.1)–(4.8) and (4.16) are satisfied then

√
n− k

(
S

(k)
n,N − ϕk

)
d→ N(0, σ2

k)

for some σ2
k ≥ 0, for all k ≥ 0, k ∈ Z, if n → ∞, N → ∞, N = f(n) and

the function f(x) →∞ sufficiently rapidly.

To proof this theorem we need the following properties.

Lemma 4.4.1 If (4.1)–(4.8) and (4.16) are satisfied then

√
n− k

(
S̃(k)

n − ϕk

)
d→ N(0, σ2

k)

for some σ2
k ≥ 0, for all k ≥ 0, k ∈ Z, if n→∞.

Proof of Lemma 4.4.1:

This Lemma follows as an application of (Breuer and Major(1983), Theorem

1). We only have to show that

∞∑
t=1

∣∣∣∣E ( 1

(λ1 − λ2)2

[
λt

1

1− λ2
1

+
λt

2

1− λ2
2

− λt
1 + λt

2

1− λ1λ2

])∣∣∣∣ <∞

what we have already done in the proof of Theorem 4.3.2.

2

Lemma 4.4.2 If (4.1)–(4.8) are satisfied then

√
N(Y

(N)
t1 , ..., Y

(N)
tk

)
d→ (ξt1 , ..., ξtk)

for any fixed k, t1 < t2 < ... < tk, as N →∞.
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Note that Lemma 4.8 is a result of (4.13).

Proof of Theorem 4.4.1:

By L(·, ·) we denote the Lévy distance given by

L(A,B) = inf [ε > 0 : F (x) ≤ G(x+ ε) + ε and G(x) ≤ F (x+ ε) + ε, ∀ x]

where F and G are the distribution functions of the random variables A and

B.

We will use the following property of the Lévy distance

An
d→ A ⇔ L(An, A) → 0

where {An}n≥0 is a sequence of random variables.

Fix k ∈ N. From Lemma 4.4.1 we know that

√
n− k

(
S̃(k)

n − ϕk

)
d→ N(0, σ2

k)

which shows that

L
(√

n− k
(
S̃(k)

n − ϕk

)
,N(0, σ2

k)
)
≤ εn (4.17)

for some sequence εn → 0. Put

an,N = L
(√

n− k
(
S

(k)
n,N − ϕk

)
,N(0, σ2

k)
)
.

From Lemma 4.4.2 we know that for any fixed n ∈ N

an,N → L
(√

n− k
(
S̃(k)

n − ϕk

)
,N(0, σ2

k)
)

and thus by (4.17) there exists a number N0 = f(n) such that

an,N ≤ 2εn for N ≥ N0
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or equivalently

L
(√

n− k
(
S

(k)
n,N − ϕk

)
,N(0, σ2

k)
)
≤ 2εn

for N ≥ f(n). This proves Theorem 4.4.1.

2

Theorem 4.4.1 gives a central limit theorem for the important case that the

number of aggregated terms is much larger than the number of observations.

Horváth and Leipus (2005) proposed a consistent estimator for Ea in the

AR(1) case. They gave a central limit theorem for the case that the number

of observations is much larger than the number of aggregated terms. Usu-

ally the opposite case appears. Therefore, for practical use Theorem 4.4.1 is

the important direction. We want to point out that as a consequence of the

proof of Theorem 4.4.1 similar results will hold for the AR(1) case. Moreover

the idea of Theorem 4.4.1 gives also a similar central limit theorem for the

aggregation of AR(1) models when the number of aggregated terms is much

larger than the number of observations and can be used for the estimator

proposed by Horváth and Leipus (2005).

In the upcoming sections we will give an idea how we can use the statis-

tics S
(k)
n,N to estimate parameters.

4.5 Differences of Covariances

For constructing estimators, it will be useful to look at the differences of the

covariances ϕi and ratios of them. In the following we will see that in many

cases estimators of the coefficients or the parameters of the assumed distri-

bution of the coefficients a1 and a2 can be found by using these differences.

Furthermore we want to describe the structure of covariances we will use in
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the next chapter. Remember that the covariances can either be written in

terms of the roots λ1, λ2 of the characteristic equation or in terms of the co-

efficients a1 and a2. We will use the expressions in terms of a1 and a2. If we

have an observed data set, we can estimate the ϕi´s from the data. The goal

is to estimate distribution parameters. Now we investigate the differences of

the covariances in terms of a1 and a2. We are interested in a representation

of the differences ϕi − ϕi+2 in terms of the coefficients a1 and a2. Therefore

we get

ϕ0 − ϕ2 = σ2 · E 1

1 + a2

(4.18)

ϕ1 − ϕ3 = σ2 · E a1

1 + a2

(4.19)

ϕ2 − ϕ4 = σ2 · Ea
2
1 + a2

1 + a2

(4.20)

ϕ3 − ϕ5 = σ2 · Ea
3
1 + 2a1a2

1 + a2

(4.21)

ϕ4 − ϕ6 = σ2 · Ea
4
1 + 3a2

1a2 + a2
2

1 + a2

(4.22)

ϕ5 − ϕ7 = σ2 · Ea
5
1 + 4a3

1a2 + 3a1a
2
2

1 + a2

(4.23)

ϕ6 − ϕ8 = σ2 · Ea
6
1 + 5a4

1a2 + 6a2
1a

2
2 + a3

2

1 + a2

. (4.24)
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Chapter 5

Estimators for Distribution

Parameters

For the AR(1) case Horváth and Leipus (2005) proposed an unbiased esti-

mator for the expected value of the random coefficient by using the idea of

differences of covariances. In the AR(2) case the situation is more complex

and the estimation of the random coefficients a1 and a2 by using these differ-

ences of covariances fails. But if we assume a parametric distribution for the

random coefficients, we can use the results of the previous chapter to esti-

mate these parameters. In this chapter we show how to estimate distribution

parameters of the random coefficients a1 and a2.

5.1 Ideas to Find Estimators

As mentioned in the last section, we can estimate all covariances ϕi and all

differences of them. If we assume a distribution for a1 and a2 with k unknown

parameters, it is clear from the equations at the end of the last chapter that

we can find k equations in terms of the parameters and terms we can estimate.

There exist not too many distributions which satisfy all conditions for the
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asymptotic results. If we are only interested in numerical approximations,

instead of explicitly given estimators, this can be done in more cases. Two

important examples, namely the cases with independent Beta-distributed

and Standard Two-Sided Power-distributed random coefficients are discussed

at the end of this chapter.

5.2 Estimation Method

We look at continuously distributed parametric distributions on the inter-

val
[
−1

2
, 1

2

]
with at most two parameters which satisfy all conditions for the

asymptotic result in the previous chapter. Then all moments are functions

of these parameters. We propose a method to find equations in terms of the

unknown parameters and in terms which can be estimated. Therefore we get

an equation for each unknown parameter and we can compute estimators of

the parameters. In practice this will be done numerically.

The goal is to estimate unknown parameters, denoted by α1, β1, α2, β2 and

σ2, where α1 and β1 are the parameters of the distribution of a1 and α2 and

β2 are the parameters of the distribution of a2 and σ2 is the variance of the

white noise process introduced in the previous chapter.

We can estimate ϕk for all k ∈ N. Remember that we assume that {a(i)
1 }i=1,2,...

and {a(i)
2 }i=1,2,... are independent. The estimation will be done in the follow-

ing steps

Step 1: Estimation of α1, β1:
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By using the independence of a1 and a2 we get

ϕ1 − ϕ3

ϕ0 − ϕ2

=
σ2 · E a1

1+a2

σ2 · E 1
1+a2

= Ea1 (5.1)

ϕ3 − ϕ5 = σ2 · Ea
3
1 + 2a1a2

1 + a2

(ϕ3 − ϕ5) + 2(ϕ1 − ϕ3) = σ2 ·
[
E

1

1 + a2

· Ea3
1 + 2Ea1

]
(ϕ3 − ϕ5) + 2(ϕ1 − ϕ3)

ϕ0 − ϕ2

= Ea3
1 +

2Ea1

E 1
1+a2

.

From (5.1) follows that

(ϕ3 − ϕ5) + 2(ϕ1 − ϕ3)− (ϕ0 − ϕ2) · Ea3
1

2(ϕ1 − ϕ3)
=

1

E 1
1+a2

(5.2)

ϕ0 − ϕ4

ϕ0 − ϕ2

= Ea2
1 +

1

E 1
1+a2

.

Combining the last relation with (5.2) we get

Ea2
1 =

ϕ0 − ϕ4

ϕ0 − ϕ2

− (ϕ3 − ϕ5) + 2(ϕ1 − ϕ3)− (ϕ0 − ϕ2) · Ea3
1

2(ϕ1 − ϕ3)
. (5.3)

By using (5.1), (5.3) we can get estimators for α1 and β1.

Observe that these estimates give us estimators of all Eak
1 where k ∈ N.

Step 2: Estimation of σ2: By (4.18) we get

σ2 =
ϕ0 − ϕ2

E 1
1+a2

,

and thus from (5.2) it follows that

σ2 =
ϕ0 − ϕ2

2(ϕ1 − ϕ3)

[
−ϕ5 − ϕ3 + 2ϕ1 − (ϕ0 − ϕ2) · Ea3

1

]
, (5.4)
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what gives an estimator for σ2.

Step 3: Estimation of α2, β2:

ϕ4 − ϕ6

σ2
= E

a4
1 + 3a2

1a2 + a2
2

1 + a2

= Ea4
1 · E

1

1 + a2

+ 3Ea2
1 · E

a2

1 + a2

+ E
a2

2

1 + a2

(ϕ4 − ϕ6) + 3(ϕ2 − ϕ4)

σ2
= Ea4

1 · E
1

1 + a2

+ 3Ea2
1

+ 3E
a2

1 + a2

+ E
a2

2

1 + a2

(ϕ4 − ϕ6) + 3(ϕ2 − ϕ4) + 2(ϕ0 − ϕ2)

σ2
= Ea4

1 · E
1

1 + a2

+ 3Ea2
1

+ 2 + Ea2

Now we get

Ea2 =
−ϕ6 − 2ϕ4 + ϕ2 + 2ϕ0 − Ea4

1 · (ϕ0 − ϕ2)

σ2
(5.5)

− 3Ea2
1 − 2 .

With the same method of adding and subtracting covariance differences and

ratios of them we get the following more complicated equation for Ea2
2

Ea2
2 =

−ϕ8 − 5ϕ6 − 6ϕ4 + 5ϕ2 + 7ϕ0

σ2
(5.6)

− Ea4
1 · (ϕ0 − ϕ2)− Ea6

1 · (ϕ0 − ϕ2)

σ2
− 5Ea4

1

− 12Ea2
1 − 5Ea1 − 6Ea2

1 · Ea2 .

From (5.5), (5.6) and the estimators of α1, β1 and σ2 we can also get estima-

tors for α2 and β2. Numerically this can be done easily.
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5.3 Estimators for Beta-Distributed Coeffi-

cients

In this section estimators for Beta-distributed coefficients {a(i)
1 }i=1,2,... and

{a(i)
2 }i=1,2,... are given. The main assumption is the following

{a(i)
1 }i=1,2,... and {a(i)

2 }i=1,2,... are independent. (5.7)

We assume further that {a(i)
1 }i=1,2,... and {a(i)

2 }i=1,2,... are sets of independent

identically distributed random variables with the following distributions:

a
(i)
1 ∼ Beta(α1, β1) on

[
−1

2
,
1

2

]
,

a
(i)
2 ∼ Beta(α2, β2) on

[
−1

2
,
1

2

]
.

We want to use the results of Theorem 4.3.1, Theorem 4.3.2 and Theorem

4.4.1. Therefore we have to guarantee that all conditions of the theorems are

satisfied. So we have to find conditions on the Beta-distribution so that the

theorems can be used.

Remark 5.3.1 If a1 and a2 are distributed as mentioned above we have to

guarantee that

E
1

(1− λ)5
<∞ where λ = max(|λ1|, |λ2|) . (5.8)

Let fx be the density of a Beta(α1, β1)-distributed random variable X on

[0, 1] and fy the density of a Beta(α2, β2)-distributed random variable Y on

[0, 1] where fx and fy are given by

fx(x) =
1

B(α1, β1)
xα1−1(1− x)β1−1

fy(y) =
1

B(α2, β2)
yα2−1(1− y)β2−1
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where B(·, ·) is the Beta function, 0 < x < 1 and 0 < y < 1.

To guarantee (5.8) we are interested in conditions on the distribution pa-

rameters which imply (5.8). The next proposition gives sufficient conditions

for the existence of the expected value in (5.8) based on the distribution

parameters of a1, namely α1 and β1.

Proposition 5.3.1 If a1 and a2 are distributed as mentioned above and

α1, β1 > 5, then (5.8) is satisfied.

Proof: (5.8) is equivalent to

E
2

(1− |λ1|)5
= E

 2

2−
∣∣∣a1 +

√
a2

1 + 4a2

∣∣∣
5

<∞

and

E
1

(1− |λ2|)5
= E

 1

2−
∣∣∣a1 −

√
a2

1 + 4a2

∣∣∣
5

<∞ .

Since |a1|, |a2| ≤ 1
2
,
∣∣∣a1 +

√
a2

1 + 4a2

∣∣∣ is close to 2 if and only if a1 is close to

1
2

and a2 is close to 1
2
.
∣∣∣a1 −

√
a2

1 + 4a2

∣∣∣ is close to 2 if and only if a1 is close

to −1
2

and a2 is close to 1
2
. Furthermore

E

 1

2−
∣∣∣a1 +

√
a2

1 + 4a2

∣∣∣
5

≤ C · E

 1

2−
∣∣∣a1 +

√
1
4

+ 2
∣∣∣


5

= C · E

(
1

2−
∣∣a1 + 3

2

∣∣
)5

= C · E
(

1
1
2
− a1

)5
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and

E

 1

2−
∣∣∣a1 −

√
a2

1 + 4a2

∣∣∣
5

≤ C · E

 1

2−
∣∣∣a1 −

√
1
4

+ 2
∣∣∣


5

= C · E

(
1

2−
∣∣a1 − 3

2

∣∣
)5

= C · E
(

1
1
2

+ a1

)5

.

Now we use the transformation a1 ↔ a− 1
2

where a is Beta(α1, β1)-distributed

on [0, 1] and we get that (5.8) holds if the expected values

E
1

(1− a)5
<∞

and

E
1

a5
<∞ .

exist. The function fx is integrable for any α1 > 0, β1 > 0. Now the condi-

tion α1, β1 > 5 gives the result.

2

If a random variable X is Beta(α, β)-distributed on [0, 1], we can compute

the expected value EXk for all k ∈ N in terms of α and β (see e.g. Gupta

and Nadarajah (2004), p.35-36) .

EXk =
α+ k − 1

α+ β + k − 1
· EXk−1 for k ∈ N . (5.9)

We will need expressions for Ea1, Ea2
1, Ea3

1, Ea4
1, Ea6

1, Ea2, Ea2
2 in terms of

the distribution parameters.

Since a1 = a − 1
2
, a2 = â − 1

2
where a, â are Beta-distributed on [0, 1],
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we get

Eak
1 =

∫ 0

1

(
x− 1

2

)k

fxdx

Eal
2 =

∫ 0

1

(
y − 1

2

)l

fydy .

These integrals can be easily solved by expanding the polynomial (x − 1
2
)k

and using (5.9).

Ea1 = EX − 1

2
(5.10)

Ea2
1 = EX2 − EX +

1

4
(5.11)

Ea3
1 = EX3 − 3

2
EX2 +

3

4
EX − 1

8
(5.12)

Ea4
1 = EX4 − 2EX3 +

3

2
EX2 − 1

2
EX +

1

16
(5.13)

Ea6
1 = EX6 − 3EX5 +

15

4
EX4 − 5

2
EX3 (5.14)

+
15

16
EX2 − 3

16
EX +

1

64

Ea2 = EX − 1

2
(5.15)

Ea2
2 = EX2 − EX +

1

4
(5.16)

where EXk is given by (5.9) and replacing α by α1, β by β1 in (5.10) - (5.14)

and α by α2, β by β2 in (5.15) and (5.16).

Now we have all moments we need in terms of the distribution parameters.

By using the method proposed in the previous section we get estimators for

the distribution parameters.
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5.4 Estimators for Standard Two-Sided Power-

Distributed Coefficients

In this section we give an alternative example of a distribution of the coeffi-

cients {a(i)
1 }i=1,2,... and {a(i)

2 }i=1,2,.... This shows that the method presented at

the beginning of this chapter can be used also for other parametric distribu-

tions on the interval
[
−1

2
, 1

2

]
. We assume (5.7) and further that {a(i)

1 }i=1,2,...

and {a(i)
2 }i=1,2,... are sets of independent identically distributed random vari-

ables with the following distributions:

a
(i)
1 ∼ STSP (θ1, n1) on

[
−1

2
,
1

2

]
,

a
(i)
2 ∼ STSP (θ2, n2) on

[
−1

2
,
1

2

]
.

where STSP (θ, n) is the Standard Two-Sided Power Distribution with pa-

rameters θ and n.

Again we have to show that (5.8) is satisfied. Let fx be the density of a

STSP (θ1, n1)-distributed random variable X on [0, 1] and fy the density of

a STSP (θ2, n2)-distributed random variable Y on [0, 1] where fx and fy are

given by

fx(x| θ1, n1) =


n1

(
x
θ1

)n1−1

, for 0 ≤ x ≤ θ1

n1

(
1−x
1−θ1

)n1−1

, for θ1 ≤ x ≤ 1

fy(y| θ2, n2) =


n2

(
x
θ2

)n2−1

, for 0 ≤ x ≤ θ2

n2

(
1−x
1−θ2

)n2−1

, for θ2 ≤ x ≤ 1
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where 0 < x < 1, 0 < y < 1, 0 ≤ θ1 ≤ 1, 0 ≤ θ2 ≤ 1, n1 > 0 and n2 > 0.

Proposition 5.4.1 Similarly to Proposition 5.3.1 we can show that if a1 and

a2 are distributed as mentioned above and n1 > 5, then (5.8) is satisfied.

If a random variable X is STSP (θ, n)-distributed on [0, 1], we can compute

the expected value EXk for all k ∈ N in terms of θ and n (see e.g. Kotz and

van Dorp (2004), p.73) .

EXk =
nθk+1

n+ k
−

k∑
i=0

(
k

k − i

)
n(θ − 1)i+1

n+ i
for k ∈ N . (5.17)

By using the same transformation as in the previous chapter and by using

(5.17) and (5.10) - (5.16) we can apply the proposed method to estimate the

parameters θ1, n1 and θ2, n2.
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