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Abstract

Probability theory is based on the concept of independence, but independent stochas-

tic models are unsuitable in many applications and starting with Markov’s studies

of one-step dependence models, the investigation of dependent processes began early

in the theory. Beside Markov chains, the most classical dependent structures are

martingales and stationary processes, whose intensive study started in the 1930’s and

whose structure and analytic properties are fairly well known. Still, many important

problems in modern probability theory, statistics and econometrics lead to asymptotic

problems not covered by the classical theory and the purpose of our dissertation is

to give a detailed study of the refined asymptotic and fluctuation properties of these

models. Among others, we will extend the classical fluctuation theory of martingales,

proving upper-lower class results under optimal conditions and closing the gap be-

tween the independent and martingale theory. We will also prove several asymptotic

results for ARCH type processes, a class of stationary processes playing an important

role in modern econometrics. Finally, we will extend and sharpen a number of basic

results in almost sure central limit theory, another recent, much investigated field in

probability limit theory, exhibiting unusual dependence behavior. Specifically, we will

describe the critical behavior of the ASCLT and determine the exact asymptotics of

generalized moments in the theory. The basis for our proofs will be strong approx-

imation, a method allowing one to reduce the asymptotic properties of dependent

processes to those of a ’limiting’ process, typically Brownian motion. This idea is due

to Strassen [101] [103] and has been extended to wide classes of dependent processes

by Philipp and Stout [90]. The new element in our approach is that instead of mar-

tingale approximation and Skorohod embedding used in the classical theory, we will

give a direct a.s. approximation of nonlinear functionals of the studied processes by

independent random variables, a method applying under very general conditions and

leading to optimal results.
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Introduction

Probability theory grew out of the concept of independence and its most complete

results concern sequences of independent random variables. However, independent

sequences represent only a fraction of interesting random processes in practice and

from the earliest days of probability theory, an intensive study of dependent processes

has also begun. The simplest and best understood dependent structure is the class

of Markov processes: Markovity is generally easy to verify and the linear character

of the equations describing the time development of Markov processes (given by the

Kolmogorov differential equations) enables one to give a rather complete description of

the structure and asymptotics of such processes. A similarly well understood structure

is the class of martingales, which grew out of the study of games of chance and has, like

Markov processes, widespread applications in natural sciences, economics and finance.

The martingale relation E[Xn|X1, . . . , Xn−1] = Xn−1 seems to be less informative than

Markovity, but its consequences on the structure of the process are equally strong.

Assume e.g. EX2
n < ∞ and let s2

n =
∑n

k=1 E[(Xk − Xk−1)
2|X1, . . . , Xk−1]. Then,

under s2
n → ∞ a.s. the asymptotic behavior of {Xn, n → ∞} is the same as that of

{W (s2
n), n → ∞}, where W is a Wiener process. This fact and its continuous time

analogue connect martingale behavior to Wiener processes, a connection playing a

crucial role in applications.

A third classical and widely studied class of dependent processes is the class of station-

ary sequences. Similarly to Markov processes and martingales, stationary processes

have a rather transparent structure: by a classical result of Rosenblatt [92] (verifying

a conjecture of Wiener), every strictly stationary process {Xn, n ∈ Z} admits, under

1
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mild additional conditions, the representation

Xn = f(. . . , εn−1, εn) n ∈ Z, (1)

where {εn, n ∈ Z} is an i.i.d. sequence and f : R∞ → R is a measurable function.

Simple examples are linear processes

Xn =
∞∑

k=0

ckεn−k, n ∈ Z (2)

or Volterra series

Xn =
∞∑

p=1

∞∑
i1,i2,··· ,ip=1

ci1 · · · cipεn−i1εn−i1−i2 · · · εn−i1−···−ip

appearing in the representation of nonlinear time series in econometrics. A further

important example is the class of stationary sequences satisfying the nonlinear dy-

namics

Xn = g(Xn−1, . . . , Xn−p, εn, . . . , εn−q)

typical for economical and financial phenomena. Despite the simplicity of (1), its

infinite dimensional character presents substantial difficulties, even if f is linear. The

first general results on the asymptotic properties of the process (1) were obtained

by Ibragimov [62] and Billingsley [19] and extended later by several authors. As it

turned out, such processes have two basic types. If the dependence of f(. . . , x−1, x0)

on the variables x−n, x−n−1, . . . is weak enough for large n (”short memory” case),

then (Xn) behaves like a sequence of independent random variables. If the dependence

of f(. . . , x−1, x0) on its tail variables decreases slowly (”long memory” case), (Xn) has

completely different asymptotic properties. For example, the linear process (2), where

Eε0 = 0, Eε2
0 = 1 and ck = k−α, α > 1/2, behaves like an independent sequence

for α > 1, while for α < 1 the situation is different: in this case, under suitable

moment conditions,
∑[nt]

k=1 f(Xk) converges weakly, after suitable normalization, to a

nongaussian process. (Cf. Surgailis [104], Avram and Taqqu [6]). A similar change

of behavior holds for processes with general nonlinear f , but the exact borderline

between weak and strong dependence is generally difficult to find. Typically, the
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short memory case is easier and results in the long memory case lie considerably

deeper.

The above processes are the simplest, oldest and best understood dependent struc-

tures in probability theory and there is a huge literature dealing with their properties.

Still, their asymptotic theory is much less complete than the theory of independent

random variables, and several important problems in theoretical and applied prob-

ability, statistics and econometrics lead to asymptotic problems lying outside of the

reach of classical theory. The purpose of our dissertation is to develop an asymp-

totic theory for processes of this type, providing the answer to several open problems.

In Chapter 5 we deal with the fluctuation theory of martingales. Starting with the

classical paper of Strassen [103], several authors studied refined path properties of

martingales, such as the LIL and the corresponding upper-lower class tests. Still, the

results are much less complete than the classical LIL theory for independent random

variables, developed by Feller [44] [45]. Our main result in Chapter 5, Theorem 5.1,

provides a general upper-lower class test for martingales, which not only contains and

extends most earlier results in the field, but it is essentially optimal and closes the

gap between martingale and independent results. In particular, we find an optimal

condition for the classical Kolmogorov-Erdős-Feller-Petrovski integral test for station-

ary ergodic martingale difference sequences, a long open problem in martingale LIL

theory.

In Chapters 6 and 7, we prove several asymptotic results for nonlinear time series.

Inspired by the seminal papers of Engle [39] and Bollerslev [21], ARCH and GARCH

models got to the center of attention in econometrics in the past two decades, as the

first models giving a realistic description of the volatility of financial processes. De-

spite extensive empirical statistical work in the field (see Bollerslev-Chou-Kroner [22]

for a survey of the first 10 years of the theory), we know relatively little on the refined

path and asymptotic properties of ARCH and related processes and in Chapters 6

and 7 we give a detailed asymptotic study of this model. All such models satisfy

the representation (1), but the existing theory (see e.g. Carrasco and Chen [26]) is

based on Markov methods and works only under restrictive conditions required by
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the Markovity of such processes.

A further important application of our method is almost sure central limit theory,

a new and much studied field of probability theory growing out of the almost sure

central limit theorem (Brosamler [25], Schatte [96], Lacey and Philipp [69]), a striking

a.s. version of the classical CLT involving logarithmic measure. This result reveals

a new side of the fluctuations of independent random variables and has led, in the

past two decades, to an extensive literature featuring several new and remarkable

limit theorems. Asymptotic results in this field fit into a slightly modified version

of the stationary model (1), and our methods lead to a considerable sharpening of

the theory. Among others, we will determine the critical behavior of the model and

describe completely the convergence of generalized moments in the a.s. central limit

theorem, two important open problems of the theory.

The basic method of our thesis is strong approximation, a powerful method developed

by Strassen [101] [103] for the study of sums of independent random variables and

martingales. Strassen’s method was later extended for large classes of weakly depen-

dent random variables, see e.g. Philipp and Stout [90]. The essential new element in

our approach is that, instead of martingale approximation of block sums of the con-

sidered processes, we approximate functionals of these blocks directly by independent

random variables, utilizing an idea first employed by Berkes and Horváth [15] in their

studies of GARCH models. This approach leads to considerably sharper results and

applies also for nonlinear limit theorems, opening the way for refined asymptotics of

models of the type (1) and their generalizations.

We now summarize our main results.

(A) Almost sure central limit theory

Let X1, X2, . . . be i.i.d. random variables with EX1 = 0, EX2
1 = 1 and let Sn =∑n

k=1 Xk. Then P (Sn/
√

n ≤ x) → Φ(x) for all x ∈ R, but the asymptotic fre-

quency of the integers {n : Sn/
√

n ≤ x} is not Φ(x): the dependence of the random

variables Sn/
√

n is too strong for the law of large numbers to apply for the events
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{Sn/
√

n ≤ x}. However, as Brosamler [25] and Schatte [96] proved under the exis-

tence of higher moments and Lacey and Philipp [69] without additional assumptions,

the ’logarithmic’ limit theorem

lim
N→∞

1

log N

N∑

k=1

1

k
I

{
Sk√
k
≤ x

}
= Φ(x) a.s. (3)

holds for any fixed x ∈ R. This remarkable result (called almost sure central limit

theorem) became the starting point of a new and much studied area of probability

theory dealing with ’pathwise’ versions of distributional limit theorems. As it turned

out, the a.s. convergence relation (3) not only admits substantial refinements (pre-

cise convergence rates, LIL type results, etc.) but any weak limit theorem of the

form fn(X1, . . . , Xn)
d−→ G of independent random variables has, under mild tech-

nical conditions on the functionals fn, a logarithmic a.s. version similar to (3). (See

Berkes and Csáki [9].) Relation (3) has also been extended, along with its nonlinear

analogues, for various dependent structures such as Gaussian processes, martingales,

mixing processes, etc. For a survey of the theory see Berkes [8] and Atlagh and We-

ber [4]. While in many directions essentially optimal results have been obtained, some

basic problems of the theory remain open, in fact almost untouched. Most results in

almost sure central limit theory, similarly to (3), involve logarithmic averaging and it

is natural to ask if this averaging is the only possible one, or if other weight sequences

can be used, too. Why logarithmic averages work in the theory is best seen from the

Wiener analogue of (3), i.e.

lim
N→∞

1

log N

∫ N

1

1

t
I

{
W (t)√

t
≤ x

}
dt = (2π)−1/2

∫ x

−∞
e−t2/2 dt a.s. for all x

which reduces, after the transformation t = eu, to the ergodic theorem for the

Ornstein-Uhlenbeck process e−u/2W (eu). Despite the simplicity of this argument,

the relation

lim
N→∞

1

DN

N∑

k=1

dkI

{
Sk√
k
≤ x

}
= Φ(x) a.s. (4)

where DN =
∑N

k=1 dk, actually holds for many other weight sequences (dk) as well,

as was first observed by Peligrad and Révész [86]. By standard results of general
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summation theory (cf. [27]), the larger the weight sequence (dk) is, the stronger the

a.s. limit theorem (4) becomes. Thus the strongest, optimal form of the ASCLT is

the one with the largest weights dk. This critical (dk) marks the dividing line between

weak and strong dependence of dkI{Sk/
√

k ≤ x}, just like the weights ck ∼ k−1 in (2)

mark the boundary line between weak and strong dependence of the linear process

{Xn, n ∈ Z}. In Chapter 2 of our dissertation we will determine this critical weight

sequence (dk) and corresponding normalizing sequence Dk; our result is

DN = exp (log N/(log log N)α) (5)

for some 1 ≤ α ≤ 3. The surprising feature of this result is that the averaging method

determined by (5) lies much closer to ordinary averaging defined by DN = N =

exp(log N) than to logarithmic averaging, putting almost sure central limit theory

in a new light: despite its prominent role in the theory, logarithmic averaging is of

secondary importance and much stronger results can be obtained by using summation

methods near ordinary (Cesàro) summation. The results of Chapter 2 stem from our

paper Hörmann [56].

In Chapter 3 we extend these investigations to general (nonlinear) analogues of the

a.s. central limit theorem. Our results here are less precise than for the linear CLT and

an explicit determination of the critical weight sequence (dk) remains open. However,

the surprising phenomenon observed in the case of the linear CLT remains valid in the

nonlinear case as well: the standard logarithmic averaging methods provided by the

universal ASCLT of Berkes and Csáki [9] are stronger than necessary and all results

remain valid with averaging methods much closer to the Cesàro summation method.

In fact, we will construct examples where even Cesáro summation works in a.s. limit

theorems, a most surprising consequence of our results. The material in Chapter 3 is

published in Hörmann [57].

Another basic open problem of a.s. central limit theory concerns moment behavior.

Let X1, X2, . . . be independent random variables with mean 0 and finite variances and

put Sn =
∑n

k=1 Xk, s2
n =

∑n
k=1 EX2

k . By a slight variant of the ASCLT (3) (implicit
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in Lacey and Philipp [69]), we have

lim
N→∞

1

log N

N∑

k=1

1

k
f

(
Sk

sk

)
=

1√
2π

∫ ∞

−∞
f(x)e−x2/2 dx a.s. (6)

for any bounded continuous function f on R. The validity of (6) for unbounded f is

of major interest in the theory: for f(x) = xp this expresses convergence of moments

in (3) and for this reason, the left hand side of (6) is called a generalized moment.

A complete solution in the i.i.d. case was given by Ibragimov and Lifshits [63], who

proved that in this case relation (6) holds if the integral on the right hand side is finite

and the integrand is nonincreasing for |x| → ∞; this monotonicity condition cannot be

dropped. This result lies much deeper than the ordinary ASCLT (3); its proof depends

on delicate fluctuation properties of i.i.d. random variables. The argument fails for

general independent sequences (Xn) and generalized moment behavior in a.s. central

limit theory remains open. In Chapter 4 of our dissertation we give a complete solution

of this problem in the case of bounded r.v.’s Xn, revealing a striking connection

between the ASCLT and LIL. In fact, we will show that a sufficient criterion for the

validity of (6) for an independent sequence (Xn) and for all |f(x)| ≤ const · eγx2
,

γ < 1/2 is

|Xn| = o(sn/(log log sn)1/2). (7)

Moreover, we show that this result is sharp, in the sense that replacing o by O in

(7), the so obtained condition will not imply the ASCLT (6). Further, a sufficient

condition for (6) to hold for all f(x) = ex2/2ϕ(x) with ϕ ∈ L1(R) and ϕ uniformly

continuous is

|Xn| = o(sn/(log log sn)3/2). (8)

Conditions (7) and (8) play a prominent role in fluctuation theory: (7) is Kol-

mogorov’s classical (and optimal) criterion for the law of the iterated logarithm

and (8) is a precise criterion for the upper-lower class refinement of the LIL due

to Feller [44]. This shows the surprising fact that the validity of relation (6) is ba-

sically equivalent to the law of the iterated logarithm for (Xn), revealing a new side

of almost sure central limit theory. The results of Chapter 4 stem from Berkes and

Hörmann [12].
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(B) Nonlinear time series.

Asymptotic properties of financial time series (asset returns, exchange rates, inflation

data, etc.) have been studied intensively in the econometric literature in the past

decades and several models for such processes have been proposed. A characteristic

property of many financial processes {xt} is conditional heteroscedasticity, i.e. the

fact that the conditional variance σ2
t = Var[xt|x0, . . . , xt−1] changes with the time t.

The old classical models such as geometric Brownian motion (underlying, e.g., the

Black-Scholes formula) and ARMA processes have constant volatility and thus they

are, in many respects, unrealistic. The first suitable model, the ARCH (autoregressive

conditional heteroscedastic) process defined by

xt = σtεt, σ2
t = ω +

p∑
j=1

αjx
2
t−j

was introduced by Engle [39] and became an instant success in the theory. In sub-

sequent years several extensions and refinements of this model, taking into account

various special properties of financial processes, were introduced and studied. The

latest and most general of these models, the so called augmented GARCH process

was introduced by Duan [37]; this model describes most of the characteristic features

(asymmetry, threshold behavior) of volatilities very precisely. While considerable sta-

tistical work on these processes has been done, many basic structural and asymptotic

properties of the augmented GARCH model remained unexplored. When stationary,

such processes have a representation (1) and under restrictive conditions on the i.i.d.

sequence {εt}, Markov methods lead to important information on {xt} (Carrasco

and Chen [26]). However, the path and asymptotic properties of such sequences re-

main unknown even in the simplest case of binomial εt. In Chapters 6 and 7 we

prove several asymptotic results for augmented GARCH sequences under essentially

optimal conditions. For example, we obtain an a.s. invariance principle for the em-

pirical process of augmented GARCH sequences under assuming E(log |ε0|)γ < ∞ for

some γ > 0, a condition only slightly stronger than the condition for the stationarity

of {xt}. Further, we give necessary and sufficient conditions for the validity of the

functional CLT for such processes and deduce Berry-Esseen bounds in the CLT. Our
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results have important consequences for the statistics of such processes, extending the

applicability of Dickey-Fuller and CUSUM type procedures for detecting unit roots

and change of parameters.

Our results were published in the papers Hörmann [59], Hörmann [55], Berkes, Hörmann

and Horváth [13].

(C) Fluctuation theory of martingales

Let X1, X2, . . . be independent r.v.’s with mean 0 and finite variances and let s2
n =∑n

k=1 EX2
k . Let {S(t), t ≥ 0} denote the function which is linear in the intervals

[s2
k, s

2
k+1] and S(s2

k) = X1 + · · · + Xk (k = 0, 1, . . .). By Kolmogorov’s classical LIL,

under (7) we have

lim sup
t→∞

S(t)

(2t log log t)1/2
= 1 a.s. (9)

A much more refined result was proved by Feller [44] who showed that if (8) holds

then for any positive nondecreasing function ϕ(t), t > 0, we have

P
{

S(t) ≤
√

tϕ(t) eventually
}

= 1 or 0 (10)

according as ∫ ∞

1

ϕ(t)

t
exp(−ϕ2(t)/2) dt < ∞ or = ∞. (11)

As noted earlier, the boundedness conditions (7) and (8) in the above results are

sharp. If the Xn are i.i.d., then the LIL (9) holds provided EX1 = 0, EX2
1 = 1

(Hartman and Wintner [54]), but the situation with the integral test (10)–(11) is

different. As Feller [45] showed, for an i.i.d. sequence (Xn) the test (10)–(11) holds

iff EX1 = 0, EX2
1 = 1 and

EX2
1I {|X1| ≥ t} = O

(
(log log t)−1

)
(t →∞). (12)

In particular, this is the case if

EX2
1 (log log |X1|) < ∞. (13)

In terms of moment conditions, the last condition is also best possible.
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Feller’s results lie very deep and the proofs make an essential use of the independence

of (Xn). Using an almost sure invariance principle, Strassen [103] was the first to

prove upper-lower class results for martingales. Specifically, he proved that if (Xn) is

a martingale difference sequence with finite variances and

s2
n =

n∑

k=1

E[X2
k |X1, . . . , Xk−1] →∞ a.s. (14)

then the test (10)–(11) holds provided

∞∑

k=1

s−2
k (log sk)

5E[X2
kI{|Xk| ≥ sk(log sk)

−5}|X1, . . . , Xk−1] < ∞ a.s.

In particular, this is the case if

|Xn| = o(sn/(log sn)5) a.s.

(Note that in the martingale case s2
n is defined differently than in the case of inde-

pendent r.v.’s: it means the sum in (14), the ”clock” of the process.) Strassen’s con-

ditions are far from optimal and his results were improved gradually by Jain, Jogdeo

and Stout [65], Philipp and Stout [91] and Einmahl and Mason [38]. Specifically,

Einmahl and Mason proved that the test (10)–(11) holds under Feller’s condition (8),

which is therefore an optimal condition. Much less is known for unbounded martin-

gale difference sequences. Various criteria are given in Jain, Jogdeo and Stout [65]

and Philipp and Stout [91], but they are substantially more restrictive than Feller’s

classical conditions in the independent case. In Chapter 5 of our dissertation we will

give a set of sufficient conditions for (10)–(11) which not only improves earlier results

in the field, but it is optimal. In particular, our criteria imply that in the stationary

ergodic case Feller’s condition (13) suffices for the test (10)–(11), establishing a long

open conjecture for martingales. As we will show in a subsequent paper, our results

lead to optimal upper-lower class results for weighted i.i.d. sequences as well.



Chapter 1

Some classical results of fluctuation
theory

For the convenience of the reader we shall review a number of important limit the-

orems for partial sums of independent random variables. Some of them have been

already mentioned in the introduction and the purpose of the present chapter is to

give a compact overview.

1.1 The law of the iterated logarithm and its re-

finements

Let X1, X2, . . . be independent random variables and Sn = X1 + · · ·+ Xn. If the Xk

are i.i.d. with zero expectation, we get by the law of large numbers that n−1Sn → 0.

The last relation is far from optimal if we assume the existence of higher moments. If

E|X1|p < ∞ with p ∈ (0, 2), it follows from the Marcinkiewicz-Zygmund law of large

numbers (cf. [29, p. 122]), that n−1/pSn → 0 (provided EX1 = 0 for p ≥ 1). The law

of the iterated logarithm (LIL) gives the precise speed of growth of the partial sums

process (Sn).

Theorem A1. (Hartman and Wintner [54]). Assume that (Xk) is an i.i.d. sequence

11
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with EX1 = 0 and EX2
1 = 1. Then

lim sup
n→∞

(2n log log n)−1/2 Sn = 1 a.s.

Conversely (Strassen [102]), if EX2
1 = ∞ then lim sup (2n log log n)−1/2 Sn = ∞

a.s.

Assume now that Xk are not necessarily identically distributed and set s2
n = Var Sn,

where Sn = X1 + · · · + Xn. The following theorem for bounded random variables is

due to Kolmogorov.

Theorem A2. (Kolmogorov’s law of the iterated logarithm [67]). Let (Xk) be a

sequence of independent random variables with zero mean and finite variances such

that s2
n →∞. If we assume that |Xk| ≤ Mk a.s. and that

Mk = o(sk/(log log s2
k)

1/2), (1.1)

then

lim sup
n

(2s2
n log log s2

n)−1/2

n∑

k=1

Xk = 1 a.s. (1.2)

Conversely (Marzinkiewicz and Zygmund [79]), the LIL may fail if o in (1.1) is

replaced by O.

Note that the LIL is equivalent to

P (Sn > sn(α log log sn)1/2 i.o.) =

{
0 if α > 2;

1 if α < 2.

Using a terminology introduced by P. Lévy, a function ϕ(t) belongs to the upper

class U if Sn > snϕ(sn) occurs only for finitely many n with probability one and

it belongs to the lower class L if Sn > snϕ(sn) occurs for infinitely many n a.s. By

the 0-1 law, every function ϕ belongs to the upper or lower class. By the LIL (1.2),

φα(t) = (α log log t)1/2 ∈ U if α > 2 and φα ∈ L if α < 2. Whether φ2 belongs to

U or L is not determined by (1.2) and thus an upper-lower class test is a refinement

of the LIL. In case of Rademacher r.v.’s a precise characterization of the upper and
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lower classes has been given by Erdős [41] in form of an integral test. He showed that

a non-decreasing function ϕ belongs U (resp. L) iff

I(ϕ) =

∫ ∞

1

ϕ(t)

t
exp(−ϕ2(t)/2) dt < ∞ (= ∞).

This famous criterion is called the Kolmogorov-Erdős-Feller-Petrovsky (KEFP) test.

The following classical results are due to W. Feller.

Theorem A3. (Feller [45]). Let (Xk) be an i.i.d. sequence with EX1 = 0 and

EX2
1 = 1. Then the KEFP integral test holds provided

EX2
1I {|X1| ≥ t} = O

(
(log log t)−1

)
(t →∞).

The statement becomes false if EX1 = 0 and EX2
1 = 1 and

(log log t) EX2
1I {|X1| ≥ t} → ∞.

Theorem A4. (Feller [44]). Let (Xk) be a sequence of independent r.v.’s with zero

mean and finite variances, such that sn →∞ and

|Xk| ≤ Knsn/(log log s2
n)3/2 with Kn = O(1). (1.3)

Then the KEFP test holds. Condition (1.3) is sharp in the sense that if Kn → ∞
then in general the KEFP test is no longer true.

1.2 Weak invariance principles

Erdős and Kac [42] developed a new method to study the distributional behavior of

the process {Sn, n ≥ 1}, where Sn = X1 + · · ·+ Xn is a sum of independent r.v’s. In

order to obtain the asymptotics of certain functionals of the path {Sn, n ≥ 1} (like

max{Sk : 1 ≤ k ≤ n} or
∑n

k=1 S2
k), they used an invariance principle. They first

derived the desired limit relations for a special choice of the underlying process (Xk)

and showed afterwards that this limit does not depend on the law of Xk, i.e. it is

invariant under changing the law of Xk.
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Donsker [36] gave a more general form of the Erdős-Kac invariance principle. To

state his theorem, we need some notations and we recall the basic definition of weak

convergence in a metric space. We denote by (Ω,A, P ) the probability space on which

the process (Xn) is defined. The space of continuous functions on the unit interval

equipped with the uniform metric will be denoted by C[0, 1]. If C denotes the Borel

σ-algebra on C[0, 1], then the functions Wn : Ω → C[0, 1] defined by

Wn(t) :=
1√
n

(
S[nt] + (nt− [nt])X[nt]+1

)
, (1.4)

are (A, C) measurable, i.e. they are random elements in C. Convergence in distri-

bution of Wn is characterized via the weak convergence of the induced probability

measures P ◦ W−1
n . We write Wn

d−→ W . Remember that weak convergence of a

sequence of probability measures (Qn) on the Borel sets S of some metric space S is

defined as ∫

S

f dQn →
∫

S

f dQ (n →∞),

for all bounded and continuous functions f .

Theorem A5. (Donsker’s invariance principle [36]). Let X1, X2, . . . be i.i.d. random

variables with EX1 = 0 and EX2
1 = 1 and let Sn = X1 + · · · + Xn. Define Wn(t) as

in (1.4). Then we have

Wn
d−→ W, (1.5)

where W = {W (t), t ∈ [0, 1]} is a standard Brownian motion process.

Relation (1.5) is also called functional central limit theorem (FCLT). For the proof

of Theorem A5 and for a detailed discussion on the weak convergence of random

elements in metric spaces we refer to Billingsley [19].

The assumption of the identical distribution of the Xn in Theorem A5 can be easily

dropped. Let (Xn) be a sequence of r.v.’s with EXk = 0 and EX2
k =: σ2

k < ∞. Set

Sn = X1 + · · ·+ Xn and s2
n = ES2

n. Define, with a natural modification of (1.4),

Wn(t) =
1

sn

(S[nt] + (nt− [nt])X[nt]+1).

Then we have
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Threorem A6. (Prohorov). Assume that X1, X2, . . . are independent random vari-

ables with zero mean and finite variances. If

lim
n→∞

1

s2
n

n∑

k=1

∫

{|Xk|>εsk}
X2

k dP = 0, (1.6)

then Wn
d−→ W .

Condition (1.6) is the classical Lindeberg condition. It is satisfied e.g. if E|Xk|2+δ < ∞
(k = 1, 2, . . .) for some δ > 0 and

1

s2+δ
n

n∑

k=1

E|Xk|2+δ → 0,

i.e. under Ljapunov’s condition.

Note that a sequence of random elements (Rn) on some metric space M converges in

distribution to some random element R if and only if h(Rn)
d−→ h(R) for every real

valued and continuous function h on M (cf. [47, Theorem 8.2.3]). Since the function

π1 : C[0, 1] → R, x 7→ x(1) is continuous, we have under the conditions of Theorems

A5–A6, π1(Wn) = Sn/sn
d−→ π1(W ) = W (1), i.e. the central limit theorem holds.

Sometimes it is more convenient to consider

W ′
n(t) := S[nt]/sn

instead of Wn(t). In this case W ′
n is an element of D[0, 1], the space of right-continuous

functions on [0, 1] which have a left-hand limit and which is equipped with the Sko-

rokhod metric. Under the conditions of Theorems A5–A6 we have W ′
n

d−→ W . Espe-

cially for the investigation of empirical distribution functions, it is more convenient

to consider the space D[0, 1] which allows jumps.

Theorem A7. (Invariance principle for the empirical process). Let U1, U2, . . . be i.i.d.

uniformly distributed r.v.’s on (0, 1) and consider the empirical distribution functions

Rn(s) = n−1/2

n∑

k=1

(I{Uk ≤ s} − s).

Then (Rn) is a sequence of random elements in D[0, 1] and Rn
d−→ B, where {B(s), 0 ≤

s ≤ 1} is a Brownian Bridge (B(t) = W (t)− tW (1)).
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For the proof see e.g. [47, p. 386].

1.3 Strong invariance principles

A completely different approach to the study of the fluctuations of independent ran-

dom variables was developed by Strassen [101]. His idea was to redefine the partial

sum process {Sk, k ≥ 0} on a new probability space together with a Wiener process

{W (t), t ≥ 0}, such that

|Sn −W (n)| = o(g(n)) a.s. (n →∞) (1.7)

for a suitable g(n), depending on the moment behavior of the underlying sequence

(Xn). Specifically, he proved the following theorem:

Theorem A8. (Strassen’s invariance principle [101]). Let X1, X2, . . . be i.i.d. ran-

dom variables with EX1 = 0, EX2
1 = 1. Then we can construct an i.i.d. sequence

X̃1, X̃2, . . . with X̃1
d
= X1 on a new probability space together with a Wiener process

{W (t), t ≥ 0} such that

|S̃n −W (n)| = o(
√

n log log n) a.s., (1.8)

where S̃n = X̃1 + · · ·+ X̃n.

The basic tool Strassen used to prove Theorem A8 is Skorokhod embedding. By a

remarkable result of Skorokhod, under the assumptions of Theorem A8 there exists,

on a suitable probability space, a Wiener process {W (t), t ≥ 0} and a sequence

of stopping times T0 = 0, T1, T2, . . . such that ETn = n, Tn − Tn−1 are i.i.d. and

{W (Tn), n ≥ 1} d
= {Sn, n ≥ 1}. Thus setting S̃n = W (Tn) and observing that by the

law of large numbers Tn ∼ n a.s., S̃n will be close, in some sense, to W (n). It is

important to note that Theorem A8 does not contain Donsker’s invariance principle,

due to the log log factor in (1.8). However, if we could show that

|S̃n −W (n)| = o(
√

n) a.s. (1.9)

then Donsker’s theorem would follow. Assuming only the existence of finite second

moments, Major [75] showed that the rate o(
√

n log log n) in (1.7) cannot be improved.
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A better rate in (1.8) can be obtained if we assume more than the existence of finite

second moments. Profound results in this direction were proved by Komlós, Major

and Tusnády. In particular, Major [76] proved that under E|X1|p < +∞, p > 2 the

approximation (1.7) holds with g(n) = n1/p. On the other hand Breiman [24] showed

that this rate is best possible. We refer to Csörgő and Révész [31] for an elaborate

treatment of further strong approximation results for sums of i.i.d. random variables.

Theorem A9. (Philipp and Stout [91]). Let (Xk) be a sequence of independent,

bounded random variables with zero mean. Put Sk = X1 + · · ·+ Xk, s2
k = Var Sk and

define the function {S(t), t ≥ 0} by

S(t) = Sk if s2
k ≤ t < s2

k+1 (k = 0, 1, . . .).

Further let f be a non-increasing differentiable function such that for all x ≥ x0

1/log x ≤ f(x) ≤ 10−3

f(x)x(log log x)−1/2 ↗, g(x) := log x/f(x) ↗∞ with xg′(x) bounded.

If we assume that

|Xn| ≤ f(sn)sn(log log sn)−1/2,

then we can redefine the sequence X1, X2, . . . on a new probability space together with

a Wiener process {W (t), t ≥ 0} such that

|S(t)−W (t)| ≤ 103(f(t)t log log t)1/2 for all t ≥ t0.

In contrast to Donsker’s invariance principle providing information on the distribu-

tional behavior of the process {Sk, k ≥ 0}, Strassen’s invariance principle can be used

to derive strong limit theorems for {Sk, k ≥ 0} as well. For example, it is relatively

easy to prove the LIL

lim sup
n→∞

1√
2n log log n

W (n) = 1 a.s.

for the Wiener process. Using the last relation and Theorem A8, the Hartman-

Wintner LIL follows immediately. Furthermore, by Theorem A9, Kolmogorov’s

condition (1.1) implies an error term o((t log log t)1/2) in the Wiener approximation.
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This implies immediately Theorem A2. Actually, even the more refined KEFP integral

test of the preceding section can be deduced directly from Wiener fluctuation theory

using strong approximation results. For example, it is well known that

|S(t)−W (t)| ≤ Kt1/2(log log t)−1/2 a.s. (t →∞)

for some constant K implies that the KEFP integral test holds for the sequence Sn.

Later on we shall need the following result due to Sakhanenko, which is a partial

improvement of Theorem A9. In view of the previous remarks, it implies that the

KEFP integral test holds for bounded sequences satisfying (1.10) below.

Theorem A10. (Sakhanenko [95]). Assume that X1, X2, . . . satisfy the conditions of

Theorem A9 and

|Xn| ≤ εnsn(log log sn)−3/2 (1.10)

with some real numbers εn → 0. Then the conclusion of Theorem A9 holds with an

error term o(t1/2(log log t)−1/2).



Chapter 2

Critical behavior in almost sure
central limit theory

2.1 Introduction and results

Let X1, X2, . . . be i.i.d. random variables with EX1 = 0, EX2
1 = 1 and let Sk =

X1+ · · ·+Xk. The simplest version of the almost sure central limit theorem (ASCLT)

states that

lim
N→∞

1

log N

N∑

k=1

1

k
I

{
Sk√
k
≤ x

}
= (2π)−1/2

∫ x

−∞
e−t2/2 dt a.s. (2.1)

for every fixed x ∈ R. This result was proved by Brosamler [25] and Schatte [96] under

some additional moment conditions and by Fisher [46] and Lacey and Philipp [69]

assuming only finite variances. (Actually, (2.1) was known to Lévy [71, p. 270] but

he did not specify conditions and gave no proof.) In recent years, many authors

investigated limit theorems of this type and several variants and extensions of (2.1)

have been obtained. We refer to Atlagh and Weber [4] and Berkes [8] for surveys of

the field.

A characteristic feature of the theory is the use of logarithmic averages in (2.1), and

from the arc sine law it follows that with ordinary averages relation (2.1) fails even

for x = 0. Why logarithmic averages work here is best seen from the Wiener analogue

19
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of (2.1), i.e.

lim
N→∞

1

log N

∫ N

1

1

t
I

{
W (t)√

t
≤ x

}
dt = (2π)−1/2

∫ x

−∞
e−t2/2 dt a.s. for all x.

After the transformation t = eu this reduces to the ergodic theorem for the Ornstein-

Uhlenbeck process e−u/2W (eu). Via a strong approximation argument, this also

proves the a.s. central limit theorem (2.1) under moment conditions only slightly

stronger than EX2
1 < ∞. Despite the simplicity of this argument, it is important to

note that logarithmic summation is not the only possible summation that leads to

a.s. convergence to Φ(x) in (2.1). Peligrad and Révész [86] showed that

lim
N→∞

1

DN

N∑

k=1

dkI

{
Sk√
k
≤ x

}
= Φ(x) a.s., (2.2)

holds if

dk =
(log k)α

k
, Dn =

n∑

k=1

dk (α > −1) (2.3)

and Berkes and Csáki [9] showed that (2.2) holds even if

dk =
exp((log k)α)

k
(0 ≤ α < 1/2). (2.4)

For summation methods in a.s. limit theory which are different from log-summation

we also refer to Becker-Kern [7] and Weber [109]. In Hörmann [60] we proved that

the summation defined in (2.4) works for any α ∈ [0, 1). In [9] it is also observed

that (2.2) is valid for any dk ≤ 1/k with
∑

dk = ∞. Thus the weight sequence

dk = 1/k plays no special role in (2.2); it is one in a large class of possible weight

sequences, and several smaller and larger sequences work equally well. To understand

this phenomenon better, let us recall some results from classical summability theory.

Given a positive sequence D = (dk) with Dn =
∑n

k=1 dk →∞, we say that a sequence

(xn) is D-summable to x if

lim
n→∞

D−1
n

n∑

k=1

dkxk = x.

By a result of Hardy (see [27, p. 35]), if D and D∗ are summation procedures with

D∗
n = O(Dn), then under minor technical assumptions, the summation D∗ is stronger
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than D, i.e. if a sequence (xn) is D-summable to x, then it is also D∗-summable to

x. Moreover, by a result of Zygmund (see [27, p. 35]) if Dα
n ≤ D∗

n ≤ Dβ
n (n ≥ n0)

for some α > 0, β > 0, then D and D∗ are equivalent, and if D∗
n = O(Dε

n) for every

ε > 0, then D∗ is strictly stronger than D. For example, logarithmic summation,

defined by dn = 1/n is stronger than ordinary (Cesàro) summation defined by dn = 1

and weaker than loglog summation defined by dn = 1/(n log n). On the other hand,

all summation methods defined by

dn = (log n)α/n, α > −1

are equivalent to logarithmic summation and all summation methods defined by

dn = nα, α > −1

are equivalent to Cesàro summation. These remarks show that relation (2.2) with

the sequence in (2.3) is, despite their formal difference, actually equivalent to the

case dk = 1/k and show also that the sequences in (2.4) define summation procedures

which are pairwise nonequivalent and also nonequivalent with logarithmic averaging.

The result of Hardy also shows that by increasing the weight sequence (dn) in (2.2),

the result becomes stronger. Thus the strongest, ”true” form of the a.s. central limit

theorem is the one with the largest weight sequence (dk). This weight sequence (dk) is

unknown and its determination will be the objective of the present chapter. We will

also study the optimal weight sequences (dk) in refined versions of (2.2), for example

in the CLT and LIL corresponding to the strong law (2.2). Our main result will show

that, under certain regularity conditions on (dk), relation (2.2) and the corresponding

CLT and LIL hold provided

dn = O

(
Dn

n(log log n)α

)
(2.5)

for α > 3 and this becomes false if α < 1. Here and in the sequel we write log log x

for log(max{log x, e}). Thus the optimal weight condition for (2.2) and the corre-

sponding CLT and LIL is relation (2.5) with some 1 ≤ α ≤ 3, whose value remains

unknown. Condition (2.5) is an asymptotic negligibility condition resembling Kol-

mogorov’s classical condition for the LIL, except the factor n in the denominator on
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the right hand side, which is due to the strong dependence of the sequence (Sn/
√

n)

and which forces the summation Dn to grow considerably slower than the norming

sequence in the classical LIL for independent r.v.’s. (Note that a similar effect of

strong dependence leads to unusual coefficients in the LIL for lacunary trigonometric

series, see Takahashi [105].) In terms of the norming factor Dn, our results show that

(2.2) and the corresponding CLT and LIL are valid if

Dn = exp(log n/(log log n)α)

for α > 3, but not if α < 1. Recalling that Dn = log n resp. Dn = n = exp(log n) cor-

respond to logarithmic, resp. Cesàro averaging, the last relation shows the surprising

fact that the critical weight sequence in the ASCLT is, in some sense, much closer to

Cesàro than to logarithmic averaging. Thus, despite the prominent role log averaging

plays in a.s. central limit theory, its true significance is secondary.

Incidentally, the methods of our paper will also lead to optimal conditions for the

”stochastic” version of the ASCLT, i.e. when we require relation (2.2) in probability.

Theorem 2.5 at the end of this section will show that the stochastic ASCLT holds if

dn = o (Dn/n) . (2.6)

Replacing o by O in (2.6), the result becomes false, as the example dn = 1 shows.

Relation (2.6) holds e.g. if

Dn = exp(log n/ω(n)) (2.7)

where ω(n) →∞, log n/ω(n) ↗∞ and ω(n) satisfies mild regularity conditions. By

Zygmund’s theorem quoted above, the summation method defined by (2.7) is stronger

than Cesàro summation (corresponding to ω(n) = 1) and conversely, any summation

method stronger than Cesàro summation and satisfying suitable regularity conditions

has the above representation. Thus if we are interested in convergence in probability

in (2.2), the summation method can be pushed arbitrary close to Cesàro summation.

We turn now to formulating our results in detail. In order to specify regularity

conditions for the summation procedure D, recall first that for each ε > 0, the

sequence Dn = nε defines a summation equivalent to Cesàro summation, and hence
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this Dn is already too large for (2.2). Thus without losing much generality, we can

assume that Dn = O(nε) for each ε > 0. All slowly varying sequences Dn satisfy this

condition and confining our attention to this class will not put additional restrictions

on the speed of growth of Dn, since for every sequence Dn satisfying Dn = O(nε)

for all ε > 0 there exists a slowly varying D∗
n such that Dn = o(D∗

n) for n → ∞
(cf. Bingham et al. [10, Theorem 2.3.6]). Hence in searching for the largest possible

norming sequence Dn in ASCLT theory, we may assume that Dn is slowly varying.

By the theory of regular variation, Dn can be represented in the form

Dn = cn exp

(∫ n

A

ε(u)/u du

)
(n ≥ A), (2.8)

where A > 0, cn → c ∈ (0,∞), and ε(x) → 0 for x → ∞. Our final technical

assumption on Dn will require that cn = 1, ε is non-increasing, slowly varying and

obeys the condition

ε(x)/ε(x2) = O(1) (x →∞). (2.9)

These conditions are stronger than necessary and could be easily weakened, but they

will simplify our calculations considerably, and, as before, put no extra restrictions

on the speed of growth of Dn. Regarding (2.9), note that ε(x) must tend to 0 very

slowly in order that Dn → ∞. E.g., ε(x) = (log x)−(1+η), η > 0 implies already that

the exponent in (2.8) is bounded. However, this ε(x) still satisfies (2.9). For the same

reason, the assumption of slow variation of ε imposes only a regularity condition for

ε(x), but it puts no restriction on its speed of decrease.

The previously discussed technical conditions are summarized in the following

Definition. A summation method D belongs to the class W if Dn →∞ and

Dn = exp

(∫ n

A

ε(u)/u du

)
(n ≥ A), (2.10)

where ε(x) is non-increasing, slowly varying, tends to 0 for x →∞, and satisfies (2.9).

From the mean value theorem it follows that

dn ∼ Dn
ε(n)

n
(n →∞)
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(an ∼ bn means that an/bn → 1) and thus dn = L(n)/n where L is slowly varying.

We mention a few examples.

(a) DN = (log N)γ γ > 0;

(b) DN = exp((log N)β)) 0 < β < 1;

(c) DN = exp(log N/(log log N)α) α > 0.

Let L denote the class of bounded Lipschitz 1 functions on R. By a standard ob-

servation in a.s. central limit theory (see e.g. Lacey and Philipp [69]), relation (2.2)

follows if

lim
N→∞

1

DN

N∑

k=1

dkf

(
Sk√
k

)
=

∫ ∞

−∞
f(t)dΦ(t) a.s. (2.11)

for every f ∈ L. For this reason, we will work in our paper with the version of the

ASCLT of the type (2.11).

We are ready now to formulate our results. In the sequel λ(B) denotes the Lebesgue

measure of some Borel set B. Finally we allude once more to the notation log log x =

log(max{log x, e}).

Theorem 2.1. Let X1, X2, . . . be i.i.d. random variables satisfying EX1 = 0 and

EX2
1 = 1 and put Sn = X1 + · · ·+ Xn. Assume that D ∈ W, the relation

dk = O

(
Dk

k(log log k)α

)
(2.12)

holds for some α > 3 and

kdk is non-decreasing. (2.13)

Then we have for every f ∈ L or f an indicator function of a Borel set A with

λ(∂A) = 0

lim
N→∞

1

DN

N∑

k=1

dk

(
f

(
Sk√
k

)
− Ef

(
Sk√
k

))
= 0 a.s. (2.14)
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Theorem 2.2. Let X1, X2, . . . be i.i.d. random variables satisfying EX1 = 0 and

EX2
1 = 1 and put Sn = X1 + · · · + Xn. Assume that D ∈ W, (2.12) holds for some

α > 1 and

lim inf
k→∞

kdk > 0. (2.15)

Then we have for every non-constant f ∈ L

λ
−1/2
N

N∑

k=1

dk

(
f

(
Sk√
k

)
− Ef

(
Sk√
k

))
d−→ N , (2.16)

where

λN := Var

(
N∑

k=1

dkf

(
Sk√
k

))
(N ≥ 1), (2.17)

and N is a standard normal r.v.

Both relations (2.13) and (2.15) imply that dk ≥ C/k. In Theorem 2.1 this is indeed

the interesting case, since relation (2.14) is known to hold for all dk ≤ 1/k with∑
dk = ∞, see Berkes and Csáki [9]. Regarding Theorem 2.2, we will show in

Lemma 2.4 and Lemma 2.5 that if D ∈ W , then the order of magnitude of λN

is
∑N

k=1 kd 2
k . Hence (2.15) implies that λN → ∞. Without (2.15), Theorem 2.2

fails: for example, if dk = k−1(log k)−a with 1/2 < a ≤ 1 (which is in W), then

lim supN λN < ∞ and thus the sum in (2.16) remains bounded in probability.

In the case DN = log N Theorem 2.2 was proved by Berkes and Horváth [14]. More-

over, the conditions of Theorem 2.2 are satisfied in Example (a) if γ ≥ 1, in Example

(b) for all 0 < β < 1 and in Example (c) if α > 1.

Theorem 2.3. Let X1, X2, . . . be i.i.d. random variables satisfying EX1 = 0 and

EX2
1 = 1 and put Sn = X1 + · · · + Xn. Let λN (N ≥ 1) be defined as in (2.17).

Assume that D ∈ W satisfies (2.15) and relation (2.12) holds for some α > 3. Then

we have for every non-constant f ∈ L

lim sup
N→∞

(2λN log log λN)−1/2

N∑

k=1

dk

(
f

(
Sk√
k

)
− Ef

(
Sk√
k

))
= 1 a.s. (2.18)
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The conditions of Theorem 2.3 are satisfied in Example (a) if γ ≥ 1, in Example (b)

for all 0 < β < 1 and in Example (c) if α > 3.

Our theorems show that under regularity assumptions on D, the strong law (2.14), the

CLT (2.16) and the LIL (2.18) are all valid provided the Kolmogorov type condition

(2.12) holds for α > 3. The next theorem shows that except for the numerical value

of α, condition (2.12) is sharp.

Theorem 2.4. For every 0 < α < 1 there exists a summation procedure D ∈ W
satisfying (2.12) and (2.13) such that the LIL (2.18) fails.

In fact, this is the case if D is defined by

DN = exp(log N/(log log N)α). (2.19)

Thus the sequence (2.19) is critical in the theory: for α > 3 it implies all of (2.14),

(2.16), (2.18) and this becomes false if α < 1. What happens for 1 ≤ α ≤ 3 remains

open.

By Hardy’s minoration principle, if (2.2) holds with a weight sequence (dk), then,

under certain regularity conditions, it will also hold for all smaller weight sequences

(d∗k). Hardy assumed that D∗
n = ψ(Dn), where ψ(x) ≤ x is an elementary function

composed of rational, exponential and logarithmic functions. A much larger class of

ψ’s was constructed by Hirst [27, p. 37]. It seems likely that for sequences dk ≥ 1/k

an analogous minoration principle holds for the CLT (2.16) and the LIL (2.18), but

this remains open. As the remarks after Theorem 2.2 show, without dk ≥ 1/k this

minoration principle is not valid.

Our final result gives a sharp condition for relation (2.14) to hold in probability.

Theorem 2.5. Let X1, X2, . . . be i.i.d. random variables satisfying EX1 = 0 and

EX2
1 = 1 and put Sn = X1 + · · ·+ Xn. Assume that

dn = o (Dn/n) . (2.20)

Then we have for every f ∈ L or f an indicator function of a Borel set A with
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λ(∂A) = 0

1

DN

N∑

k=1

dk

(
f

(
Sk√
k

)
− Ef

(
Sk√
k

))
→ 0 in probability.

If o in (2.20) is replaced with O the proposition fails.

In comparison to (2.12) we can omit the the extra factor (log log n)α in the denom-

inator for the stochastic version of the ASCLT. As the example dn = 1 (Cesáro

summation) shows, we cannot replace o with O in (2.20). For example relation (2.20)

holds for

Dn = exp(log n/ω(n))

if w(x) is some differentiable function satisfying w(x) →∞ (in order that Dn is not

equivalent to Cesáro averaging) and log x/w(x) ↗ ∞ (in order that Dn defines a

summation method) and

xω′(x)/ω(x) = O
(
(log x)−1

)
. (2.21)

The last condition is satisfied e.g. if ω(x) = logk x (k = 2, 3, . . .) where logk denotes

k times iterated logarithm. It is also easy to see that (2.21) permits arbitrary slow

increase of ω.

2.2 Auxiliary lemmas

Lyapunov’s classical CLT condition or Kolmogorov’s condition for the LIL provide

the corresponding limit theorems in terms of specific moment assumptions. Via a

blocking technique the proofs of our theorems will make use of these results. Hence

an accurate study of the variances respectively higher moments of the processes under

investigation is important. The core of this section are Lemma 2.4 and Lemma 2.5.

Lemma 2.3 and Lemma 2.4 will be needed in a more general form in Chapter 3.

Therefore the proofs will follow in this Chapter. In what follows, let f be a bounded

Lipschitz 1 function on R; without loss of generality we assume |f | ≤ 1. All the
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constants occurring in the following lemmas may depend on f , D and the sequence

X1, X2, . . .; we will make no mention of this fact in the sequel. Constants like Cp,

C(ε), etc. may depend also on the parameters indicated. The relation an ¿ bn will

mean |an/bn| = O(1).

Lemma 2.1. Assume f ∈ L. Then there is a constant C such that for all 1 ≤ k ≤ l

∣∣∣∣Cov

(
f

(
Sk√
k

)
, f

(
Sl√

l

))∣∣∣∣ ≤ C

(
k

l

)1/2

.

Lemma 2.1 is a standard tool in a.s. central limit theory. For completeness, we give

the short proof. Clearly

Cov

(
f

(
Sk√
k

)
, f

(
Sl√

l

))
= Cov

(
f

(
Sk√
k

)
, f

(
Sl√

l

)
− f

(
Sl − Sk√

l

))
.

Hence the the Lipschitz continuity of f , |f | ≤ 1 and the Cauchy-Schwarz inequality

give
∣∣∣∣Cov

(
f

(
Sk√
k

)
, f

(
Sl√

l

))∣∣∣∣

≤ 2E

∣∣∣∣f
(

Sl√
l

)
− f

(
Sl − Sk√

l

)∣∣∣∣ ≤ CE

∣∣∣∣
Sk√

l

∣∣∣∣ ≤ C

√
k

l
. (2.22)

Lemma 2.2. Let f ∈ L, f non-constant. Then there exist an integer m ≥ 1, a real

c > 0 and for every ε > 0 an A = A(ε) such that

Cov

(
f

(
Sk√
k

)
, f

(
Sl√

l

))
≥ c

(
k

l

)m/2

for A ≤ k < l, k/l ≥ ε2/m .

Proof. Consider a Wiener process {Wt, t ≥ 0}. From Rozanov [93, 182 f.] we get

Cov

(
f

(
Wk√

k

)
, f

(
Wl√

l

))
=

∞∑
ν=1

ρν

ν !
α2

ν (1 ≤ k ≤ l), (2.23)

where αν are the coefficients of the Hermite expansion of g := f − Ef(W1), i.e.

g(x) =
∞∑

ν=1

αν

ν !
Hν(x),

Hν(x) = (−1)νex2/2 dν

dxν
e−x2/2
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and ρ =
√

k/l is the correlation between Wk/
√

k and Wl/
√

l for k ≤ l. Since we

exclude the trivial case where f is constant, there is a ν ≥ 1 such that α2
ν > 0. Let

m be the smallest of these integers. By (2.23) there exists a c1 > 0 such that

Cov

(
f

(
Wk√

k

)
, f

(
Wl√

l

))
≥ c1

(
k

l

)m/2

(1 ≤ k ≤ l). (2.24)

To estimate the covariance in the general case we use an invariance principle of Ma-

jor [77] which implies that we can define X1, X2, . . . on a new probability space to-

gether with a Wiener process {Wt, t ≥ 0} such that

(Sn −Wn)/
√

n
P−→ 0.

Set

ck,l := Cov

(
f

(
Sk√
k

)
, f

(
Sl√

l

))
, c∗k,l := Cov

(
f

(
Wk√

k

)
, f

(
Wl√

l

))
.

Since f is a bounded Lipschitz function, it is easy to see that

|c∗k,l − ck,l| → 0 for min{k, l} → ∞.

Hence for every ε > 0 there is an A = A(ε) such that

|ck,l − c∗k,l| ≤ ε2 for min{k, l} ≥ A. (2.25)

By (2.24) we have

c∗k,l ≥ c1ε if k/l ≥ ε2/m, 1 ≤ k ≤ l,

and together with (2.25) and again (2.24) this yields

ck,l ≥ c∗k,l

(
1− ε

c1

)
≥ (c1 − ε)

(
k

l

)m/2

if k/l ≥ ε2/m, A ≤ k ≤ l.

Since we may assume that ε < c1/2 this proves the assertion.

To simplify the notation, in the sequel we will write for 1 ≤ k ≤ l

ξl := f

(
Sl√

l

)
− Ef

(
Sl√

l

)
and ξk,l := f

(
Sl − Sk√

l

)
− Ef

(
Sl − Sk√

l

)
.
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Lemma 2.3. If k ≤ m ≤ n and (dl) is an arbitrary sequence of positive numbers,

then we have for every p ∈ N

E

∣∣∣∣∣
n∑

l=m

dl(ξl − ξk,l)

∣∣∣∣∣

p

≤ Ep(k/m)1/2

(
n∑

l=m

ld 2
l

)p/2

,

where

Ep = const · 4p(2p)p/2.

Proof. See the proof of Lemma 3.1.

Lemma 2.4. Let D = (dk) be a summation method with dk = L(k)/k, k ≥ 1, where

L(k) À 1 and L(k) is slowly varying at infinity. Then for every f ∈ L and every

p ∈ N

E

∣∣∣∣∣
n∑

k=m

dk

(
f

(
Sk√
k

)
− Ef

(
Sk√
k

))∣∣∣∣∣

p

≤ Cp

(
n∑

k=m

kd2
k

)p/2

, (2.26)

where Cp > 0 is a constant.

Proof. See the proof of Lemma 3.2.

Lemma 2.5. Let D = (dk) be a summation method with dk = L(k)/k, k ≥ 1, where

L(k) À 1 and L(k) is slowly varying at infinity. Then for every non-constant f ∈ L
we have

Var

(
N∑

k=1

dkf

(
Sk√
k

))
À

N∑

k=1

kd 2
k . (2.27)

Proof. Let 0 < ε < 1 to be chosen later and A(ε) and m the same as in Lemma 2.2.

Set δ = ε2/m. Clearly it suffices to prove Lemma 2.5 with the summations in (2.27)

started with k = A instead of k = 1. Now

Var

(
N∑

k=A

dkf

(
Sk√
k

))

=
∑

A≤k≤N

d 2
k Eξ 2

k + 2
∑

A≤i<k≤N
i/k<δ

didkEξiξk + 2
∑

A≤i<k≤N
i/k≥δ

didkEξiξk

=: S(1) + S(2) + S(3).
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Clearly
∑∞

k=1 d2
k < ∞, and since the ξk are uniformly bounded, it follows that S(1) =

O(1). Note that for a slowly varying function L we have

N∑

k=1

L(k)k ρ ∼ 1

ρ + 1
L(N)Nρ+1 if ρ > −1, (2.28)

(see e.g. [20, Corollary 1.7.3]). From dk = L(k)/k with a slowly varying L we get by

(2.28) and the definition of slow variation that for every γ > 0
∑

1≤i<δk

dii
γ ∼ 1

γ
L(δk)(δk)γ ∼ 1

γ
δγL(k)kγ (k →∞).

Hence for k ≥ k0(δ) we have

δγ 1

2γ
kγ+1dk ≤

∑

1≤i<δk

dii
γ ≤ δγ 2

γ
kγ+1dk. (2.29)

By Lemma 2.1 and (2.29) we get

|S(2)| ≤ 2C
∑

1≤i<k≤N
i/k<δ

didk

(
i

k

)1/2

= 2C
∑

1≤k≤N

dkk
−1/2

∑

1≤i<δk

dii
1/2

≤ 2C
∑

1≤k≤k0

dkk
−1/2

∑

1≤i<δk

dii
1/2 + 8Cδ1/2

∑

1≤k≤N

kd2
k

= 8Cδ1/2
∑

1≤k≤N

kd2
k + R1,

where R1 = R1(δ). Similarly we get from (2.29)

∑
1≤i<k≤N

i/k<δ

didk

(
i

k

)m/2

≤ 4

m
δm/2

∑

1≤k≤N

kd2
k + R2 (2.30)

and
∑

A≤i<k≤N

didk

(
i

k

)m/2

≥ 1

m

N∑

k=1

kd2
k −R3, (2.31)

where R2, R3 > 0 depend on δ. Now Lemma 2.2 gives

S(3) ≥ 2c
∑

A≤i<k≤N
i/k≥δ

didk

(
i

k

)m/2

≥ 2c




∑

A≤i<k≤N

didk

(
i

k

)m/2

−
∑

1≤i<k≤N
i/k<δ

didk

(
i

k

)m/2


 .
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Note finally that L(k) À 1 implies
∑

k≥1 kd2
k = ∞. Choosing ε small will also make

δ small, and thus combining the estimate for S(3) with (2.30)-(2.31) and using the

estimates for S(1), S(2) proves the lemma.

Lemma 2.6. Let D be a summation method with dk = O(1). If for some α > 0

dN = O

(
DN

N(log log N)α

)
,

it follows that

log
DN

DM

¿ (log log M)−α log
N

M
(M0 ≤ M < N) .

Proof. From Dk →∞ and dk = O(1) we conclude that Dk+1/Dk → 1 and

log
Dk+1

Dk

¿ dk+1

Dk

¿ 1

k(log log k)α
.

Hence
∑N−1

k=M log Dk+1

Dk
¿ (log log M)−α

∑N−1
k=M

1
k
.

2.3 Proofs

The method to prove our theorems is based on a blocking technique. We partition N
into disjoint blocks: N = A1 ∪B1 ∪ A2 ∪B2 ∪ . . ., where

Aj = {2p′j + 1, . . . , 2q′j} and Bj = {2pj + 1, . . . , 2qj} (j ≥ 1).

We set q0 = 1 and for some r > 0 (to be chosen later) define the exponents as

p′j = qj−1, q′j = p′j + [12 log j], pj = q′j, qj = pj + [12(log j)1+r].

Obviously the length of the blocks Bj will grow much faster than the length of Aj

and the block Aj precedes Bj on the real line. Set

Mj = 2pj , Nj = 2qj , M ′
j = 2p′j , N ′

j = 2q′j (j ≥ 1).

Recalling the definition of ξk and ξk,l we define now

Zj :=
∑

k∈Bj

dkξk, Z∗
j :=

∑

k∈Bj

dkξNj−1,k (j ≥ 1),
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Rj :=
∑

k∈Aj

dkξk, R∗
j :=

∑

k∈Aj

dkξN ′
j−1,k (j ≥ 1).

To visualize this, the sum Zj is

Nj∑

k=Mj+1

dk

(
f

(
Sk√
k

)
− Ef

(
Sk√
k

))
,

and Z∗
j is obtained from Zj by replacing Sk in the previous sum by Sk − SNj−1

,

so that Z∗
j involves only Xk’s with Nj−1 < k ≤ Nj. It follows that the Z∗

j are

independent random variables which we will use as approximations for the original

random variables Zj. Similarly, the R∗
j are independent r.v.’s. We will call the Zj

and Z∗
j ‘long block sums’, Rj and R∗

j ‘short block sums’. We stress again that the

short block sum Rj precedes the long block sum Zj on the real line. In a first step

we derive limit theorems for the sequences (Z∗
j ) and (R∗

j ) via classical theorems for

independent random variables. We will see that the contribution of the Rj and the

error we make by replacing Zj by Z∗
j will be small, so that our results carry over to

the sequence (Zj + Rj). Observing that

n∑
j=1

(Zj + Rj) =
Nn∑

k=1

dk

(
f

(
Sk√
k

)
− Ef

(
Sk√
k

))
(2.32)

shows that the desired results hold along the subsequence (Nj). In order to permit

fast growing summation methods Dk and to provide that the limit relations hold

along the subsequence (Nj), we had to choose ”large” blocks. However, in a final step

we have to control the fluctuation between the subsequence (Nj), which forces us to

use ”smaller” blocks. Hence in this stage of the proof the key for optimal results lies

in an optimal choice of the block lengthes.

In order to give upper bounds for the moments of Zj, Z∗
j , Rj and R∗

j we introduce

the notation

Vj = Vj(D) :=
∑

k∈Bj

kd 2
k and Uj = Uj(D) :=

∑

k∈Aj

kd 2
k . (2.33)

For p ∈ N we get immediately from Lemma 2.3 and Lemma 2.4
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E|Zj − Z∗
j |p ≤ 2(qj−1−pj)/2EpV

p/2
j ,

E|Rj −R∗
j |p ≤ 2(q′j−1−p′j)/2EpU

p/2
j ,

(2.34)

and

E|Zj|p ≤ CpV
p/2

j and E|Rj|p ≤ CpU
p/2

j . (2.35)

Proof of Theorem 2.2. From Lyapunov’s theorem (cf. Petrov [88, Theorem 4.9]) it

follows that the sequence (Z∗
n) obeys the CLT if we show that

∑n
j=1 E|Z∗

j |4

Var2
(∑n

j=1 Z∗
j

) → 0. (2.36)

Hence we need estimates for the expectation of the perturbed random variables

(
∑n

j=1 Z∗
j )2 and

∑n
j=1(Z

∗
j )4. A look at (2.34) and (2.35) makes it evident that we

have to study the order of magnitude of Uj and Vj given in (2.33). In order to handle

this issue we use the the representation of Dn in (2.10). It implies that

n∑

k=m

kd 2
k ³

∫ n

m

exp

(
2

∫ x

A

ε(u)/u du

)
ε2(x)/x dx (m,n →∞). (2.37)

(For numerical sequences (an) and (bn) let an ³ bn mean an ¿ bn and bn ¿ an.) The

monotonicity of the terms in the integrand of (2.37) and condition (2.9) yield

Uj ¿
∫ N ′

j

M ′
j

exp

(
2

∫ x

A

ε(u)/u du

)
ε2(x)/x dx ¿ ε2(M ′

j)D
2
N ′

j
log j,

where we used ∫ N ′
j

M ′
j

1/x dx ∼ 12 log j.

Similarly we get

Vj À ε2(Nj)D
2
Mj

(log j)1+r .

A simple calculation shows that

pj ∼ qj ∼ p′j ∼ q′j ∼ 12j(log j)1+r, (2.38)
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and thus condition (2.9) implies that the ratio ε(M ′
j)/ε(Nj) remains bounded for

j →∞ and since N ′
j = Mj this shows that Uj/Vj → 0. By condition (2.15) we clearly

have
∑n

j=1 Vj →∞ and hence we obtain from the Minkowski inequality, Lemma 2.4,

the independence of R∗
j and (2.34)-(2.35)

∣∣∣∣∣
∥∥∥

n∑
j=1

Z∗
j

∥∥∥
2
−

∥∥∥
n∑

j=1

(Zj + Rj)
∥∥∥

2

∣∣∣∣∣ ≤
∥∥∥

n∑
j=1

(Z∗
j − (Zj + Rj))

∥∥∥
2

≤
∥∥∥

n∑
j=1

R∗
j

∥∥∥
2
+

n∑
j=1

∥∥∥Zj − Z∗
j

∥∥∥
2
+

n∑
j=1

∥∥∥Rj −R∗
j

∥∥∥
2

¿
(

n∑
j=1

Uj

)1/2

+
n∑

j=1

j−3 log 2 V
1/2
j = o

(( n∑
j=1

Vj

)1/2
)

.

(Here ‖ · ‖2 denotes the L2 norm). We can now compare the variances λN de-

fined in (2.17) to Var(
∑n

j=1 Z∗
j ). Combining the latter estimate with Lemma 2.4

and Lemma 2.5 shows that

Var

(
n∑

j=1

Z∗
j

)
∼ λNn and λNn ³

Nn∑

k=1

kd2
k ³

n∑
j=1

Vj. (2.39)

From (2.34) and (2.35) we get that

n∑
j=1

E|Z∗
j |4 ¿

n∑
j=1

V 2
j ≤ max{V1, · · · , Vn}

n∑
j=1

Vj (n →∞).

On the other hand (2.39) gives Var(
∑n

j=1 Z∗
j ) À ∑n

j=1 Vj. Thus

∑n
j=1 E|Z∗

j |4

Var2
(∑n

j=1 Z∗
j

) ¿ max1≤j≤n Vj∑n
j=1 Vj

. (2.40)

From (2.37) we get further

N∑

k=1

kd2
k À ε(N)D2

N and Vn ¿ ε(Mn)D2
Nn

∫ Nn

Mn

ε(x)/x dx . (2.41)

Using again (2.39), (2.41), (2.9), (2.10), the explicit formulas for Mn, Nn (see (2.38))
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and (2.12) combined with Lemma 2.6 we derive

Vn∑n
j=1 Vj

¿ Vn

(
Nn∑

k=1

kd 2
k

)−1

¿ ε(Mn)

ε(Nn)

∫ Nn

Mn

ε(x)/x dx

¿
∫ Nn

Mn

ε(x)/x dx ¿ log
DNn

DMn

¿ (log n)(1+r−α) .

Since α > 1 in (2.12), we can chose 0 < r < α− 1, which shows

Vn/(V1 + · · ·+ Vn) → 0 (n →∞). (2.42)

Together with (2.40) this proves (2.36), i.e. the central limit theorem holds for the

random variables (Z∗
j ).

In the next step we show that
∑n

j=1(Zj +Rj) and
∑n

j=1 Z∗
j are ”close” to each other.

This shows that the CLT is valid for the sequence (Zj + Rj) as well. Observe that by

(2.34)
∞∑

j=1

(
E(Zj − Z∗

j )2

∑
1≤l≤j Vl

)1/2

< ∞,

and consequently
∞∑

j=1

|Zj − Z∗
j |

(
∑

1≤l≤j Vl)1/2
< ∞ a.s.

Thus by the Kronecker lemma and (2.39) we have

1

λ
1/2
Nn

n∑
j=1

(Zj − Z∗
j ) → 0 a.s. (2.43)

By the same arguments it follows easily that the last relation holds with (Rj − R∗
j )

instead of (Zj − Z∗
j ). Further (2.34)-(2.35), the independence of R∗

j and the Cauchy-

Schwarz inequality give

E

∣∣∣∣∣
n∑

j=1

R∗
j

∣∣∣∣∣ ¿
(

n∑
j=1

Uj

)1/2

.

We have already shown that Uj/Vj → 0. Hence the Markov inequality and (2.39)

yield

P

(∣∣∣∣∣
n∑

j=1

R∗
j

∣∣∣∣∣ > ε λ
1/2
Nn

)
= o(1) for every ε > 0.
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Using Zj +Rj = Z∗
j +R∗

j +(Zj −Z∗
j )+ (Rj −R∗

j ) and recalling (2.32) we proved that

λ
−1/2
Nn

Nn∑

k=1

dkξk
d−→ N .

In order to finish the proof of Theorem 2.2 it suffices now to show that

lim
j

sup
N∈(Nj−1, Nj ]

E|TN − TNj
| = 0, (2.44)

where

TN = λ
−1/2
N

N∑

k=1

dkξk .

By Minkowski’s inequality and Lemma 2.4 we get for Nj−1 ≤ N ≤ Nj

|λ1/2
Nj
− λ

1/2
N | ≤ Var1/2




Nj∑

k=N+1

dkξk


 ≤ (4γ)2(Uj + Vj)

1/2. (2.45)

This shows that

E|TN − TNj
| ≤ |λ−1/2

N − λ
−1/2
Nj

| E
∣∣∣∣∣

N∑

k=1

dkξk

∣∣∣∣∣ + λ
−1/2
Nj

E

∣∣∣∣∣∣

Nj∑

k=N+1

dkξk

∣∣∣∣∣∣

≤ λ
−1/2
Nj




∣∣∣λ1/2
Nj
− λ

1/2
N

∣∣∣ + Var1/2




Nj∑

k=N+1

dkξk







≤ 2(4γ)2λ
−1/2
Nj

(Uj + Vj)
1/2.

Applying (2.39) and (2.42) we can show (2.44). This finishes the proof of Theorem 2.2.

Proof of Theorem 2.3. Trivially |Z∗
j | ≤ 2(DNj

−DMj
). In order to apply Kolmogorov’s

law of the iterated logarithm (cf. Petrov [88, p. 239] to the sequence (Z∗
j ), it suffices

to verify that

DNj
−DMj

= o

((
s 2

j

log log s 2
j

)1/2
)

,
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where s 2
j = Var(

∑j
l=1 Z∗

l ). First note that by the representation (2.10)

DNj
−DMj

= DNj

(
1− exp

(
−

∫ Nj

Mj

ε(u)/u du

))

≤ DNj

∫ Nj

Mj

ε(u)/u du.

(2.46)

Relation (2.39) and the first statement of (2.41) show that

D 2
Nj

ε(Nj) ¿ s 2
j ¿ D 2

Nj
¿ Nj. (2.47)

Using (2.9), (2.46), (2.47) and the explicit formulas for Mn, Nn we derive

(DNj
−DMj

)

(
s 2

j

log log s 2
j

)−1/2

¿ DNj
−DMj

DNj

(
log log Nj

ε(Nj)

)1/2

¿
(

log log Nj

ε(Nj)

)1/2 ∫ Nj

Mj

ε(u)/u du

¿ (log log Nj)
1/2

∫ Nj

Mj

ε1/2(u)/u du.

(2.48)

From Lemma 2.6, (2.10) and the Cauchy-Schwarz inequality it follows that

∫ Nj

Mj

ε1/2(u)/u du ≤
(∫ Nj

Mj

ε(u)/u du

)1/2 (∫ Nj

Mj

1/u du

)1/2

¿
(

log
DNj

DMj

)1/2 (
log

Nj

Mj

)1/2

¿
(

log
Nj

Mj

)
(log log Mj)

−α/2.

(2.49)

By the definition of Mj and Nj we see that the last expression of (2.48) is bounded

by const · (log j)3/2−α/2+r. This tends to zero if we choose 0 < r < (α − 3)/2.

Remember that by (2.39) λNj
∼ s 2

j . Thus setting LN = (2λN log log λN)1/2 we get
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from Kolmogorov’s law of the iterated logarithm that

lim sup
j→∞

L−1
Nj

j∑

l=1

Z∗
l = 1 a.s.

Next we observe that by (2.43) we have also

lim sup
j→∞

L−1
Nj

j∑

l=1

Zl = 1 a.s.

Similar arguments show that for the short block sums Rl we get

L−1
Nj

j∑

l=1

Rl → 0 a.s.

Thus by (2.32) the LIL (2.18) is true along the subsequence (Nj).

Finally we are confronted with the task of controlling the maximal fluctuation between

the subsequence (Nj). Now for Nj−1 ≤ N < Nj a trivial estimate (using |ξk| ≤ 2)

shows that
∣∣∣∣∣∣
L−1

N

N∑

k=1

dkξk − L−1
Nj−1

Nj−1∑

k=1

dkξk

∣∣∣∣∣∣

≤
∣∣∣∣
LNj−1

LN

− 1

∣∣∣∣ L−1
Nj−1

∣∣∣∣∣∣

Nj−1∑

k=1

dkξk

∣∣∣∣∣∣
+ 2L−1

N (DNj
−DNj−1

).

We have already proved that L−1
Nj−1

∣∣∣∑Nj−1

k=1 dkξk

∣∣∣ = O(1) a.s. Hence Theorem 2.3 will

be proved if we show that

lim
j→∞

sup
Nj−1≤N<Nj

∣∣∣∣
LNj−1

LN

− 1

∣∣∣∣ = 0 (2.50)

and

lim sup
j→∞

sup
Nj−1≤N<Nj

L−1
N (DNj

−DNj−1
) = 0. (2.51)

Relations (2.39), (2.42) and (2.45) imply that

sup
Nj−1≤N<Nj

∣∣∣λ1/2
Nj
− λ

1/2
N

∣∣∣ = o(λ
1/2
Nj

) as j →∞ (2.52)
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which immediately yields (2.50). To show (2.51) we first observe that by (2.39),

(2.41), (2.52) and (2.9) we have for Nj−1 ≤ N < Nj

L−1
N (DNj

−DNj−1
) ≤ λ

−1/2
N (DNj

−DNj−1
) ¿ D−1

Nj−1
ε−1/2(Nj)(DNj

−DNj−1
).

By using the same argument as in (2.46) we get an upper bound for DNj
− DNj−1

.

Thus by (2.9) and observing that Nj ≤ N2
j−1 for large enough j we obtain

L−1
N (DNj

−DNj−1
) ¿ ε−1/2(Nj)DNj

DNj−1

∫ Nj

Nj−1

ε(u)/u du ¿ DNj

DNj−1

∫ Nj

Nj−1

ε1/2(u)/u du.

An analogue of (2.49), Lemma 2.6 and (2.38) can be used to derive

L−1
N (DNj

−DNj−1
)

¿ DNj

DNj−1

(
log

Nj

Nj−1

)
(log log Nj−1)

−α/2

¿
(

Nj

Nj−1

)(log log Nj−1)−α (
log

Nj

Nj−1

)
(log log Nj−1)

−α/2

¿ exp
(
const · (log j)1+r−α

)
(log j)1+r−α/2.

This tends to zero if we choose 0 < r < α/2− 1.

Proof of Theorem 2.1. Lemma 2.4 shows (actually under weaker conditions than we

assumed in Theorem 2.1) that

λN ¿
N∑

k=1

kd2
k.

If we assume that kdk is non-decreasing, we get

N∑

k=1

kd2
k ≤ NdNDN , N = 1, 2, . . .

Hence by relation (2.12) we conclude that

(λN log log λN)1/2 ¿ (NdNDN log log N)1/2

¿ DN(log log N)(1−α)/2.
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This shows that for α > 1

(λN log log λN)1/2 = o(DN),

and thus for f ∈ L Theorem 2.1 follows from Theorem 2.3.

The proof for indicator functions follows from routine approximation arguments as

e.g. those in [69].

Proof of Theorem 2.5. We will show that

Var

(
1

DN

N∑

k=1

dk

(
f

(
Sk√
k

)
− Ef

(
Sk√
k

)))
= λN/D2

N → 0.

By (2.20) we have for every ε > 0 an N0(ε), such that for all N ≥ N0

sup
k≤N

kdk

DN

< ε. (2.53)

Remember the definition of ξk right before Lemma 2.3. By Lemma 2.1 we get

E

(
n∑

k=m

dkξk

)2

≤ 2
∑

m≤k≤l≤n

dkdl |Eξkξl| ≤ 2C
∑

m≤l≤n

dll
−1/2

∑

1≤k≤l

dkk
1/2,

and hence by (2.53) we have for N ≥ N0

λN/D2
N ¿ 1

DN

∑

1≤l≤N

dll
−1/2

∑

1≤k≤l

kdk

DN

k−1/2 ≤ 2ε.

Consider the summation DN = log N . By Lemma 2.4 and Lemma 2.5 we have

λN ³ DN . On the other hand if DN = N , then it’s possible to show (using Lemma 2.1

and Lemma 2.2) that λN ³ D2
N . Trivially, a necessary condition for the LIL is

λN log log λN ≤ D2
N . If the numerical value α of the weight sequence (DN) defined

in (2.19) falls below the critical value 1 the last condition is violated. The proof of

Theorem 2.4 is based on this simple observation.
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Proof of Theorem 2.4. Let

DN = exp(log N/(log log N)α) where 0 < α < 1. (2.54)

A simple calculation shows that the representation (2.10) holds with c = 1 and

ε(x) = (log log x)−α − α(log log x)−α−1 ∼ (log log x)−α (2.55)

and thus this D is in W . Also, by (2.54) and the mean value theorem

dN = DN −DN−1 ∼ 1

N
exp(log N/(log log N)α)(log log N)−α

and thus relations (2.12) and (2.13) are valid. Finally, Lemma 5, (2.41) and (2.55)

yield

λN À
N∑

k=1

kd2
k À ε(N)D2

N À D2
N(log log N)−α

whence

(λN log log λN)1/2 À DN(log log N)(1−α)/2.

Since |∑N
k=1 dkξk| ≤ 2DN , relation (2.18) cannot hold if α < 1.

2.4 A conjecture for the critical weights

We have proved that the critical weight sequence for the LIL (Theorem 2.3) is given by

(2.19) with some unknown α ∈ [1, 3]. In contrast to Theorem 2.3, we cannot conclude

that the ASCLT Theorem 2.1 fails for α < 1. We formulate now a conjecture based on

a heuristic argument which states that for both theorems the critical value is α = 1.

First we prove the following result.

Proposition 2.1. Let ξ1, ξ2, . . . be a sequence of independent random variables with

Eξk = 0 and Eξ2
k = σ2

k and |ξk| ≤ Mk < ∞. Set B2
n =

∑n
k=1 σ2

k and assume that

Mk = o
(
Bk(log log Bk)

−1/2
)
. (2.56)

Then
1∑n

k=1 σk

n∑

k=1

ξk → 0 a.s.
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Proof. The Kolmogorov condition (2.56) implies that

B2
n ≤ max

1≤k≤n
σk

n∑

k=1

σk = o(Bn(log log Bn)−1/2

n∑

k=1

σk).

This gives Bn(log log Bn)1/2 = o(
∑n

k=1 σk). Now the Proposition follows from Theo-

rem A2.

Proposition 2.1 is even optimal. Berkes and Csáki [9, p. 119] construct a counter-

example which implies that o in the Kolmogorov condition cannot be replaced by

O. Specifically, they consider ξk = c(k)Xk, where Xk are i.i.d. Bernoulli r.v.’s and

c(k) = exp(k/ log k). It is easy to see that in this case (2.56) holds with O. Hence by

the second part of Theorem A2 we have for a sequence of bounded random variables

that (2.56) is sharp for both, the LIL and the LLN.

Conjecture. Theorem 2.1 and Theorem 2.3 are valid if the Kolmogorov type condi-

tion (2.12) holds with α > 1 and both theorems fail if α ≤ 1.

This conjecture contains four assertions. One of them, namely the failure of the LIL

in case of α ≤ 1, has been already shown (except in the case α = 1). We shall give

now a heuristic argument why also the ASCLT should fail if α ≤ 1. We assume that

X1, X2, . . . are i.i.d. standard normal r.v.’s. Further we let f be a Lipschitz function

with |f | ≤ 1 and consider the specific averaging methods defined by

Dα(t) = exp(log t(log log t)−α)

at t = 1, 2, . . . Finally, we set dα(t) = dDα(t)/dt. It is natural to expect that

1

Dα(N)

N∑

k=1

dα(k)
(
f(Sk/

√
k)− Ef(N)

)
→ 0 a.s. (2.57)

fails if α ≤ 1. The continuous version of (2.57) is

1

Dα(N)

∫ N

1

dα(t)
(
f(Wt/

√
t)− Ef(N)

)
dt → 0 a.s.,
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where {Wt, t ≥ 0} is a standard Brownian motion process. By the parameter trans-

formation t 7→ es the last relation holds if

1

Dα(en)

∫ n

0

dα(et)et (f(Ut)− Ef(N)) dt → 0 a.s., (2.58)

where Ut = W (et)e−t/2 is the (stationary) Ornstein-Uhlenbeck process. Let Cα(n) =

Dα(en) and cα(n) = dα(en)en. It’s easy to see that

n∑

k=1

cα(n) ∼ Cα(n) and cα(n)/cα(n + 1) → 1.

The fact that cα(t) grows only subexponentially yields

∫ n+1

n

cα(t) (f(Ut)− Ef(N)) dt ∼ cα(n)

∫ n+1

n

(f(Ut)− Ef(N)) dt (n →∞)

and thus (2.58) will follow if we show

1

Cα(n)

n∑

k=1

cα(k)ηk → 0 a.s., (2.59)

where ηk =
∫ k+1

k
(f(Ut)− Ef(N)) dt. Note that the sequence (ηk) is stationary

and |ηk| ≤ 1. This reduces our problem to a weighted law of large numbers for a

bounded, stationary sequence. If we replace the ηk in (2.59) with an i.i.d. sequence

(η∗k) satisfying Eη∗1 = 0 and |η∗1| ≤ 1, we can apply Proposition 2.1. In fact, routine

calculations show that Kolmogorov’s condition (2.56) is satisfied if α > 1 and it fails

if α ≤ 1.

Whether Proposition 2.1 can be extended to our specific dependent sequence as well,

remains open. However, the example of Berkes and Csáki [9] shows that not even an

i.i.d. Bernoulli sequence is C1(n)-summable (and consequently not Cα(n)-summable if

α ≤ 1). Thus the conjecture on the failure of the ASCLT with α ≤ 1 is evident. In any

case this transformation argument exhibits a strong connection between Kolmogorov’s

condition (2.56) and the crucial assumption (2.12).



Chapter 3

A sharpening of the universal a.s.
limit theorem

3.1 Introduction and results

Most results in the ASCLT literature concern partial sum behavior, i.e. they state

relations of the type

D−1
n

n∑

k=1

dkI{Sk/ak ≤ x} → Φ(x) a.s. (3.1)

There exist, however, a few extensions for nonlinear functionals of independent r.v.’s

as well: Marcus and Rosen [80], Csáki and Földes [30] and Horváth and Khoshnevisan

[61] obtained analogues of (3.1) for local times and Cheng et al. [28] and Fahrner and

Stadtmüller [43] proved a similar result for extreme order statistics. In particular, in

[28] and [43] it is shown that if X1, X2, . . . are i.i.d. r.v.’s such that for some numerical

sequences (ak), (bk) we have

(max
i≤k

Xi − ak)/bk
d−→ G

with a nondegenerate distribution G, then

lim
N→∞

1

log N

∑

k≤N

1

k
I

{
maxi≤k Xi − ak

bk

≤ x

}
= G(x) a.s. for any x ∈ R. (3.2)

45
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For further examples of nonlinear extensions of (3.1), see Antonini and Weber [1],

Mörters [81], [82], Peng and Qi [87] and Hörmann [58]. In view of these results

the question arises which distributional limit theorems have similar a.s. versions and

Berkes and Csáki [9] proved the surprising result that every weak limit theorem for

independent random variables, subject to minor technical assumptions, has an a.s.

”logarithmic” version. Specifically, they proved the following result:

Theorem B. (Universal almost sure limit theorem). Let X1, X2, . . . be inde-

pendent random variables satisfying the weak limit theorem

gl(X1, X2, . . . , Xl)
d−→ G, (3.3)

where gl : Rl → R (l = 1, 2 . . .) are measurable functions and G is a distribution

function. Assume that for each 1 ≤ k < l there exists a measurable function gk,l :

Rl−k → R such that

E (|gl(X1, . . . , Xl)− gk,l(Xk+1, . . . , Xl)| ∧ 1) ≤ A(ck/cl) (3.4)

with a constant A > 0 and a positive, nondecreasing sequence (ck) satisfying ck →∞,

ck+1/ck = O(1). Then we have

lim
N→∞

1

DN

∑

k≤N

dkI {fk(X1, . . . , Xk) < x} = G(x) a.s. for any x ∈ CG, (3.5)

where

dk = log(ck+1/ck), DN = log cN (3.6)

and CG denotes the set of continuity points of G.

The simplest form (3.1) of the ASCLT is obtained by letting

gl = (X1 + . . . + Xl)/
√

l, gk,l = (Xk+1 + . . . + Xl)/
√

l,

where (Xn) is an i.i.d. sequence with EX1 = 0, EX2
1 = 1. It is easy to see that in

this case (3.4) is satisfied with ck = kα for some α > 0 and thus (3.5) holds with dk ∼
const·1/k. Similarly, the limit theorem (3.2) is obtained with

gl(X1, . . . , Xl) = (max
1≤i≤l

Xi − al)/bl, gk,l(Xk+1, . . . , Xl) = ( max
k+1≤i≤l

Xi − al)/bl
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and in this case (3.4) is satisfied with ck = k, leading again to dk ∼ const·1/k. In

both cases (3.4) means that changing the first o(l) terms of the sequence X1, . . . , Xl

has very little effect on the normed partial sum (X1 + · · · + Xl)/
√

l respectively the

extremal statistics

(max
1≤i≤l

Xi − al)/bl.

An example for a limit theorem with a different ck is the Darling-Erdős theorem

stating

al

(
max
i≤l

Si√
i
− bl

)
d−→ e−e−x

(3.7)

for suitable (al) and (bl), where Sl are partial sums of independent r.v.’s with mean 0,

variance 1 and uniformly bounded (2+δ)-th moments. (See Darling and Erdős [33] for

δ = 1 and Shorack [100] for δ > 0.) Here (3.4) holds with ck = log k, and (3.4) means

that changing the first lo(1) terms of the sequence X1, . . . , Xl will change the left hand

side of (3.7) only unessentially. Note that in this case the initial segment of X1, . . . , Xl

not influencing the value of gl(X1, . . . , Xl) is much shorter: the dependence of gl on its

initial variables became more sensitive. As a consequence, we get a different weight

sequence in (3.5): instead of dk = 1/k we get now dk = 1/(k log k), DN = log log N ,

i.e. in the a.s. version of the Darling-Erdős limit theorem we have loglog averages. We

thus see that the more sensitively the functional gl(x1, . . . , xl) depends on its initial

variables, the smaller weight sequence (dk) in (3.5) is obtained.

For a detailed discussion of Theorem B and several examples as well as more refined

versions of the latter result we refer to Berkes and Csáki [9].

The purpose of the present chapter is to show that, similarly to the ordinary ASCLT

discussed in the previous chapter, the universal almost sure limit theorem can also

be substantially sharpened by replacing the ”canonical” averaging method (given by

(3.6)) by suitable, weaker averaging methods. Due to the general character of the

limit theorem (3.3), however, the methods of the previous chapter are not applicable

in the present case, preventing us from getting the same complete characterization

as in the case of the ASCLT. However, we will show that a slightly modified version

of the Kolmogorov condition (2.5) remains sufficient even for the most general limit
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theorem (3.3).

In Section 3.2 we will give several examples. Specifically, in Section 3.2.2 we give

an example where the ”canonical” weights (i.e. the weights provided by Theorem B)

are dk = 1/k, but the considered a.s. convergence result actually holds with Cesàro

averaging, i.e. dk = 1.

Theorem 3.1. Let X1, X2, . . . be independent r.v.’s such that for some measurable

functions gl : Rl → R the weak limit theorem

gl(X1, . . . , Xl)
d−→ G (3.8)

holds with some distribution function G. Assume further that for some functions

gk,l : Rl−k → R, 1 ≤ k < l, we have

E (|gl(X1, . . . , Xl)− gk,l(Xk+1, . . . , Xl)| ∧ 1) ≤ A(ck/cl)
β (3.9)

for some A, β > 0 and some positive nondecreasing sequence (ck) with ck → ∞.

Finally set d∗k = log(ck+1/ck) and assume that the Kolmogorov type condition

dk = O

(
d∗k

Dk

(log Dk)ρ

)
(3.10)

is satisfied for some ρ > 0 and in addition

dk À d∗k, dk/(d
∗
kc

β
k) is nonincreasing (3.11)

and

dkDk/(log Dk)
ρ = O(1) (3.12)

hold. Then if f is a bounded Lipschitz 1 function on the real line or is the indicator

function of a Borel set A with G(∂A) = 0, we have

lim
N→∞

D−1
N

N∑

k=1

dkf (gk(X1, . . . , Xk)) =

∫ ∞

−∞
f(x) dG(x) a.s. (3.13)

In view of the result of Hardy quoted in Section 2.1 the validity of relation (3.13)

automatically extends to smaller weight sequences (dk), and thus we are interested in
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finding large weight sequences such that (3.13) is valid. Since (3.13) holds for dk = d∗k,

the first assumption dk À d∗k in (3.11) is a natural one. The second condition of (3.11)

and relation (3.12) clearly limit the speed of growth of Dk from above. In view of

relation (3.27) below, we have
∑n

k=1 d∗kc
β
k ∼ const · cβ

k , and thus the second condition

in (3.11) implies Dk ¿ cβ
k . On the time scale determined by the ck, the weights d∗k

give logarithmic averaging, while Dk = cβ
k is equivalent, by the theorem of Zygmund,

with (rescaled) ordinary Cesàro averaging belonging to Dk = ck. Thus the second

relation of (3.11) limits Dk above by Cesàro averaging and the same holds with

relation (3.12), which implies that the increments of D2
k(log Dk)

−ρ are bounded and

thus Dk ¿ k1/2(log k)ρ/2. Restricting the summation procedures in (3.13) above by

Cesàro averaging is quite natural, since ordinary averaging is usually too large even in

the simplest versions of the ASCLT. However, the example given in Subsection 3.2.2

will show that in certain non-i.i.d. situations one can actually use even the Cesàro

weights in the general strong limit theorem (3.13).

The crucial condition in Theorem 3.1 is (3.10). It tells us how far we can move from

the natural logarithmic weights (d∗k) towards a larger weight sequence (dk). As we

will see (Section 3.2), in typical cases (3.10) permits choosing (dk) much closer to the

corresponding Cesàro averaging than to logarithmic weights.

The following theorem covers the case when the functionals gk depend not on an

independent sequence (Xk), but on a more general stochastic process {Xt, t ≥ 0}
with independent increments.

Theorem 3.2. Let {Xt, t ≥ 0} be a stochastic process with independent increments

and assume X0 = 0. Let ηl, l = 1, 2, . . . be r.v.’s such that ηl is measurable with

respect to σ{X(t), t ≤ l} and assume that the weak limit theorem

ηl
d−→ G

holds with some distribution function G. Assume finally that for every 1 ≤ k < l

there exists a σ{X(t) − X(s), k ≤ s ≤ t ≤ l}-measurable random variable ηk,l such

that

E (|ηl − ηk,l| ∧ 1) ≤ A(ck/cl)
β (1 ≤ k < l), (3.14)
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with A, β > 0 and some nondecreasing sequence (ck) with ck → ∞. If (3.10)-(3.12)

are satisfied with d∗k = log(ck+1/ck), then for any bounded Lipschitz 1 function f on

the real line or for the indicator function f of any Borel set A ⊂ R with G(∂A) = 0,

we have

lim
N→∞

D−1
N

N∑

k=1

dkf (ηk) =

∫ ∞

−∞
f(x) dG(x) a.s. (3.15)

3.2 Examples

In this section we will give some applications of Theorems 3.1 and 3.2. In each case

we will specify the natural weights d∗k and the corresponding best weight sequence our

theorems provide. In what follows, f denotes a bounded Lipschitz 1 function or the

indicator function of a Borel set A ⊂ R with G(∂A) = 0, where G is some distribution

function occurring as a weak limit of the form (3.8) in the given examples.

3.2.1 Partial sums of i.i.d. r.v.’s.

Let X1, X2, . . . be i.i.d. r.v.’s and let Sl denote the l-th partial sum. Assume that

there exist numerical sequences (al) and (bl) such that a weak limit theorem of the

form

gl(X1, . . . , Xl) :=
Sl

al

− bl
d−→ G

holds with some (possibly degenerate) distribution function G. Assume further that

supl≥1 E|Sl/al − bl|ν < ∞ for some ν > 0. We choose

gk,l(Xk+1, . . . , Xl) =
Sl − Sk

al

− bl (1 ≤ k ≤ l).

A standard argument in a.s. central limit theory shows that there exist positive

constants C and β such that

E(|gl(X1, . . . , Xl)− gk,l(Xk+1, . . . , Xl)| ∧ 1) ≤ C(ak/al)
β.

For example, if EX1 = 0 and EX2
1 = 1, then al =

√
l and Theorem 3.1 applies

with d∗k = 1/k and with G denoting the standard normal distribution function. If
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Xk are i.i.d. r.v.’s belonging to the domain of attraction of a stable distribution G,

then (al) is regularly varying with exponent 1/α for some 0 < α ≤ 2 and from the

representation theorem for regularly varying functions (cf. Bingham et al. [20, p. 12])

we obtain easily that ak/al ≤ C ′(k/l)β′ . Hence in this case the natural weights d∗k are

again the logarithmic ones. On the other hand, it is easily checked that for

DN = exp((log N)α), dk = Dk −Dk−1, 0 < α < 1, (3.16)

conditions (3.10)-(3.12) are satisfied, and thus Theorem 3.1 yields the stronger result

lim
N→∞

1

DN

N∑

k=1

dkf

(
Sk

ak

− bk

)
=

∫ ∞

−∞
f(x) dG(x) a.s.

3.2.2 Sums of not identically distributed r.v.’s.

Let Xk be independent r.v.’s with EXk = 0 and EX2
k = s2

k+1 − s2
k, where s2

k =

e(log k)1+ε
, ε > 0, and let Sk denote the k-th partial sum. Assume that the sequence

(Xk) satisfies the Lindeberg condition and let gl and gk,l be the same as in the last

example with al = sl and bl = 0. Then (3.9) is satisfied with ck = sk and thus

we get the natural weights d∗k = (log k)εk−1. From a summability point of view,

the summation method defined by (d∗k) is equivalent to log summation. However,

Theorem 3.1 shows the surprising fact that in this case, even Cesàro means work in

(3.13). Indeed, define dk = 1/
√

k. Again conditions (3.10)-(3.12) are easily checked.

By Zygmund’s theorem the summation defined by dk = 1/
√

k is equivalent to Cesàro

summation. Hence in this example we get

1

N

N∑

k=1

f

(
Sk

sk

)
→

∫ ∞

−∞
f(x) dΦ(x) a.s. (3.17)

Clearly, the faster the sequence (sk) grows, the more influence Xk has on the partial

sum Sk and the smaller is the dependence between the f(Sk/sk). For example if

s2
k = log k then the dependence between the f(Sk/sk) is much stronger than in the

standard case s2
k = k and Example 1 in Berkes and Dehling [11, p. 1649] shows that

the ASCLT fails with dk = k−1. In this case the natural weights are d∗k = 1/(k log k)
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and the norming sequence is D∗
N = log log N . But an application of Theorem 3.1

shows that the ASCLT actually holds in this example with the larger sequence DN =

exp((log log N)α) for any 0 < α < 1.

3.2.3 Subsequences

As an immediate consequence of the first example in 3.2.2 we get an almost sure

central limit theorem for i.i.d. r.v.’s along subsequences, using Cesàro summation.

Let Xk be i.i.d. r.v.’s with EX1 = 0 and EX2
1 = 1 and set nk = [s2

k], where

s2
k = exp((log k)1+ε) with ε > 0. Define Yk = Snk

−Snk−1
. Clearly Yk are independent,

EYk = 0, EY 2
k = nk − nk−1 and by the central limit theorem Snk

/
√

nk
d−→ N(0, 1).

Hence we have by (3.17)

1

N

N∑

k=1

f

(
Snk√
nk

)
→

∫ ∞

−∞
f(x) dΦ(x) a.s. (3.18)

Schatte [96] and Atlagh and Weber [3] showed a similar result for nk = [ck] with c > 1.

Of course, the faster nk grows, the less is the dependence between the partial sums

Snk
and the weaker summation methods apply. Rychlik and Szuster [94] showed that

(3.18) also holds for nk = [ckα
] with c > 1 and α > 0. The last result shows that we

can weaken the growth rates used in [96], [3] and [94] of (nk) substantially. Note also

that the growth condition for the subsequence (nk) is sharp in some sense. Choosing

ε = 0 gives nk = k and then (3.18) fails (cf. [96, Theorem 1]).

3.2.4 Sample extremes

Let X1, X2, . . . be i.i.d. r.v.’s. Assume further that there are numerical sequences (al)

and (bl) such that for some distribution function G a weak limit theorem of the form

gl(X1, . . . , Xl) :=
maxi≤l Xi − al

bl

d−→ G

is valid. Then setting

gk,l(xk+1, . . . , xl) =
maxk<i≤l xi − al

bl
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we get (cf. [9, p. 122])

E(|gl(X1, . . . , Xl)− gk,l(Xk+1, . . . , Xl)| ∧ 1) ≤ k

l
.

Thus Theorem A yields

1

D∗
N

N∑

k=1

d∗kf
(

maxi≤l Xi − al

bl

)
→

∫ ∞

−∞
f(x) dG(x) a.s., (3.19)

where the natural weights d∗k are the logarithmic ones. As observed in Fahrner and

Stadtmüller [43] and in Cheng et. al. [28], if we replace logarithmic means in (3.19)

by the ordinary Cesàro means, the result fails. However, Theorem 3.1 shows that

(3.19) is still true when the summation method (D∗
N) is replaced by (DN) defined in

(3.16).

3.2.5 The Darling-Erdős theorem

Let W be a Wiener process and

ηl = al

(
sup
1≤t≤l

W(t)√
t
− bl

)

where

al = (2 log log l)1/2 and bl = al +
log log log l − log 4π

2al

(l ≥ 3).

By the Darling-Erdős theorem (see [33]) we have ηl
d−→ G where G(x) = e−e−x

. Let

cl = exp(
√

log log l), Al = exp(log l/ exp(
√

log log l)) and

ηk,l =





al

(
supA2

l≤t≤l
W(t)−W(k)√

t
− bl

)
if k ≤ Al

0 otherwise.

In Berkes and Csáki [9] it is shown that

E(|ηl − ηk,l| ∧ 1) ≤ 4(ck/cl)
1/2 (k ≤ l). (3.20)
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Also, ηl is measurable with respect to σ{W(t), t ≤ l} and ηk,l is measurable with

respect to σ{W(t′) −W(t) : k ≤ t ≤ t′ ≤ l}. Thus Theorem 5 in Berkes and Csáki

[9] implies

lim
N→∞

1

DN

N∑

k=1

dkf

(
ak

(
sup

1≤t≤k

W(k)√
k
− bk

))
=

∫ ∞

−∞
f(x) dG(x) a.s., (3.21)

where

dk =
1

k log k
√

log log k
, DN =

√
log log N. (3.22)

By Zygmund’s theorem, the averaging procedure determined by the weight sequence

in (3.22) is equivalent to loglog averaging, i.e. (3.21) holds also with

dk =
1

k log k
, DN = log log N.

On the other hand, using relation (3.20) with cl = exp(
√

log log l), Theorem 3.2

implies (3.21) with the considerably larger weights

dk ∼ 1

k log k
e(log log k)α

, DN ∼ e(log log N)α

0 < α < 1/2.

More generally, consider a nondecreasing, unbounded function h : R+ → R+ with

1 ≤ h(x) ≤ x and set

η
(h)
k = a

(h)
k

(
sup

k/h(k)≤t≤k

W(t)√
t
− b

(h)
k

)

where

a
(h)
k = (2 log log h(k))1/2 and b

(h)
k = a

(h)
k +

log log log h(k)− log 4π

2a
(h)
k

Then a slightly more general form of the Darling-Erdős theorem yields

η
(h)
k

d−→ G. (3.23)

An a.s. version of the last theorem was obtained in Berkes and Weber [18] who showed

that
1

DN

N∑

k=1

dkf(η
(h)
k ) →

∫ ∞

−∞
f(x) dG(x) a.s., (3.24)
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where the weights dk depend on the function h: the slower h grows, the stronger

summation method is required in (3.24). The dependence of the weights dk on h is

rather involved, so we consider a simple special case, e.g. h(x) = e(log x)α
, 0 < α < 1.

Letting

η
(h)
k,l =





a
(h)
l

(
supRl≤t≤l

W(t)−W(k)√
t

− b
(h)
l

)
if k ≤ Rl

0 otherwise,

with Rl = l/h(l), in Berkes and Weber [18] it is shown that the analogue of (3.20)

for η
(h)
l , η

(h)
k,l holds with ck = e2(log k)1−α

. We can now apply Theorem 3.2 and get

(3.24) with the natural weights d∗k = 1
k(log k)α . By Zygmund’s theorem this summation

is equivalent to log summation, which is exactly the result derived in [18]. But

Theorem 3.2 shows that we can use also the summation defined by DN = e(log N)γ

with 0 < γ < 1− α, giving a stronger result.

In our previous considerations we dealt with the Darling-Erdős theorem for the Wiener

process, but with a simple invariance argument like in [9], [18], [100], we can extend

the results for partial sums of independent random variables with mean 0, variance 1

and uniformly bounded (2 + δ)-th moments.

3.3 Proofs

In what follows, we will give the proof of Theorem 3.1; the proof of Theorem 3.2

is very similar. We first prove some preparatory lemmas. Let f be a Lipschitz 1

function with |f | ≤ 1 and put for 1 ≤ k < l

ξl := f (gl(X1, . . . , Xl))− Ef (gl(X1, . . . , Xl))

ξk,l := f (gk,l(Xk+1, . . . , Xl))− Ef (gk,l(Xk+1, . . . , Xl)) ,
(3.25)

where (Xk) is a sequence of independent random variables and gl : Rl → R and

gk,l : Rl−k → R are measurable functions. Here, and in the sequel, the constants c, α,

etc. depend only on the sequences (Xk), (gl), (gk,l) and f . Constants like Cp, Ep will
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depend on the parameter p as well.

Lemma 3.1. Define ξl and ξk,l as in (3.25) and assume that (3.9) holds. If (dk) is a

numerical sequence satisfying (3.11), then we have for any k ≤ m ≤ n and p ∈ N

E

∣∣∣∣∣
n∑

l=m

dl(ξl − ξk,l)

∣∣∣∣∣

p

≤ Ep

(
ck

cm

)β
(

n∑

l=m

dlc
−β
l

(
l∑

k=1

dkc
β
k

))p/2

,

where

Ep = Kppp/2,

with some constant K.

Proof. We set Q(l) = Q(k, l) = ξl − ξk,l. Trivially |Q(l)| ≤ 4 and thus

E|Q(l)|p ≤ 4p−1E|Q(l)| ≤ 2 · 4p−1E|f(gl(X1, . . . , Xl))− f(gk,l(Xk+1, . . . , Xl))|

≤ const · 4pE (|gl(X1, . . . , Xl)− gk,l(Xk+1, . . . , Xl)| ∧ 1) .

By (3.9) we get thus

E|Q(l)|p ≤ K0 · 4p(ck/cl)
β,

with some K0 > 0. Using the Hölder and the Cauchy-Schwarz inequality we get,

setting d∗l = log(cl+1/cl),

E

∣∣∣∣∣
n∑

l=m

dl(ξl − ξk,l)

∣∣∣∣∣

p

≤
n∑

l1=m

· · ·
n∑

lp=m

dl1 · · · dlp (E|Q(l1)|p · · ·E|Q(lp)|p)1/p

≤ K0 · 4pcβ
k

n∑

l1=m

· · ·
n∑

lp=m

dl1 · · · dlp c
−β/p
l1

· · · c−β/p
lp

= K0 · 4pcβ
k

(
n∑

l=m

dlc
−β/p
l

)p

≤ K0 · 4pcβ
k

(
n∑

l=m

d2
l (d

∗
l )
−1

)p/2 (
n∑

l=m

c
− 2β

p

l log(cl+1/cl)

)p/2

.

Since (ck) is nondecreasing, for any γ > 0 we have, setting uk = log ck,

n−1∑

k=1

eγuk(uk+1 − uk) ≤
∫ un

u1

eγx dx ≤
n−1∑

k=1

eγuk+1(uk+1 − uk). (3.26)
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By (3.11) and (3.12) we have d∗k = log(ck+1/ck) → 0 , i.e. ck+1/ck → 1 and thus (3.26)

yields
n∑

k=1

cγ
k log(ck+1/ck) ∼ 1

γ
cγ
n (γ > 0, n →∞). (3.27)

A similar argument yields for γ < 0

∞∑

k=n

cγ
k log(ck+1/ck) ∼ 1

|γ|c
γ
n (γ < 0, n →∞). (3.28)

Hence (3.11) and (3.27) imply that

l∑

k=1

dkc
β
k À

dl

d∗l c
β
l

l∑

k=1

d∗kc
2β
k À dl

d∗l
cβ
l .

Thus there is some K1 > 0 with

n∑

l=m

d2
l (d

∗
l )
−1 ≤ K1

n∑

l=m

dlc
−β
l

(
l∑

k=1

dkc
β
k

)
.

On the other hand, (3.28) implies that

n∑

l=m

c
− 2β

p

l log(cl+1/cl) ≤ K2 · p

2β
· c−

2β
p

m ,

with K2 > 0. This completes the proof of Lemma 3.1.

The crucial step of the proof of Theorem 3.1 is the following moment inequality:

Lemma 3.2. Assume that X1, X2, . . . are independent r.v.’s and assume that (3.9)-

(3.12) hold. Then for every p ∈ N we have

E

∣∣∣∣∣
N∑

k=1

dk {f(gk(X1, . . . , Xk))− Ef (gk(X1, . . . , Xk))}
∣∣∣∣∣

p

≤ Cp

( ∑

1≤k≤l≤N

dkdl

(
ck

cl

)β
)p/2

,

(3.29)

where Cp > 0 is a constant.
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Proof. Again we use notation (3.25) and set

Vm,n :=
n∑

l=m

dlc
−β
l

(
l∑

k=1

dkc
β
k

)
(1 ≤ m ≤ n).

Further we put

Cp = (4γ)p2

. (3.30)

We show that if the number γ is chosen large enough, then

E

∣∣∣∣∣
n∑

k=m

dkξk

∣∣∣∣∣

p

≤ Cp(Vm,n)p/2 for all 1 ≤ m ≤ n. (3.31)

Since V1,N equals the double sum on the right hand side of (3.29), this will prove

Lemma 3.2. We use induction on p.

First observe that ξk and ξk,l are independent for 1 ≤ k < l. Therefore from |ξk| ≤ 2

and the Lipschitz 1 continuity of f we get

|Eξkξl| = |Eξk(ξl − ξk,l)| ≤ 2E|ξl − ξk,l|

≤ K3E(|gl(X1, . . . , Xl)− gk,l(Xk+1, . . . , Xl)| ∧ 1),

for some K3 > 0. Together with (3.9) we get

E

(
n∑

k=m

dkξk

)2

≤ 2
∑

m≤k≤l≤n

dkdl|Eξkξl|

≤ 2K3A
∑

m≤k≤l≤n

dkdl

(
ck

cl

)β

≤ 2K3AVm,n.

Hence if we choose γ so large that (4γ)4 ≥ 2K3A, then (3.31) holds for p = 2.

Assume now that (3.31) is true for p − 1 ≥ 2. From dk À d∗k = log(ck+1/ck) and

(3.27) it follows that there is a positive constant K4 such that

l∑

k=1

dkc
β
k ≥ K4c

β
l .
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Now choose γ so large that the Cp defined in (3.30) satisfies Cp > (2/K4)
pγp/2. Then

using |ξl| ≤ 2 we get for Vm,n ≤ γ

∣∣∣∣∣
n∑

l=m

dlξl

∣∣∣∣∣ ≤ (2/K4)
n∑

l=m

dlc
−β
l

(
l∑

k=1

dkc
β
k

)
= (2/K4)Vm,n ≤ (2/K4) γ1/2V 1/2

m,n.

Hence in the case Vm,n ≤ γ relation (3.31) is valid. We now show that if X ≥ γ is

arbitrary and (3.31) holds for Vm,n ≤ X, then it will also hold for Vm,n ≤ 3X/2. As

the validity of (3.31) is already verified for Vm,n ≤ γ, this will show that (3.31) holds

for any value of Vm,n, and this will complete the induction step.

Assume Vm,n ≤ 3X/2 and set

S1 + S2 :=
w∑

k=m

dkξk +
n∑

k=w+1

dkξk (m ≤ w ≤ n).

Put further

T2 :=
n∑

k=w+1

dkξw,k.

For a fixed m and n we choose w in such a way that

Vm,w ≤ X, Vw+1,n ≤ X and
Vw+1,n

Vm,w

= λ ∈ [1/2, 1].

To see that this is possible, we have to show that for every choice of 1 ≤ m < n with

Vm,n ≥ X there is some w ∈ {m + 1, . . . , n} with

1

2
Vm,n ≤ Vm,w ≤ 2

3
Vm,n. (3.32)

We define w := min{k ≥ m : (1/2)Vm,n ≤ Vm,k}. Then (3.32) will follow if we show

that the increment Vm,w − Vm,w−1 ≤ 1/6Vm,n. But from (3.10) we get

Vm,w − Vm,w−1 = dwc−β
w

(
w∑

k=1

dkc
β
k

)
¿ dwc−β

w

Dw

(log Dw)ρ

w∑

k=1

d∗kc
β
k

¿ dwDw/(log Dw)ρ,

where we used again (3.27) in the last step. Since by assumption (3.12) the last term

is bounded, and since Vm,n ≥ X ≥ γ the result follows for sufficiently large γ.
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Now we prove that

E|S1 + S2|p ≤ Cp(Vm,n)p/2.

To do so, we need some simple inequalities.

From the mean value theorem we get

|S j
2 − T j

2 | ≤ j |S2 − T2|(|S2|j−1 + |T2|j−1) (j ≥ 1). (3.33)

Using Lemma 3.1 and the assumption that (ck) is nondecreasing we get for all j ≥ 1

E|S2 − T2|j ≤ Ej(Vw+1,n)j/2.

We also have

E|S1|j ≤ Cj(Vm,w)j/2 (1 ≤ j ≤ p) (3.34)

and

E|S2|j ≤ Cj(Vw+1,n)j/2 ≤ Cjλ
j/2(Vm,w)j/2 (1 ≤ j ≤ p). (3.35)

For 1 ≤ j ≤ p− 1 the last two inequalities are valid by the induction hypothesis, and

for j = p they follow from the validity of (3.31) for Vm,n ≤ X. Hence Minkowski’s

inequality yields

E|T2|j ≤ 2jCjλ
j/2(Vm,w)j/2 (1 ≤ j ≤ p). (3.36)

Finally combining the Hölder inequality with the latter results shows for 1 ≤ j ≤ p−1

E|S1|j|S2 − T2||S2|p−j−1 ≤ (E|S1|p)j/p (E|S2 − T2|p)1/p (E|S2|p)(p−j−1)/p

≤ C (p−1)/p
p E1/p

p λ(p−j)/2(Vm,w)p/2. (3.37)

The last inequality remains valid, with an extra factor 2p−j−1 on the right hand

side, if |S2|p−j−1 on the left hand side is replaced by |T2|p−j−1. Since S1 and T2 are

independent, we get by the binomial formula and the triangle inequality

E |S1 + S2|p ≤ E|S1|p + E|S2|p

+

p−1∑
j=1

(
p

j

)
(E|S1|j|S p−j

2 − T p−j
2 |+ E|S1|j E|T2|p−j) .
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We substitute (3.33) and (3.34)–(3.37) (using also the analogue of (3.37) with

|T2|p−j−1) in the above inequality and get

E|S1 + S2|p ≤ Cp(Vm,w)p/2

(
1 + λp/2 + C −1/p

p E1/p
p

p−1∑
j=1

2 p−j

(
p

j

)
(p− j)λ(p−j)/2

+ C −1
p

p−1∑
j=1

2p−jλ(p−j)/2

(
p

j

)
Cj Cp−j

)
.

Now

C−1/p
p E1/p

p ≤ K · p1/2(4γ)−p, CjCp−j/Cp ≤ (4γ)−p (1 ≤ j ≤ p− 1)

and thus by λ ≤ 1

C−1/p
p E1/p

p

p−1∑
j=1

2 p−j

(
p

j

)
(p− j)λ(p−j)/2 ≤ const · p 3/2γ −p

and

C−1
p

p−1∑
j=1

2p−jλ(p−j)/2

(
p

j

)
Cj Cp−j ≤ const · γ −p.

Since λ ≥ 1/2 we see that for a large enough γ the relation E|S1 + S2|p ≤ Cp (1 +

λ)p/2 (Vm,w)p/2 = Cp(Vm,n)p/2 is true. Thus we proved the validity of (3.31) for Vm,n ≤
3X/2 and the proof of Lemma 3.2 is completed.

The following lemma estimates the double sum appearing on the right hand side of

(3.29).

Lemma 3.3. Assume that (3.10) holds, then for any β > 0 and any η < ρ we have

∑

1≤k≤l≤N

dkdl

(
ck

cl

)β

= O

(
D2

N

(log DN)η

)
.

Proof. By the monotonicity of (ck) we have

∑

1≤k≤l≤N

dkdl

(
ck

cl

)β

≤
∑

1≤l≤N

ck≤cl/(log DN )ρ/β

dkdl

(
ck

cl

)β

+
∑

1≤l≤N

cl/(log DN )ρ/β<ck≤cl

dkdl =: σN + τN .
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Clearly σN ≤ D2
N(log DN)−ρ and by (3.10)

τN ¿
∑

1≤l≤N

dl

∑

cl/(log DN )ρ/β<ck≤cl

d∗k
Dk

(log Dk)ρ

¿ DN

(log DN)ρ

∑

1≤l≤N

dl

∑

cl/(log DN )ρ/β<ck≤cl

log(ck+1/ck) ¿ D2
N

(log DN)ρ
log log DN .

Proof of Theorem 3.1. We use notation (3.25). From Lemmas 3.2–3.3 and the Markov

inequality we derive for any ε > 0, p ∈ N,

P

(∣∣∣∣∣
N∑

k=1

dkξk

∣∣∣∣∣ > εDN

)
≤ c(p, ε)(log DN)−pη/2 for N ≥ N0.

By (3.12) we get dk → 0 and consequently DN+1/DN → 1. Thus we can choose

an increasing sequence (Nj) of positive integers such that DNj
∼ exp(

√
j). Hence

choosing p > 4/η and using the Borel-Cantelli lemma we get

lim
j→∞

1

DNj

Nj∑

k=1

dkξk = 0 a.s.

For Nj ≤ N < Nj+1 we have by |ξk| ≤ 2

1

DN

∣∣∣∣∣
N∑

k=1

dkξk

∣∣∣∣∣ ≤
1

DNj

∣∣∣∣∣∣

Nj∑

k=1

dkξk

∣∣∣∣∣∣
+ 2

(
DNj+1

DNj

− 1

)
.

Since DNj+1
/DNj

→ 1, the convergence of the subsequence implies that the whole

sequence converges a.s.

We have proved Theorem 3.1 for all bounded Lipschitz functions f . The result for

indicator functions follows by routine approximation arguments, similar e.g. to those

in [69].



Chapter 4

Generalized moments in a.s.
central limit theory

4.1 Introduction and results

Let X1, X2, . . . be i.i.d. random variables with EX1 = 0, EX2
1 = 1. By a slightly more

general version of the ASCLT (implicit in Lacey and Philipp [69]) we have, letting

φ(x) = (2π)−1/2 exp(−x2/2),

lim
N→∞

1

log N

N∑

k=1

1

k
f

(
Sk√
k

)
=

∫ ∞

−∞
f(x)φ(x) dx a.s. (4.1)

for every bounded and almost everywhere continuous function f . The assumption

that f is a.e. continuous cannot be replaced solely by the measurability of f , as an

example of Schatte [96] shows. The validity of (4.1) for unbounded f is of major

interest in the theory: for f(x) = xp this expresses convergence of moments in the

ASCLT and for this reason, the left hand side of (4.1) is called a generalized moment.

Clearly, a necessary condition for (4.1) is

∫

R
|f(x)φ(x)| dx < ∞. (4.2)

As Ibragimov and Lifshits [63, Example 3] pointed out, condition (4.2) is not sufficient:

there is a continuous function f satisfying (4.2) such that the ASCLT fails even for a
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Bernoulli sequence (Xn). The reason for this failure lies in the very irregular shape

of the specific f . Ibragimov and Lifshits [63] also showed, improving earlier results

of Schatte [97] and Berkes, Csáki and Horváth [10], that relation (4.1) holds if (4.2)

is valid and f satisfies minor regularity conditions, e.g. if f(|x|)e−cx2
is nonincreasing

for some c > 0. This result lies much deeper than the ordinary ASCLT; its proof

depends on delicate fluctuation properties of i.i.d. random variables. The argument

fails for general independent sequences (Xn) and generalized moment behavior in a.s.

central limit theory remains open. The purpose of the present chapter is to give an

essentially complete solution of this problem. Our results will show the surprising

fact that for an independent sequence (Xn), the validity of a relation of type (4.1) for

a sufficiently large class of f ’s is closely related to the LIL behavior of Xn, revealing

a new, unexpected side of ASCLT theory.

Before we present our results, we formulate the following theorem of Atlagh [2] and

Ibragimov and Lifshits [64] expressing the ASCLT for independent, not identically

distributed random variables.

Theorem C. Let X1, X2, . . . be independent random variables with zero mean and

finite variances. Set Sn = X1 + · · ·+ Xn ,s2
n = ES2

n and σ2
n = EX2

n. If the Lindeberg

condition (1.6) holds then

lim
n→∞

1

log s2
n

N∑

k=1

σ2
k+1

s2
k

I

{
Sk

sk

≤ z

}
= Φ(z) a.s.

As in the previous sections, we write log x for log(x∨e) and log log x for log(log x∨e).

In the sequel Sn will denote the partial sums of a sequence (Xn) and s2
n = Var Sn.

Theorem 4.1. Let X1, X2, . . . be independent random variables with zero mean and

finite variances. Suppose that sn →∞ and that (Xn) satisfies Kolmogorov’s condition

for the LIL, i.e.

|Xn| ≤ εnsn/(log log sn)1/2 (4.3)

with a positive numerical sequence εn → 0. Then for every almost everywhere con-

tinuous function f satisfying

|f(x)| = O(exp(γx2)) for some γ < 1/2 (|x| → ∞), (4.4)
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we have

lim
n→∞

1

log s2
n

n∑

k=1

σ2
k+1

s2
k

f

(
Sk

sk

)
=

∫

R
f(x)φ(x) dx. (4.5)

Theorem 4.1 is sharp as our next result shows.

Theorem 4.2. For every ε > 0 there exists a sequence (Xn) of symmetric, bounded

random variables such that we have sn →∞,

|Xn| ≤ εsn/(log log sn)1/2 (4.6)

and for f(x) = exp(γx2) with some 0 < γ < 1/2 we have

lim sup
n→∞

1

log s2
n

n∑

k=1

σ 2
k+1

s2
k

f

(
Sk

sk

)
= +∞ a.s.

If we strengthen Kolmogorov’s condition (4.3), the result of Theorem 4.1 will hold

for a larger class of functions f .

Theorem 4.3. Let X1, X2, . . . be independent random variables with zero mean and

finite variances and assume that sn →∞. Further assume that

|Xk| ≤ εksk/(log log sk)
3/2

with a positive numerical sequence εk → 0. If f(x) is an almost everywhere continuous

function on R such that |f(x)| ≤ ex2/2b(x) with some positive function b such that

log b(x) is uniformly continuous on R and
∫
R b(x) dx < ∞, then (4.5) holds.

The assumption that log b(x) is uniformly continuous is not necessary and can be

replaced by other conditions. In [10] it is shown that if b(x) > 0 for all x ∈ R and

if b(x) and b(−x) are non-increasing for x > 0 and
∫

R
b(x) dx < ∞, then there is a

function b∗ on R such that b(x) ≤ b∗(x) for all x, log b∗ is uniformly continuous on R
and

∫
R

b∗(x) dx < ∞.

The following theorems will give sharp conditions for the validity of (4.5) for un-

bounded random variables Xn.
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Theorem 4.4. Let X1, X2, . . . be independent random variables with zero mean and

finite variances. Set σ2
n = Var Xn and assume that

sn →∞ and σn+1 = o
(
sn/(log log sn)1/2

)
. (4.7)

Let S(t) = Sn if s2
n ≤ t < s2

n+1 n = 0, 1, . . . and assume that there exists a Wiener

process {W (t), t ≥ 0} on the same probability space such that

S(t) = W (t) + o(t1/2) a.s. (t →∞). (4.8)

If f is an a.e. continuous function satisfying (4.4), then relation (4.5) holds.

Again, this result is sharp in the sense that condition (4.8) cannot be weakened to

S(t) = W (t) + o(t1/2ψ(t)) a.s.

for any function ψ(t) ↗∞.

Theorem 4.5. Let X1, X2, . . . be independent random variables with zero mean and

finite variances. Set S(t) = Sn if s 2
n ≤ t < s 2

n+1 (n ≥ 1). The a.s. approximation

S(t) = W (t) + o
(
t1/2ψ(t)

)
a.s. (4.9)

with some ψ(t) ↗∞ and the additional regularity assumptions (4.7) and the central

limit theorem

P (Sn/sn ≤ x) → Φ(x) (4.10)

do not imply Theorem 4.4 even for polynomial f .

By a theorem of Major [78], Kolmogorov’s condition (4.3) implies that we can redefine

S(t) on a new probability space together with a Wiener process {W (t), t ≥ 0} such

that

S(t) = W (t) + o(t log log t)1/2 a.s. (4.11)

Since the last condition is still sufficient for the validity of the LIL for (Xn), it is

natural to ask if Kolmogorov’s condition (4.3) in Theorem 4.1 can be replaced by

(4.11). As Theorem 4.5 above shows, the answer is negative.

Strengthening the remainder term in (4.8) leads to a larger class of functions in (4.5).
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Theorem 4.6. Let X1, X2, . . . be independent random variables with zero mean and

finite variances. Define S(t) = Sn if s2
n ≤ t < s2

n+1, n = 1, 2, . . .. Assume that (4.7)

holds and that there exists a standard Wiener process {W (t), t ≥ 0} on the same

probability space such that

S(t) = W (t) + o(t/log log t)1/2 a.s. (t →∞). (4.12)

Then if f(x) is an almost everywhere continuous function on R satisfying the condi-

tions of Theorem 4.3, relation (4.5) holds.

We note that conditions (4.8) and (4.12) imply the ordinary CLT for the partial sums

Sn = X1 + · · · + Xn. In our next theorem we assume that the CLT is valid. As a

further assumption we require an exponential bound for large deviations of Sn, which

is e.g. implied by Kolmogorov’s LIL condition (4.3).

Theorem 4.7. Let X1, X2, . . . be independent random variables with zero mean and

finite variances. Set s2
n = Var Sn and assume that

sn →∞ and σn = o(sn). (4.13)

Assume further that (4.10) is valid and that

P (Sn ≥ x) ≤ exp

(
− x2

2s 2
n

(1− εn)

)
for 0 ≤ x ≤ K(s 2

n log log s 2
n)1/2, (4.14)

where εn = o(1) and K > 0. Then (4.5) holds for any almost everywhere continuous

function f : R→ R satisfying (4.4).

4.2 Proofs

Lemma 4.1. Assume (4.5) is valid for indicator functions of intervals and for a fixed

a.e. continuous function f0. Then (4.5) is also true for all a.e. continuous functions

f with |f(x)| ≤ |f0(x)|, x ∈ R.

Proof. We refer to Schatte [97, Section 2.3] where a similar result is proved.
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Lemma 4.2. Let f(x) be a real valued and integrable function with
∫

R
|f(x)| dΦ(x) <

∞. Then

lim
N→∞

1

log N

∫ N

1

1

t
f

(
W (t)√

t

)
dt =

∫

R

f(x) dΦ(x) a.s.

Proof. This follows from the ergodic theorem by using the substitution t = es:

1

log N

∫ N

1

1

t
f

(
W (t)√

t

)
dt =

1

log N

∫ log N

0

f (U(s)) ds → Ef(U(0)) a.s.,

where U(s) = W (es) e−s/2 is the Ornstein-Uhlenbeck process.

Lemma 4.3. Let f(x) = ex2/2b(x) with some positive function b such that log b(x) is

uniformly continuous on R and
∫
R b(x) dx < ∞. Under the conditions of Theorem 4.6

we have ∫ s 2
k+1

s 2
k

1

t
f

(
W (t)√

t

)
dt ∼ σ 2

k+1

s 2
k

f

(
Sk

sk

)
a.s. (k →∞).

Proof. We show that almost surely

∫ s 2
k+1

s 2
k

1

t
f

(
W (t)√

t

)
dt ∼

∫ s 2
k+1

s 2
k

1

t
f

(
S(t)√

t

)
dt ∼

∫ s 2
k+1

s 2
k

1

s 2
k

f

(
Sk

sk

)
dt. (4.15)

From (4.12) we conclude that there is a function ε(t) = ε(t, ω) ≥ 0 with ε(t) → 0 a.s.

for t →∞ such that
∣∣∣∣
S(t)√

t
− W (t)√

t

∣∣∣∣ = ε(t)(log log t)−1/2 , (4.16)

and hence
∣∣∣∣
S 2(t)

t
− W 2(t)

t

∣∣∣∣ ≤ ε(t)(log log t)−1/2

(∣∣∣∣
S(t)√

t

∣∣∣∣ +

∣∣∣∣
W (t)√

t

∣∣∣∣
)

. (4.17)

Note that (4.12) implies the LIL for S(t), and thus the right hand side of (4.17) tends

to zero almost surely as t →∞. Since we have

f
(

W (t)√
t

)

f
(

S(t)√
t

) = exp

(
log b

(
W (t)√

t

)
− log b

(
S(t)√

t

))
exp

(
W 2(t)

2t
− S 2(t)

2t

)
,
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we conclude from the uniform continuity of log b that

lim
k→∞

sup
t∈[s 2

k ,s 2
k+1]

f
(

W (t)√
t

)

f
(

S(t)√
t

) = 1 a.s. (4.18)

Relation (4.18) remains valid if we replace the supremum by an infimum. This proves

the first part in (4.15).

In order to obtain the second part of (4.15) we first note that by (4.7) we have

s 2
k+1 ∼ s 2

k . Hence it suffices to show relation (4.18) with W (t)/
√

t replaced by Sk/sk.

Now the reasoning in the proof is similar to the previous arguments.

Proof of Theorem 4.6. From (4.12) we get the central limit theorem (4.10) for the

process X1, X2, . . ., and thus Theorem C implies that the ASCLT (4.5) holds for

indicator functions f . Thus using Lemma 4.1 it suffices to prove Theorem 4.6 for

a function f(x) = b(x)ex2/2, where b satisfies the conditions in Theorem 4.6. From

Lemma 4.2 and Lemma 4.3 we get a.s. for N →∞

log s 2
N

∫

R

f(x) dΦ(x) ∼
N∑

k=1

∫ s 2
k+1

s 2
k

1

t
f

(
W (t)√

t

)
dt ∼

N∑

k=1

σ 2
k+1

s 2
k

f

(
Sk

sk

)
,

which completes the proof.

Proof Theorem 4.4. The strong approximation (4.8) yields an almost surly finite ran-

dom variable t0(ω, ε) such that for t ≥ t0
∣∣∣∣
S(t)√

t

∣∣∣∣ ≤
∣∣∣∣
W (t)√

t

∣∣∣∣ + ε.

Let f(x) = exp(γx2), γ < 1/2. Obviously

1

log N

∫ N

1

1

t
f

(
S(t)√

t

)
dt

≤ 1

log N

∫ t0

1

1

t
f

(
S(t)√

t

)
dt +

1

log N

∫ N

1

1

t
f

(∣∣∣∣
W (t)√

t

∣∣∣∣ + ε

)
dt.

From Lemma (4.2) we conclude that

lim sup
N

1

log N

∫ N

1

1

t
f

(
S(t)√

t

)
dt ≤

∫

R
exp(γ(|x|+ ε)2) dΦ(x) a.s.
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If ε → 0, the integral on the right hand side tends to
∫
R exp(γx2) dΦ(x). A similar

computation in the other direction gives

1

log N

∫ N

1

1

t
f

(
S(t)√

t

)
→

∫

R
exp(γx2) dΦ(x) a.s.

It is easy to show that

(1− δk)
σ 2

k+1

s 2
k

f

(
Sk

sk+1

)
≤

∫ s 2
k+1

s 2
k

1

t
f

(
Sk√

t

)
≤ (1 + δk)

σ 2
k+1

s 2
k

f

(
Sk

sk

)
,

where δk = o(1). Using the explicit form of f the proof follows by simple calculations

from (4.7) and the LIL.

Proof of Theorem 4.7. In the sequel we will put

ξk :=
Sk

sk

.

For some δ > 0 we set dk = ((2 + δ)log log s 2
k )1/2 and define

ξ̂k := sign(ξk){|ξk| ∧ dk}.

By the usual argument in this theory it suffices to prove the proposition of Theorem 4.7

for a fixed function f(x) := C exp(γx2), where C > 0 and 0 < γ < 1/2. We put

In :=
1

log s 2
n

n∑

k=1

σ 2
k+1

s 2
k

f(ξk).

In an obvious way we define În. Now we have

În ≤ In ≤ În +
1

log s 2
n

n∑

k=1

σ 2
k+1

s 2
k

f(ξk)I{|ξk| > dk}. (4.19)

We first show that the event {|ξk| > dk i.o.} has probability zero and thus the last

term in (4.19) tends to zero a.s. For this purpose we define χ(n) = (2s 2
n log log s 2

n)1/2.

By (4.14) we have

P (Sn ≥ (1 + ε)1/2 χ(n)) ≤ (log s 2
n)−(1+ε′),
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for 0 < ε′ < ε if n is large enough. It is easy to show that the assumption σ 2
n/s 2

n → 0

implies that for every τ > 0 there is a subsequence (nl) such that s 2
nl+1

≥ (1+τ)l > s 2
nl

and s 2
nl
∼ (1 + τ)l, l = 1, 2, · · · . Hence

P (Snl
≥ (1 + ε)1/2χ(nl)) ≤ 2(l log(1 + τ))−(1+ε′).

By a well known maximal inequality of Kolmogorov we get for 0 < η′ < η < ε and l

large enough

P (max
n≤nl

Sn ≥ (1 + ε)1/2 χ(nl)) ≤ 2P (Snl
≥ (1 + ε)1/2χ(nl)−

√
2s 2

n)

≤ 2P (Snl
≥ (1 + η)1/2χ(nl))

≤ 4(l log(1 + τ))−(1+η′).

Thus, by the Borel-Cantelli-lemma we have for all l ≥ l0(ω)

max
n≤nl

Sn < (1 + ε)1/2χ(nl),

where l0 < ∞ a.s. For large enough l and a small τ we can ascertain that

χ(nl+1)

χ(nl)
∼ (1 + τ)1/2 < (1 + ε)1/2.

Therefore we get for nl ≤ m ≤ nl+1

Sm ≤ max
n≤nl+1

Sn < (1 + ε)1/2χ(nl+1) ≤ (1 + ε)χ(nl) ≤ (1 + ε)χ(m).

It suffices thus to show that

lim
n

În =

∫

R
f(x) dΦ(x) a.s.

First we prove the integrated version

lim
n

EÎn =

∫

R
f(x) dΦ(x). (4.20)

Observe that for some 0 < a ≤ f(dk)

∫

{f(ξ̂k)>a}
f(ξ̂k) dP =

∫

{f(dk)>f(ξk)>a}
f(ξk) dP + f(dk)P (|ξk| ≥ dk).
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Clearly the integral above is zero if a > f(dk). By (4.14) we have for small enough δ

f(dk)P (|ξk| ≥ dk) ≤ 2f(dk) exp(−d2
k(1− εk)/2)

= 2(log s 2
k )(2+δ)(γ−1/2 (1−εk)) = o(1) (k →∞).

Further we have
∫

{f(dk)>f(ξk)>a}
f(ξk) dP =

(∫ dk

(1/γ log a)1/2

+

∫ −(1/γ log a)1/2

−dk

)
eγx2

d[P (ξk ≤ x)− 1].

Product integration yields
∫ dk

(1/γ log a)1/2

eγx2

d[P (ξk ≤ x)− 1]

≤ aP (ξk ≥ (1/γ log a)1/2) + 2γ

∫ dk

(1/γ log a)1/2

xeγx2

P (ξk ≥ x) dx.

Now we can use again the tail estimate (4.14) and easy computations show that for

some constants c, µ > 0 we have for all k ≥ 1
∫

{f(dk)>f(ξk)>a}
f(ξk) dP ≤ ca−µ.

From the previous calculations we conclude that

lim
a→∞

sup
k

∫

{f(ξ̂k)>a}
f(ξ̂k) dP = 0,

hence the sequence (f(ξ̂k)) is uniformly integrable. By (4.10) ξk
d−→ N and hence

ξ̂k
d−→ N , where N is a standard normal random variable. By the uniform integra-

bility it follows that Ef(ξ̂k) → Ef(N) and this proves (4.20).

In the next step we estimate the variance of În. For 1 ≤ k ≤ l we define

ηk, l :=
Sl − Sk

sl

,

and

η̂k, l := sign(ηk, l){|ηk, l| ∧ dl} where dl = ((2 + δ)log log s 2
l )1/2,

for some δ > 0. It is clear that

|ξ̂l − η̂k, l| ≤ | ξl − ηk, l| ≤ |ξk| sk

sl

.
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Also it is obvious that f(x) decreases as |x| grows. Consequently by the independence

of ξ̂k and η̂k, l

Ef(ξ̂k)f(ξ̂l)I{|ξk| ≤ (sl/sk)
1/3} ≤ Ef(ξ̂k)f(|η̂k, l|+ |ξk|sk/sl)I{|ξk| ≤ (sl/sk)

1/3}

≤ Ef(ξ̂k) Ef(|η̂k, l|+ (sk/sl)
2/3)

≤ Ef(ξ̂k) Ef(|η̂k, l|+ (sk/sl)
2/3)I{|ξk| ≤ (sl/sk)

1/3}+ f(dk)f(dl + 1) (sk/sl)
2/3

≤ Ef(ξ̂k) Ef(|ξ̂l|+ 2(sk/sl)
2/3) + f(dk)f(dl + 1) (sk/sl)

2/3

From the convexity of f(x) we deduce

f(|ξ̂l|+ 2(sk/sl)
2/3)− f(|ξ̂l|)

≤ f(dl + 2(sk/sl)
2/3)− f(dl) ≤ 4γ(sk/sl)

2/3(dl + 2) exp(γ(dl + 2)2).

Some algebra shows that for sufficiently small δ there are constants c1, ν1 > 0 such

that

Ef(ξ̂k)f(ξ̂l)I{|ξk| ≤ (sl/sk)
1/3} ≤ Ef(ξ̂k) Ef(ξ̂l) + c1 (sk/sl)

2/3 (log s 2
l )2−ν1 . (4.21)

Applying Tschebyschev’s inequality gives

Ef(ξ̂k)f(ξ̂l)I{|ξk| > (sl/sk)
1/3} ≤ c2 (sk/sl)

2/3 (log s 2
l )2−ν2 (4.22)

for some constants c2, ν2 > 0. Combining (4.21) and (4.22) we have shown that

Cov(f(ξ̂k), f(ξ̂l)) ≤ c3(sk/sl)
2/3(log s 2

l )2−ν3 (c3, ν3 > 0). (4.23)

Hence

Var În ≤ 2

(log s 2
n)2

∑
1≤k≤l≤n

(sk/sl)≤(log s 2
n)−3

σ 2
k+1

s 2
k

σ 2
l+1

s 2
l

c3 (sk/sl)
2/3 (log s 2

l )2−ν3

+
2

(log s 2
n)2

∑
1≤k≤l≤n

(sk/sl)>(log s 2
n)−3

σ 2
k+1

s 2
k

σ 2
l+1

s 2
l

(Ef 2(ξ̂k))
1/2(Ef 2(ξ̂l))

1/2

=: V1 + V2.
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Using (4.13) we get σ 2
k+1/s

2
k ∼ log(1 + σ 2

k+1/s
2
k ) = log s 2

k+1 − log s 2
k and thus

V1 ¿ 1

(log s 2
n)ν3+2

n∑

l=1

σ 2
l+1

s 2
l

l∑

k=1

σ 2
k+1

s 2
k

¿ (log s 2
n)−ν3 ,

where an ¿ bn means that lim supn |an/bn| < ∞. Using similar ideas as before, we

see that if δ is sufficiently small then Ef 2(ξ̂l) ¿ (log s 2
l )1−ν4 for some ν4 > 0. Hence

V2 ¿ (log s 2
n)−1−ν4

∑

1≤l≤n

σ 2
l+1

s 2
l

∑

sl(log s 2
n)−3<sk≤sl

(log s 2
k+1 − log s 2

k )

¿ (log s 2
n)−ν4 log log s 2

n .

We have proved that there is a ν > 0 with

Var În ≤ const · (log s 2
n)−ν .

Now choose a positive α with αν > 1. Taking into account the growth conditions

(4.13) for s 2
n it is clear that there is a sequence (nl) such that

lα ≤ log s 2
nl

< (l + 1)α (l ≥ L), (4.24)

for α > 1. The Borel-Cantelli-lemma and (4.20) show

lim
l

Înl
=

∫

R
f(x) dΦ(x).

Since f is nonnegative, we can easily show that

|Înl
− În| ≤ − log s 2

nl

log s 2
nl+1

Înl
+

log s 2
nl+1

log s 2
nl

Înl+1
,

for nl ≤ n < nl+1. Hence from (4.24) we infer

lim
n

În =

∫

R
f(x) dΦ(x).

Proof Theorem 4.1. Kolmogorov’s condition (4.3) trivially implies the Lindeberg con-

dition (1.6) as well as (4.13). The Lindeberg condition implies the CLT (4.10). From

Petrov [88, Lemma 7.1] we deduce the exponential bound estimate (4.14). Hence the

conditions of Theorem 4.7 are valid.
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Proof Theorem 4.3. This follows directly from Sakhaneko’s Theorem A10 combined

with Theorem 4.6.

Proof of Theorem 4.2. We use a classical counterexample of Weiss [110] concerning

the law of the iterated logarithm. Let X1, X2, . . . be a sequence of independent random

variables, where

Xk = ± exp
(
k/ log2 k

)
with probability

α

2(log k + α)

and

Xk = 0 with probability 1− α

log k + α
,

where α > 0. Thus

σ 2
k ∼ exp(2k/ log2 k)

α

log k

and

s 2
k ∼

α

2
σ 2

k log2 k.

Therefore we have

|Xk| ≤
√

2/α (1 + o(1))
sk

(log log s 2
k )1/2

,

and thus by choosing α large enough we have (4.6). In [110, Theorem 1] it is shown

that with probability 1

lim sup
n

Sn

(2s 2
n log log s 2

n)1/2
> 1.

Hence there is a δ > 0 such that almost surely

Sn

sn

> ((2 + δ)log log s 2
n)1/2 (4.25)

for infinitely many n. Now let f(x) = exp(γx2) where 1
2+δ

< γ < 1/2. If now n is

large enough and satisfies (4.25), then we get some ε > 0 with

1

log s 2
n

n∑

k=1

σ 2
k+1

s 2
k

exp

(
γ

S 2
k

s 2
k

)
≥ 1

log s 2
n

σ 2
n+1

s 2
n

exp

(
γ

S 2
n

s 2
n

)
≥ nε →∞.
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Proof of Theorem 4.5. We construct a counterexample using the ideas of Lifshits [72].

We assume without loss of generality that ψ(t) ≤ (log log t)1/2 and define an integer

sequence (zn) with

zn = [ψ−1(n)] + 1 (n ≥ 1).

(As usual [x] denotes the integer part of x). By the assumption for the growth rate of

ψ is easy to see that zn ≥ exp exp(n2). Now let N1, N2, . . . be i.i.d. standard normal

random variables and let Y1, Y2, . . . be independent random variables with Yi = 0 for

i 6= zk, k ≥ 0 and

Yzk
=

{
±(zklog log zk)

1/2 with probability 1
2
(log log zk)

−3,

0 else,

such that the process (Yi) is independent from (Ni). Finally we set Xi := Ni + Yi.

First we show that (Xi) matches the conditions of Theorem 4.5. Observe that

EX2
n = 1 + zk(log log zk)

−2I{n = zk}, (4.26)

and hence for n ∈ [zk, zk+1) we get by the definition of zn that

s2
n = n +

k∑
i=1

zi(log log zi)
−2.

Since the zk are growing super exponentially only the last summand carries weight

and thus

s2
n = n(1 + εn), with 0 < εn ≤ 2(log log n)−2. (4.27)

Consequently we have

σ 2
n+1

s 2
n

∼
{

1
n

if n 6= zk − 1;

(log log n)−2 if n = zk − 1,
(4.28)

which shows (4.7). By the Markov inequality and by the definition of zn we have

P (|
n∑

k=1

Yzk
| ≥ εz1/2

n ) ¿ (εlog log zn)−2 ∀ε > 0.

Since Yi = 0 if i 6= zk, k ≥ 1 we infer that |∑n
i=1 Yi| = o(n1/2) holds in probability.

Thus assumption (4.10) also holds for the sequence (Xn). Finally we note that by the
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definition of Yi and the super exponential growth rate of (zk) there exists for every

h > 0 some n0(h) which is not random, such that

∣∣∣∣∣
n∑

i=1

Yi

∣∣∣∣∣ ≤ (1 + h)(n log log n)1/2, for all n ≥ n0. (4.29)

Clearly we can define our random variables on a probability space with
∑n

i=1 Ni =

W (n) where {W (t), t ≥ 0} is a standard Wiener process. Hence we conclude that for

t ∈ [s 2
n , s 2

n+1)

S(t) =
n∑

i=1

Ni +
n∑

i=1

Yi = W (n) + o
(
t1/2ψ(t)

)
. (4.30)

From well known properties of the fluctuation of a Wiener process (cf. Csörgő, M. and

Révész, P. [31, Theorem 1.2.1.]) we derive that for all n ≥ n0(ω), with n0 < ∞ a.s.

|W (n)−W (n(1 + εn))| ≤ 2

(
nεn

(
log

1

εn

+ log log n

))1/2

= o
(
n1/2

)
(4.31)

Now that

P ( sup
t∈[0,σ 2

n+1]

|W (s 2
n)−W (s 2

n + t)| > snψ(n)1/2)

≤ 2P (|W (s 2
n)−W (s 2

n+1)| > snψ(n)1/2)

≤ const · exp

(
−1/2

s 2
n

σ 2
n+1

ψ(n)1/2

)
,

we get by (4.28), the assumption ψ(zn) ≥ n and the Borel-Cantelli-lemma

sup
t∈[0,σ 2

n+1]

|W (s 2
n)−W (s 2

n + t)| = o(n1/2ψ(n)) a.s. (4.32)

Combining (4.31) and (4.32) this shows that

sup
t∈[s 2

n ,s 2
n+1]

|W (n)−W (t)| ≤ |W (n)−W (s 2
n)|+ sup

t∈[0,σ 2
n+1]

|W (s 2
n)−W (s 2

n + t)|

= o(n1/2ψ(n)) a.s.

which proves (4.9). We have established that (Xn) meets the conditions of Theo-

rem 4.2.
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Now we show that the ASCLT fails for X1, X2, . . . and f(x) = xm. Set

ξ(1)
n :=

1√
n

n∑
i=1

Ni and ξ(2)
n :=

1√
n

n∑
i=1

Yi.

and denote

ξn = ξ(1)
n + ξ(2)

n and ξ̂n = sign(ξn)(|ξn| ∧ ((2 + δ)log log n)1/2) (δ > 0)

and in an analogous way we define ξ̂
(1)
n and ξ̂

(2)
n . Let p > 0 be an integer. Since

(ξ̂n)2p ≥ 1

22p

(
ξ̂(1)
n + ξ̂(2)

n

)2p

,

we get by independence and symmetry of ξ̂
(1)
n and ξ̂

(2)
n

E(ξ̂n)2p ≥ 1

22p
E(ξ̂(2)

n )2p.

By (4.29) ξ̂
(2)
n = ξ

(2)
n , if n is large enough. From the symmetry of the Yi we get

E(ξ(2)
zk

)2p ≥ 1

zp
k

k∑
i=1

E|Yzi
|2p ≥ (log log zk)

p−3

and hence for p > 3 this shows that lim supn E(ξ̂n)2p = ∞. We use this result to

prove that there is a sequence (nl) such that

1

log s 2
nl

nl∑

k=1

σ 2
k+1

s 2
k

(
Sk

sk

)2p

→∞.

By (4.27) this follows from

1

log s 2
nl

nl∑

k=1

σ 2
k+1

s 2
k

ξ̂ 2p
k →∞. (4.33)

Similar estimates as in the proof of Theorem 4.7 show, that

Cov(ξ̂ 2p
k , ξ̂ 2p

l ) ≤ const · (log log s 2
l )2p

(
sk

sl

)2/3

,

and consequently that

Var

(
1

log s 2
n

n∑

k=1

σ 2
k+1

s 2
k

ξ̂ 2p
k

)
→ 0.
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Hence ∣∣∣∣∣
1

log s 2
n

n∑

k=1

σ 2
k+1

s 2
k

ξ̂ 2p
k − 1

log s 2
n

n∑

k=1

σ 2
k+1

s 2
k

Eξ̂ 2p
k

∣∣∣∣∣
P−→ 0,

which assures almost sure convergence along a subsequence. Since Eξ̂ 2p
k →∞ we get

(4.33).



Chapter 5

Upper-lower class tests for
martingales

5.1 Introduction

Let X1, X2, . . . be independent random variables with mean 0 and finite variances and

let Sn =
∑n

k=1 Xk, s2
n =

∑n
k=1 EX2

k . By Kolmogorov’s law of the iterated logarithm

(Theorem A2), if

|Xn| ≤ λnsn/(log log s2
n)1/2

with a positive numerical sequence λn → 0, then

lim sup
n→∞

(2s2
n log log s2

n)−1/2Sn = 1 a.s.

A much more refined result was proved by Feller [44], who showed that if

|Xn| ≤ Ksn/(log log s2
n)3/2 (5.1)

and ϕ : R+ → R+ is a nondecreasing function, then

P{Sn > snϕ(sn) i.o.} = 0 or 1 (5.2)

80
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according as

I(ϕ) :=

∫ ∞

1

t−1ϕ(t)e−ϕ(t)2/2dt < ∞ or = ∞. (5.3)

Condition (5.1) is best possible: replacing it by

|Xn| ≤ Knsn/(log log s2
n)3/2

with any fixed sequence Kn →∞, the test (5.2)–(5.3) becomes generally false.

Using truncation, the above result extends easily for sequences (Xn) of unbounded

r.v.’s. For example, Feller showed that the test (5.2)–(5.3) remains valid if we replace

(5.1) by
∞∑

k=1

s−2
k (log log sk)

3EX2
kI{|Xk| ≥ Msk/(log log sk)

3/2} < ∞, (5.4)

for some positive constant M . This condition is obviously satisfied if (5.1) holds

and covers also a large class of unbounded sequences, but condition (5.4) is far from

optimal. For example, in the case of i.i.d. sequences (Xn) relation (5.4) requires

EX2
1 (log |X1|)α < ∞ for some α > 1, which is too strong. Using a more delicate

truncation argument, Feller [45] showed that if Xn are i.i.d. random variables with

mean 0 and finite variance, then the test (5.2)–(5.3) is valid provided

EX2
1I{|X1| > t} = O((log log t)−1,

and the last condition is best possible. In particular, the test holds if

EX2
1 log log |X1| < ∞. (5.5)

The previous results give a fairly complete description of the upper-lower class behav-

ior of independent random variables. Using strong approximation methods, Strassen

[103] was the first to extend Feller’s results for dependent random variables. Let

{Xn, Fn, n ≥ 1} be a martingale difference sequence with finite second moments

and let Sn = X1 + · · · + Xn, s2
n =

∑n
k=1 E[X2

k |Fk−1]. Strassen proved that the test

(5.2)–(5.3) remains valid if s2
n →∞ a.s. and

∞∑

k=1

s−2
k (log sk)

5E[X2
kI{|Xk| > sk/(log sk)

5}|Fk−1] < ∞ a.s.
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The last relation is similar to (5.4), but it is considerably more restrictive. Strassen’s

result was improved gradually by Jain, Jogdeo and Stout [65], Philipp and Stout [91]

and Einmahl and Mason [38]. The last authors proved that the test (5.2)–(5.3)

remains valid if condition (5.1) holds, a result which is obviously optimal. By trun-

cation, this implies the test (5.2)–(5.3) under the conditional version of (5.4), i.e.

∞∑

k=1

s−2
k (log log sk)

3E[X2
kI{|Xk| ≥ Msk/(log log sk)

3/2}|Fk−1] < ∞ a.s.

with some M > 0. Similar criteria are given in Jain, Jogdeo and Stout [65] and

Philipp and Stout [91], but they are all far from optimal. For example, Theorem 3.1

of Jain, Jogdeo and Stout [65] implies (see their Remark 2) that the test (5.2)–(5.3)

holds for stationary, ergodic martingale difference sequences {Xn,Fn, n ≥ 1} under

EX2
1 log |X1|(log log |X1|)2 < ∞. (5.6)

In analogy with the i.i.d. case, it is natural to expect that in the stationary case

Feller’s condition (5.5) suffices for the test (5.2)–(5.3), but this conjecture remained

open until today.

The purpose of this chapter is to give an upper-lower class test for unbounded martin-

gale difference sequences which not only improves earlier results in the field, but it is

essentially optimal. In particular, we will prove that for stationary ergodic martingale

difference sequences Feller’s condition (5.5) implies the test (5.2)–(5.3).

Theorem 5.1. Let {Xn,Fn, n ≥ 1} be a martingale difference sequence with Fn =

σ(X1, . . . , Xn), finite variances and assume that s2
n :=

∑n
k=1 E[X2

k |Fk−1] → ∞ a.s.

Let Sn = X1 + · · ·+Xn, B2
n =

∑n
k=1 EX2

k , f(k) = Bk/(log log Bk)
1/2 and assume that

the following conditions hold:

(a)
∑∞

n=1 f(n)−4EX4
nI{|Xn| ≤ δf(n)} < ∞ for some δ > 0;

(b)
∑∞

n=1 f(n)−1E|Xn|I{|Xn| ≥ εf(n)} < ∞ for all ε > 0;

(c) B−2
n

∑n
k=1 X2

k → 1 a.s.

Then for any positive, nondecreasing function ϕ the test (5.2)–(5.3) holds.
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Theorem 5.2. Let {Xn,Fn, n ≥ 1} be a stationary ergodic martingale difference

sequence with

EX2
1 log log |X1| < ∞.

Then for any positive, nondecreasing function ϕ the test (5.2)–(5.3) holds.

5.2 Preliminary lemmas

We start with defining a truncated MDS {X∗
k ,F∗

k , n ≥ 1} as follows:

X∗
k = XkI{|Xk| ≤ δf(k)} − E[XkI{|Xk| ≤ δf(k)}|F∗

k−1],

where

f(k) = Bk/(log log Bk)
1/2,

with the usual convention log log x := log(log min{x, e2}). Here the filtration F∗
k =

σ(X∗
1 , . . . , X

∗
k) if k ≥ 1 and F∗

0 = {∅, Ω}. Denote by S∗n the partial sum X∗
1 + · · ·+X∗

n

and similar to s2
n set

s∗n
2 =

n∑

k=1

E[X∗
k

2|F∗
k−1].

Finally let X∗∗
k = Xk −X∗

k and define S∗∗n = X∗∗
1 + · · ·+ X∗∗

n . First we observe that

|E[XkI{|Xk| ≤ δf(k)}|F∗
k−1]| = |E[XkI{|Xk| > δf(k)}|F∗

k−1]| a.s. (5.7)

Since

E[Xk|F∗
k−1] = E[XkI{|Xk| ≤ δf(k)}|F∗

k−1] + E[XkI{|Xk| > δf(k)}|F∗
k−1],

(5.7) will follow, once we show that

E[Xk|F∗
k−1] = 0 a.s.

Since (Xk) is an MDS, we know that

E[Xk|Fk−1] = 0 a.s. (5.8)
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By the definition of a conditional expected value we have
∫

A

Xk dP =

∫

A

E[Xk|F∗
k−1] dP for all A ∈ F∗

k−1.

Since F∗
k ⊂ Fk it follows from (5.8) that

∫

A

E[Xk|F∗
k−1] dP = 0 for all A ∈ F∗

k−1,

and consequently that E[Xk|F∗
k−1] = 0 a.s.

From now on an ∼ bn means an/bn → 1 for n →∞.

Lemma 5.1. Under condition (b) we have

f(n)−2

n∑

k=1

X2
kI{|Xk| > δf(k)} → 0 a.s.

Proof. We have

n∑

k=1

X2
kI{|Xk| > δf(k)} ≤ sup

k≤n
|Xk|I{|Xk| > δf(k)}

n∑

k=1

|Xk|I{|Xk| > δf(k)}

≤
(

n∑

k=1

|Xk|I{|Xk| > δf(k)}
)2

,

and thus the result follows from (b) and Kronecker’s lemma.

Lemma 5.2. Under conditions (a)–(c) we have

s∗n
2 ∼ B2

n ∼ s2
n a.s.

Proof. We only need to show that s∗n
2 ∼ B2

n. The second relation is similar, in fact

simpler. An easy calculation gives

B−2
n

n∑

k=1

E[X∗
k

2|F∗
k−1]

= B−2
n

n∑

k=1

E[X2
kI{|Xk| ≤ δf(k)}|F∗

k−1]−B−2
n

n∑

k=1

(E[XkI{|Xk| ≤ δf(k)}|F∗
k−1])

2.

(5.9)
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Now by (5.7) we obtain

B−2
k (E[XkI{|Xk| ≤ δf(k)}|F∗

k−1])
2

≤ δ(f(k)log log Bk)
−1E[|Xk|I{|Xk| > δf(k)}|F∗

k−1],

and thus by Kronecker’s lemma and (b) the second term in (5.9) tends to zero. Set

Yk := X2
kI{|Xk| ≤ δf(k)} − E[X2

kI{|Xk| ≤ δf(k)}|F∗
k−1].

Clearly (Yk) is an MDS and since by (a)

∞∑

k=1

B−4
k EY 2

k ≤
∞∑

k=1

B−4
k EX4

kI{|Xk| ≤ δf(k)} < ∞,

we get from the law of large numbers for martingales (c.f. [47, Corollary 6.7.2.])

B−2
n

n∑

k=1

(
X2

kI{|Xk| ≤ δf(k)} − E[X2
kI{|Xk| ≤ δf(k)}|F∗

k−1]
) → 0 a.s.

In view of (c), (5.9) and the last relation we have to show that

B−2
n

n∑

k=1

X2
kI{|Xk| > δf(k)} → 0 a.s.,

which follows from Lemma 5.1.

Lemma 5.3. Under conditions (a)–(b) we have

f(n)−2

n∑

k=1

EX∗
k

4 → 0 a.s.

Proof. We have

∞∑

k=1

f(k)−4EX∗
k

4

=
∞∑

k=1

f(k)−4E(XkI{|Xk| ≤ δf(k)} − E[XkI{|Xk| ≤ δf(k)}|F∗
k−1])

4

≤
∞∑

k=1

f(k)−4
(
EX4

kI{|Xk| ≤ δf(k)}+ 15δ3f(k)3E|E[XkI{|Xk| ≤ δf(k)}|F∗
k−1]|

)

≤
∞∑

k=1

f(k)−4
(
EX4

kI{|Xk| ≤ δf(k)}+ 15δ3f(k)3E|Xk|I{|Xk| > δf(k)}) ,
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where the last sum is finite by (a) and (b). Hence the proof follows from Kronecker’s

lemma.

Lemma 5.4. Under conditions (a)–(c) we have

log log sn

s2
n

(s2
n − s∗n

2) → 0 a.s.

Proof. According to Lemma 5.2 it suffices to show that

f(n)−2(s2
n − s∗n

2) → 0 a.s.

We can write

s2
n − s∗n

2 =
n∑

k=1

(
E[X2

k |Fk−1]− E[X∗
k

2|Fk−1]
)

+
n∑

k=1

(
E[X∗

k
2|Fk−1]− E[X∗

k
2|F∗

k−1]
)

:= S1
n + S2

n (say).

A straightforward calculation shows that

|E[X2
k −X∗

k
2|Fk−1]|

≤ E[X2
kI{|Xk| > δf(k)}|Fk−1] + (E[XkI{|Xk| ≤ δf(k)}|F∗

k−1])
2

+2|E[XkI{|Xk| ≤ δf(k)}|Fk−1]||E[XkI{|Xk| ≤ δf(k)}|F∗
k−1]|

≤ E[X2
kI{|Xk| > δf(k)}|Fk−1] + 3δf(k)E[|Xk|I{|Xk| > δf(k)}|F∗

k−1].

Thus Lemma 5.1 and (b) in connection with Kronecker’s lemma imply that

f(n)−2S1
n → 0 a.s.

It remains to prove

f(n)−2S2
n → 0 a.s.,

which follows immediately from Lemma 5.3.

By a standard argument in this theory we can assume that for some 0 < a ≤ 1 < 2 ≤
b < ∞

a
√

log log t ≤ ϕ(t) ≤ b
√

log log t. (5.10)
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Hence we can assume without loss of generality that the function ϕ which occurs in

Theorem 5.1 tends to ∞. If ϕ is some nondecreasing function with limt→∞ ϕ(t) = ∞
than we can write

ϕ(t) = ϕ̃(t) +
1

ϕ̃(t)
with ϕ̃(t) =

ϕ(t)

2
+

(
ϕ2(t)

4
− 1

)1/2

, (5.11)

if ϕ(t) ≥ 2. It is very easy to see that I(ϕ) = ∞ if and only if I(ϕ̃) = ∞. The

next lemma shows it is enough to consider only functions ϕ which are in some sense

smooth.

Lemma 5.5. Assume that I(ϕ) = ∞(< ∞). Then there is some ϕ̂ ≥ ϕ(≤ ϕ) and

some absolute constant A such that I(ϕ̂) = ∞(< ∞) and

|ϕ̂(x)− ϕ̂(y)| ≤ A · ϕ̂(x)

x
|x− y| if [y, 2y] ∩ [x, 2x] 6= ∅. (5.12)

Proof. We assume that I(ϕ) = ∞. Define

ϕ̂(x) =
1

x

∫ 2x

x

ϕ(t) dt (x > x0).

Since ϕ is monotone we have

ϕ(x) ≤ ϕ̂(x) ≤ ϕ(2x).

We can also assume that ϕ is trapped as in (5.10) and therefore it follows that for

some c > 0
a

2b
≤ ϕ(x)

ϕ(cx)
for all x > x0(c). (5.13)

By simple analysis we get that I(ϕ̂) = ∞. Next we write

ϕ̂(x)− ϕ̂(y) =

(
1

x
− 1

y

)∫ 2x

x

ϕ(t) dt +
1

y

(∫ 2x

x

ϕ(t) dt−
∫ 2y

y

ϕ(t) dt

)
.

Using that ϕ is monotone, (5.13) and the condition on x and y we get immediately

that

|ϕ̂(x)− ϕ̂(y)| ≤ 4
|x− y|

y
ϕ(4x) ≤ 16b

a

|x− y|
x

ϕ̂(x).



88

The case I(ϕ) < ∞ can be treated similarly by defining

ϕ̂(x) =

∫ x

x/2

ϕ(t) dt.

Assume that we can show (5.21) for functions that satisfy (5.12). Now if I(ϕ) = ∞
it follows that I(ϕ̂) = ∞ and thus

1 = P (S∗k > ϕ̂(s∗k)s
∗
k i.o.) = P (Sk > ϕ̂(sk)sk i.o.) ≤ P (Sk > ϕ(sk)sk i.o.).

An analogues result holds if I(ϕ) < ∞.

5.3 Proofs

We first observe that

|X∗
n| ≤ s∗nKn, (5.14)

where Kn = 2f(k)/s∗k, i.e. Kn ∈ F∗
n−1, Kns

∗
n ↗ ∞ and by Lemma 5.2 Kn → 0.

Following Einmahl and Mason [38] we can assume that the sequence (X∗
k) is defined

on the probability space of some standard Wiener Process {W (t), t ≥ 0} such that

S∗n = WTn , where Tn =
n∑

m=1

τm, (5.15)

where τn are non-negative and F∗
n−1 measurable for each n ≥ 1 and

E[τn|F∗
n−1] = E[X∗

n
2|F∗

n−1] a.s. (5.16)

Also we have for any r ≥ 1

E[τ r
n|F∗

n−1] ≤ LrE[X∗
n

2r|F∗
n−1] a.s., (5.17)

where Lr is some constant which depends only on r and moreover, for Tn ≤ t ≤ Tn+1

|W (t)−W (Tn)| ≤ s∗n+1Kn+1. (5.18)

The following important lemma is implicit in the proof of Theorem 1.1 of Einmahl

and Mason [38].
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Lemma 5.6. Assume that {X∗
n,F∗

n−1 n ≥ 1} is an MDF with finite variances such

that s∗n :=
∑n

k=1 E[X∗
k

2|F∗
k−1] → ∞. Assume further that (5.14) holds with some

Kn ∼ const · (log log s∗n)−1/2. Finally let Tn be given as in (5.15). If there exists some

positive constant K such that

lim sup
n→∞

log log s∗n
s∗n

2
|Tn − s∗n| ≤ K a.s., (5.19)

then for every positive and nondecreasing function ϕ

P (S∗k > s∗kϕ(s∗k) i.o.) =

{
1 if I(ϕ) = ∞,

0 if I(ϕ) < ∞.

Proof. We note that we implicitly assumed that S∗n is defined on the same space with

some Wiener process {W (t), t ≥ 0} such that (5.15) holds. Of course we can use the

Skorokhod embedding from above and hence this is no loss of generality. We note

that our assumptions imply that s∗n ∼ s∗n+1. Thus it follows from (5.18) and (5.22)

below that for Tn ≤ t ≤ Tn+1 and for sufficiently large n

|W (t)−W (Tn)| ≤ 2
√

t/(log log t)1/2 a.s. (5.20)

Now the proof of Theorem 1.1 of Einmahl and Mason [38] can be taken almost

verbally, observing that the argument still goes through if their equation (2.6) is

replaced by (5.20).

Proof of Theorem 5.1. The proof will be divided into two steps. In the first step we

will show that the integral test holds for the truncated MDS {X∗
k ,F∗

k−1 k ≥ 1}. Then

we will show that

P (Sk > ϕ(s2
k)sk i.o.) = P (S∗k > ϕ(s∗k

2)s∗k i.o.). (5.21)

Step 1. By Lemma 5.2 and Lemma 5.6 it suffices to show that

|Tn − s∗n
2| = o

(
f(n)2

)
a.s. (5.22)

Using the explicit expression of s∗n
2 and (5.16) we have

Tn − s∗n
2 =

n∑

k=1

(τk − E[X∗
k

2|F∗
k−1]) =

n∑

k=1

(τk − E[τk|F∗
k−1]) a.s.
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By (5.17) we get

∞∑

k=1

f(k)−4E(τk − E[τk|F∗
k−1])

2

≤
∞∑

k=1

f(k)−4Eτ 2
k ≤ L2

∞∑

k=1

f(k)−4EX∗
k

4,

and hence by the arguments in the proof of Lemma 5.3 the last series is convergent,

showing relation (5.22).

Step 2. Define ϕ̃ as in (5.11) and set

Rk =
sk

ϕ̃(s2
k)

+ (ϕ̃(s2
k)sk − ϕ̃(s∗k

2)s∗k).

Then we have on the one hand

P (Sk > ϕ(s2
k)sk i.o.)

= P (S∗k + S∗∗k > ϕ̃(s∗k
2)s∗k + Rk i.o.)

≤ P (S∗k > ϕ̃(s∗k
2)s∗k i.o.) + P (|S∗∗k | > Rk i.o.).

and on the other hand

P (Sk > ϕ(s2
k)sk i.o.)

≥ P (S∗k > ϕ̃(s∗k
2)s∗k + |Rk − S∗∗k | i.o.)

= P (S∗k > ˜̃ϕ(s∗k
2)s∗k + s∗k ˜̃ϕ(s∗k

2)−1 + |Rk − S∗∗k | i.o.).

We show now that

P (|S∗∗k | > Rk i.o.) = 0 and |Rk−S∗∗k | ≤
(κ− 1)

2
s∗k ˜̃ϕ(s∗k

2)−1(1+o(1)) a.s., (5.23)

for some large enough κ, which implies in view of the forgoing estimates that

P (S∗k > ˜̃ϕ(s∗k
2)s∗k + κs∗k ˜̃ϕ(s∗k

2)−1 i.o.)

≤ P (Sk > ϕ(s2
k)sk i.o.) ≤ P (S∗k > ϕ̃(s∗k

2)s∗k i.o.).

Since I(ϕ) = ∞ if and only if I(ϕ̃) = ∞ and I( ˜̃ϕ+κ/ ˜̃ϕ) = ∞ we get (5.21). We have

to prove (5.23) and start with showing that the dominating part in Rk is sk/ϕ̃(s2
k),

i.e.
ϕ̃(s2

k)

sk

(ϕ̃(s2
k)sk − ϕ̃(s∗k

2)s∗k) → 0 a.s. (5.24)
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In view of Lemma 5.2 and

ϕ̃(s2
k)sk − ϕ̃(s∗k

2)s∗k =
ϕ̃(s2

k)(s
2
k − s∗k

2)

sk + s∗k
+ s∗k(ϕ̃(s2

k)− ϕ̃(s∗k
2))

this will follow if

ϕ̃(s2
k)

2

s2
k

(s2
k − s∗k

2) → 0 a.s. and ϕ̃(s2
k)(ϕ̃(s2

k)− ϕ̃(s∗k
2)) → 0 a.s. (5.25)

Now the first part in (5.25) follows from Lemma 5.4 and (5.10). By Lemma 5.5 it

suffices to prove (5.21) for the smoothed version of ϕ. Hence without loss of generality

we can assume that ϕ̃ satisfies (5.12). Clearly, since s∗k
2 ∼ s2

k the intervals [s2
k, 2s

2
k]

and [s∗k
2, 2s∗k

2] will not be disjoint for any k ≥ k0(ω), where k0 is almost surly finite.

Thus we get from (5.12)

ϕ̃(s2
k)(ϕ̃(s2

k)− ϕ̃(s∗k
2)) ≤ 16b

a

ϕ̃(s2
k)

2

s2
k

(s2
k − s∗k

2) for all k ≥ k0,

where the righthand side tends to zero as we have already noted. In order to proof

the first relation in (5.23) it suffices to show

|S∗∗k | = o

(
sk

ϕ̃(s2
k)

)
a.s. (5.26)

which by Lemma 5.2 and (5.10) will follow if

|S∗∗k | = o (f(k)) a.s. (5.27)

It easy to show that E|X∗∗
k | ≤ 2 E|Xk|I{|Xk| > δf(k)} and hence (5.27) follows from

(b) and Kronecker’s lemma.

Since we proved that |S∗∗k | = o(Rk) a.s. we have in consideration of (5.10)

|Rk − S∗∗k | = |Rk|(1 + o(1))

=
sk

ϕ̃(s2
k)

(1 + o(1)) ≤ b

a

s∗k
˜̃ϕ(s∗k

2)
(1 + o(1)) a.s.

This shows the second relation of (5.23).

Proof of Theorem 5.2. It is shown in Jain et al. [65, Lemma 4.1.] that under the

assumptions of Theorem 5.2 conditions (a)–(c) are satisfied.



Chapter 6

The functional CLT for augmented
GARCH sequences

6.1 Preliminaries

6.1.1 Definitions and existence conditions

The seminal work of Engle [39] gave a new impact to the theory of time series analysis.

Engle introduced the ARCH (autoregressive conditionally heteroscedastic) process,

which allows the conditional variance of the time series to change as a function of

past observations. Since then, this model and its extensions has been widely used

in econometrics to describe financial data with time varying volatility. One of the

most popular models is the GARCH (p, q) process introduced by Bollerslev [21]. A

sequence {yk,−∞ < k < ∞} is a GARCH (p, q) process if it satisfies the equations

yk = σkεk (6.1)

and

σ2
k = w +

∑
1≤i≤p

βiσ
2
k−i +

∑
1≤j≤q

αjy
2
k−j, (6.2)

where

w > 0, βi ≥ 0 (1 ≤ i ≤ p), αj ≥ 0 (1 ≤ j ≤ q), (6.3)

92
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and {εk,−∞ < k < ∞} is an i.i.d. sequence of real r.v.’s. Bougerol and Picard

[23] found necessary and sufficient conditions for the existence of a unique strictly

stationary solution of (6.1) and (6.2).

Despite the wide applicability of the GARCH (p, q) model, the quadratic dependence

of the volatility σ2
k on past values of the process is often unrealistic. In typical stock

market situations, large negative yk’s can have a totally different effect on the volatility

than large positive values; also, the dependence of the volatility on yk can have a

threshold character, and it can be markedly non-quadratic even for positive yk’s.

Starting with the exponential GARCH (EGARCH) of Nelson and the asymmetric

GARCH (AGARCH) process of Engle and Ng, in the ’90s several extensions of the

GARCH model were introduced to deal with ’special effects’ of the above kind. See

Section 6.1.2 below for examples. In 1997, Duan [37] unified the theory by introducing

the so-called augmented GARCH process, containing most of the above mentioned

models as a special case. A sequence of r.v.’s {yk,−∞ < k < ∞} is called an

augmented GARCH (1, 1) sequence if it satisfies

yk = σkεk (6.4)

and

Λ(σ2
k) = c(εk−1)Λ(σ2

k−1) + g(εk−1), (6.5)

where

{εk,−∞ < k < ∞} is an i.i.d. sequence, (6.6)

Λ(x), c(x) and g(x) are real-valued and measurable functions and

Λ−1(x) exists. (6.7)

Obviously the GARCH (1, 1) model of Bollerslev [21] satisfies (6.4)-(6.7). Nelson [83]

showed that if p = q = 1 and E log+(β1 + α1ε
2
0) < ∞, then a strictly stationary

solution of (6.1) and (6.2) exists if and only if

E log(β1 + α1ε
2
0) < 0.

Moreover, this solution is unique. The following result of Aue, Berkes, and Horváth

[5] extends this result for augmented GARCH (1, 1) sequences.
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Theorem D. Assume that (6.4)-(6.7) hold. If

E log+ |g(ε0)| < ∞ and E log+ |c(ε0)| < ∞ (6.8)

and

E log |c(ε0)| < 0 (6.9)

then the unique strictly stationary solution of (6.4) and (6.5) is given by

Λ(σ2
k) =

∞∑
i=1

g(εk−i)
∏

1≤j<i

c(εk−j), (6.10)

where the series in (6.10) is almost surely convergent. If in addition

P (g(ε0) = 0) < 1, c(ε0) ≥ 0 and g(ε0) ≥ 0 (6.11)

hold, then (6.9) is also necessary for the existence of a strictly stationary and non-

negative solution of (6.4) and (6.5).

Nelson [83] showed that for a GARCH (1, 1) process we have E|y0|2p < ∞ (p > 0) if

and only if E(β1 + α1ε
2
0)

p < 1. Aue et al. [5] provide conditions for the existence of

moments of augmented GARCH sequences. We state their result below.

Theorem E. Assume that (6.4)-(6.7) hold. If for some µ > 0

E|g(ε0)|µ < ∞ (6.12)

and if

E|c(ε0)|µ < 1, (6.13)

then E|Λ(σ2
0)|µ < ∞. On the other hand, if the the series in (6.10) is convergent,

(6.11) holds and if E|Λ(σ2
0)|µ < ∞, then (6.12) and (6.13) are satisfied.

Remark 6.1. Note that from Jensen’s inequality and (6.13) it follows that (6.9)

holds. Hence from Theorem D we conclude that (6.12) and (6.13) imply the existence

of a unique stationary solution of (6.4) and (6.5), where Λ(σ2
k) is given by (6.10).
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6.1.2 Examples

Duan [37] and Carrasco and Chen [26] gave several examples of augmented GARCH

(1, 1) type processes appearing in the literature satisfying (6.4),(6.5) and (6.7). For

the convenience of the reader we give a brief overview.

Example 6.1. The GARCH (1, 1) model introduced by Bollerslev [21] satisfies

Λ(x) = x, c(x) = β + αx2 and g(x) = w,

with w > 0 and α, β ≥ 0.

Example 6.2. In the asymmetric power ARCH (1, 1) model (APARCH) by Ding,

Granger and Engle [35] we have

Λ(x) = xδ, c(x) = β and g(x) = w + α(|x| − µx)2δ,

where w, δ > 0, |µ| ≤ 1 and α, β ≥ 0. If δ = 1 this model is referred to as asymmetric

GARCH (AGARCH).

Example 6.3. The threshold GARCH (1, 1) model (TGARCH) is defined by

Λ(x) = xδ, c(x) = β + α1(x
2)δI{x<0} + α2(x

2)δI{x≥0} and g(x) = w,

where w, δ, α1 > 0 and α2, β ≥ 0. The special case δ = 1/2 was proposed by Taylor

[107] and Schwert [98] and includes the threshold model of Zakoian [111]. If δ = 1

this is the GJR-ARCH model by Glosten, Jagannathan and Runkle [50].

Example 6.4. The quadratic GARCH (1, 1) (QGARCH) was considered by Engle

and Ng [40] and Sentana [99]. It is given by

Λ(x) = x, c(x) = β and g(x) = w + α(x + µ)2,

where w > 0 and α, β ≥ 0 and µ is some constant.

Example 6.5. The nonlinear symmetric GARCH model (NGARCH) was introduced

by Engle and Ng [40]. It satisfies

Λ(x) = x, c(x) = β + α(x + µ)2 and g(x) = w,

where w > 0 and α, β ≥ 0 and µ is some constant.
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Example 6.6. Carrasco and Chen [26] introduced the power GARCH (PGARCH)

model. The PGARCH (1, 1) model is defined by

Λ(x) = xδ, c(x) = β + α(x2)δ and g(x) = w,

where w > 0 and α, β ≥ 0 and µ is some constant.

Example 6.7. The smooth transition ARCH (1, 1) model (STARCH) of Hagerud

[51] is given by

Λ(x) = x, c(x) = β and g(x) = w + (α1 + α2F (x)) x2,

where w > 0, β ≥ 0 and F (x) is a so-called transition function. In all the examples

given so far we have Λ(x) = xδ and thus they are called polynomial GARCH. The

last two examples are referred to as exponential GARCH.

Example 6.8. Geweke [48] defined the multiplicative GARCH (MGARCH):

Λ(x) = log x, c(x) = β + α and g(x) = w + α log x2.

Example 6.9. The exponential GARCH model (EGARCH) was defined by Nelson

[84]. Here we have

Λ(x) = log x, c(x) = β and g(x) = w + α1x + α2|x|.

6.2 Results

Statistical inference based on GARCH sequences often requires the establishment of

functional central limit theorems (FCLT’s) for partial sum processes like

Sf
n(t) =

1

n1/2

∑
1≤i≤nt

(f(yi)− Ef(y0)),

or

Zf
n(t) =

1

n1/2

∑
1≤i≤nt

(f(σi)− Ef(σ0)).
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For example, to derive the asymptotic distribution of the CUSUM or MOSUM statis-

tics in the theory of change-point detection, a functional CLT is needed. For ordi-

nary GARCH processes, several authors obtained FCLT’s for Sf
n(t) with f(x) = x,

f(x) = |x| or f(x) = x2 under various conditions. Berkes et al. [16] observed that in

the special case f(x) = x and Eε0 = 0, the desired result follows from a FCLT for

ergodic martingale difference sequences (cf. Billingsley [19, Theorem 23.1]) under

the optimal condition Ey2
0 < ∞. However, if Ey0 6= 0 or if we are e.g. interested in

the squared GARCH sequence, the martingale structure does not apply. Without this

special property, all existing results in the literature impose unnecessarily stringent

conditions on ε0 and y0. For example, Hansen [52] used the NED (near-epoch depen-

dence) property of GARCH (1,1) processes to derive a FCLT and later Davidson [34]

used a similar approach to get an FCLT for GARCH (p,q) processes. Both authors

require Ey4
0 < ∞. If (yk) is a GARCH (1,1) sequence with Eε2

0 < ∞, then the y2
k

satisfy another known weak dependence criterion, the so called (θ,L, ψ) dependence.

(See Nze and Doukhan [85] for details.) Assuming that E|y0|κ < ∞ for κ > 8, this

implies a FCLT for the squared GARCH sequence (y2
k), see [16, Theorem 2.9].

Technically, the existence of moments of y0 is a restriction on the parameters in the

GARCH model. But with the exception of p = q = 1 and for moments of even integer

order, in the GARCH (p,q) model no explicit formula exists for the moments of y0

in terms of the the values of αi and βj (cf. Ling and McAleer [74]). Also, in many

important practical applications, no moments of y0 beyond the second exist. For

example, in the GARCH (1, 1) case it occurs frequently in practice that the estimates

for the parameters α and β fall close to α + β = 1, in which case we already have

Ey2
0 = ∞.

A possible way to weaken the moment assumptions is to verify uniform mixing prop-

erties of yk and to utilize FCLT’s for mixing sequences. For example, Carrasco and

Chen [26] verified β-mixing with exponential decay for augmented GARCH sequences

under assuming only finite second moments. Together with Theorem 5.1 in Nze

and Doukhan [85] this implies the FCLT if E|y0|2+δ < ∞. Apart from the non-

expressibility of this moment condition in terms of the parameters αi and βj of the
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GARCH process, this approach also requires the existence of a continuous positive

density of εk on R.

The purpose of this chapter is to prove the FCLT for augmented GARCH (1, 1) and

GARCH (p,q) sequences under optimal conditions. Specifically, we get an FCLT for

Sf
n under Ef(y0)

2 < ∞, a condition which is also necessary. Our proof also provides

the FCLT for Zf
n(t). Further, will give an almost optimal Berry-Esseen type bound

for the rate of convergence in the ordinary CLT under finite third moments. The

choice of f will comprise power functions, i.e.

f(x) = xν or f(x) = |x|ν (ν > 0). (6.14)

We will only consider augmented GARCH sequences with Λ(x) = xδ (δ > 0) and

Λ(x) = log x. This special form of Λ is motivated by the Box-Cox transformation of

the observations and it covers all the examples given in the last section. We forgo

a more general setting, which is possible, but which would force us to make more

restrictive moment assumptions.

Theorem 6.1. Assume that (6.4)-(6.7) and (6.10)-(6.11) hold. Assume further that

Λ(x) = xδ (δ > 0) and that (6.14) holds with some ν > 0. If Ef(y0)
2 < ∞, then

τ 2 = Var f(y0) + 2
∑

1≤k<∞
Cov(f(y0), f(yk)) (6.15)

is convergent and

Sf
n(t)

d−→ τW (t)

where {W (t), 0 ≤ t ≤ 1} is a Brownian motion.

Here
d−→means convergence with respect to the Skorokhod metric in the space D[0, 1].

In case of polynomial GARCH processes the left hand side of (6.5) is always positive,

and thus it is natural to assume (6.11). Note however, that c(ε0) ≥ 0 and g(ε0) ≥ 0

are not necessary in order to get Λ(σ2
k) ≥ 0. A non-trivial example is g(x) = 1 and

the distribution of c(ε0) is concentrated on the interval [−1/2, 0].

It follows from the definition of f and Λ that E|f(y0)|2 = E|y0|2ν < ∞ if and only
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if E|ε0|2ν < ∞ and E|Λ(σ2
0)|ν/δ < ∞. Since we assume (6.10) and (6.11) we get by

Theorem E that

E|c(ε0)|ν/δ < 1 and E|g(ε0)|ν/δ < ∞ (6.16)

are necessary to assure E|Λ(σ2
0)|ν/δ < ∞. In particular when the yk are GARCH (1,1)

variables, we obtain FCLT’s

1√
n

nt∑

k=1

(yk − Eyk)
d−→ τ1W (t)

or
1√
n

nt∑

k=1

(y2
k − Ey2

k)
d−→ τ2W (t) (6.17)

(here τ 2
1 , τ 2

2 are the corresponding variances arising from (6.24)) under the necessary

conditions Ey2
k < ∞ respectively Ey4

k < ∞. As we noted above, a FCLT (6.17) was

obtained by Berkes et al. [16, Theorem 2.9] under the condition E|y0|κ < ∞ with

some κ > 8.

Theorem 6.2. Assume that (6.4)-(6.7) hold. Assume further that Λ(x) = log x and

that (6.14) holds with some ν > 0. If E|ε0|2ν < ∞,

|c(ε0)| ≤ c < 1 (6.18)

and if the moment generating function

M(t) = E exp(t|g(ε0)|) exists on the interval [0, µ], (6.19)

with some µ > ν then the proposition of Theorem 6.1 holds.

It follows from Theorem D that (6.18) and (6.19) imply the existence of a unique

strictly stationary solution of (6.4) and (6.5), where Λ(σ2
k) is given by (6.10). In order

to connect the assumption of Theorem 6.2 with specific moment conditions for the

GARCH variables we formulate the following result.

Proposition 6.1. Assume that (6.4)-(6.7) hold and that Λ(x) = log x. If E|ε0|2µ <

∞ and (6.18)-(6.19) are satisfied, then

E|y0|2µ < ∞. (6.20)
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On the other hand if (6.10) holds and if g(ε0) ≥ 0, c(ε0) ≥ 0 then (6.19),

P{c(ε0) ≤ 1} = 1 (6.21)

and E|ε0|2µ < ∞ are necessary to assure (6.20).

Proof. By the definition of Λ we have

E|y0|2µ = E|ε0|2µE exp(µΛ(σ2
0)).

Form (6.18) we get

Λ(σ2
0) ≤

∑
1≤i<∞

ci−1|g(ε−i)|.

This shows that

E exp(µΛ(σ2
0)) ≤

∏
1≤i<∞

E exp(µci−1|g(ε−i)|)

≤ i0E exp(µ|g(ε−i)|) +
∏

i0<i<∞
E exp(µci−1|g(ε−i)|), (6.22)

where the individual terms in the product above are finite by (6.19). If t < µ/2 we

get from Taylor’s formula and the Cauchy Schwarz inequality that

E exp(t|g(ε0)|) ≤ 1 + tE
(|g(ε0)| exp(µ/2|g(ε0)|)

)

≤ 1 + tE(|g(ε0)|2)1/2
(
E exp(µ|g(ε0)|

)1/2

= 1 + tA,

with some positive constant A. Now choose i0 such that µci0 ≤ µ/2. Then it follows

that

∏
i0<i<∞

E exp(µci−1|g(ε−i)|)

≤
∏

0≤i<∞
E exp(

µ

2
ci|g(ε0)|) ≤ exp

( ∞∑
i=0

log(1 + A
µ

2
ci)

)
< ∞.

To prove the other direction we first note that without E|ε0|2ν < ∞ (6.20) trivially

fails. By (6.10) and the nonnegativity of c(ε0) and g(ε0) it follows that

E|y0|2µ = E|ε0|2µE exp(µΛ(σ2
0)) ≥ E|ε0|2µE exp(µg(ε0)), (6.23)
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and hence (6.19) is necessary. Further it is clear from (6.23) that Λ(σ2
0) must have

moments of all orders. If we assume that (6.21) does not hold, then there is some

δ > 0 and some α > 0 such that P{c(ε0) ≥ 1 + δ} = α. Consequently Ec(ε0)
p ≥

α(1 + δ)p > 1 for sufficiently large p. By (6.10) and the assumption c(ε0), g(ε0) ≥ 0

we have

EΛ(σ2
0)

p ≥
∞∑
i=1

Eg(ε0)
p
(
Ec(ε0)

p
)i−1

= ∞

which contradicts to EΛ(σ2
0)

p < ∞ for any p > 0.

Theorem 6.3. Assume that (6.3), (6.6) hold. Assume further that (6.1) and (6.2)

have a strictly stationary solution with Ey2
0 < ∞. In this case the sum

τ 2 = Var y0 + 2
∑

1≤k<∞
Cov(y0, yk) (6.24)

is convergent and

Sn(t)
d−→ τW (t)

where {W (t), 0 ≤ t ≤ 1} is a Brownian motion.

If follows from Bollerslev [21] and Bougerol and Picard [23, p. 122] that a strictly

stationary solution satisfying Ey2
0 < ∞ exists if and only if

Eε2
0 < ∞ (6.25)

and

(α1 + · · ·+ αp)Eε2
0 + β1 + · · ·+ βq < 1. (6.26)

Moreover, in this case this stationary solution is unique, ergodic and nonanticipating.

Having established the central limit theorem for the partial sums of various GARCH

models, it is natural to ask for the normal approximation error. We will obtain the

rate of convergence of

Sn(f) = f(y1) + . . . + f(yn)− nEf(y1)
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to the normal distribution provided that m3(f) = E|f(y1)|3 < ∞. For notational

convenience we will write Sn instead of Sn(f) and we set B2
n = Bn(f)2 = var Sn(f)

and

σ2
n = σ2

n(f) = var f(y0) + 2
n−1∑
j=1

(1− j/n)cov(f(y1), f(yj+1)),

i.e. σ2
n = B2

n/n.

Theorem 6.4. Assume that (6.4)-(6.7) hold and that f(x) is defined as in (6.14). If

we assume that

(I) Λ(x) = xδ, (6.10)-(6.11) hold and E|f(y0)|3 < ∞ or if

(II) Λ(x) = log x, E|ε0|3ν < ∞, (6.18) holds and (6.19) is valid on the interval

[0, 3µ/2] with some µ > ν, then

lim σn =: σ exists (6.27)

and if σ > 0 then there is some C > 0 such that

|P{Sn < xBn} − Φ(x)| ≤ C
(log n)2

√
n

for all n ≥ 2 and x ∈ R.

The constant C may depend on f , Λ, c, g and the law of ε0.

The additional assumptions in Theorem 6.4 compared with Theorems 6.1–6.2 arise

from the requirement that E|f(y1)|3 < ∞ which is the classical assumption in the

context of Berry-Esseen bounds. The existence of the limit in (6.27) follows from The-

orems 6.1–6.2. The rate (log n)2n−1/2 coincides with that obtained by Tihomirov [108,

Theorem 2] for sequences which are β-mixing with geometric rate. The proof of The-

orem 6.4 is based on a Berry-Esseen bound for m-dependent sequences also due to

Tihomirov [108, Theorem 5]. Again it becomes clear that m-dependence rather than

β-mixing is the crucial structural property required in order to study the asymptotics

of augmented GARCH variables.

6.3 Applications

In this section we shall give three important applications of our results.
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Example 6.10. The CUSUM (cumulative sum) statistics defined by

Cn = max
1≤k≤n

∣∣∣∣
∑

1≤i≤k

yi − k

n

∑
1≤i≤n

yi

∣∣∣∣

is one of the most often used statistics to test for the stability of {yi, 1 ≤ i ≤ n}.
Under the assumptions of Theorems 6.1– 6.3

Cn

τn1/2

D−→ sup
0≤t≤1

|B(t)|, (6.28)

where {B(t), 0 ≤ t ≤ 1} is a Brownian bridge and τ is defined by (6.24). The

MOSUM (moving sum) version of Cn is

Mn = max
nh<k≤n

∣∣∣∣
∑

k−nh≤i≤k

yi − h
∑

1≤i≤n

yi

∣∣∣∣,

where 0 < h < 1. Under the conditions of Theorems 6.1– 6.3

Mn

τn1/2

D−→ sup
h≤t≤1

|B(t)−B(t− h)|. (6.29)

In order to use (6.28) and (6.29) we need to estimate τ . One could use, for example,

the Bartlett estimator (cf. Giraitis et al. [49]).

For a review on CUSUM and MOSUM we refer to Csörgö and Horváth [32]. Zeilis et

al. [112] provides a comparison between CUSUM and MOSUM.

Example 6.11. CUSUM as well as MOSUM require the estimation of τ . The es-

timation of τ is not needed, however, if ratio based statistics are used. Following

Kim [66] and Taylor [106] we define

Kn(t) =

{
1

(n(1− t))1/2
max

nt≤k≤n

∣∣∣∣
∑

nt<i≤k

yi − k − nt

n(1− t)

∑
nt≤i≤n

yi

∣∣∣∣
}

/{
1

(nt)1/2
max

1≤k≤nt

∣∣∣∣
∑

1≤i≤k

yi − k

nt

∑
1≤i≤nt

yi

∣∣∣∣
}

.

If the conditions of Theorem 6.1– 6.3 are satisfied, then for any 0 < δ < 1/2

Kn(t)
D[δ,1−δ]−−−−→

( t

1− t

)1/2

sup
t≤s≤1

∣∣∣W (s)−W (t)− s− t

1− t
(W (1)−W (t))

∣∣∣
/

sup
0≤s≤t

∣∣∣W (s)− s

t
W (t)

∣∣∣.
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Functionals of Kn(t) can be considered as ratio based versions of the Kwiatowski et

al. [68] test.

Example 6.12. Starting with x0 = 0 we define

xk = %xk−1 + yk 1 ≤ k < ∞.

We assume that Eε0 = 0. The least square estimator for % is given by

%̂n =
∑

1≤k≤n

xkxk−1

/ ∑

1≤k≤n

x2
k−1.

If % = 1 (unit root), then under the conditions of Theorem 6.1– 6.3

n(%̂n − 1)
D−→

( ∫ 1

0

W (s)dW (s)

)/ ∫ 1

0

W 2(s) ds. (6.30)

The result in (6.30) is the asymptotics for the Dickey–Fuller test with augmented

GARCH or GARCH (p, q) errors. The same result was obtained by Ling Li and

McAleer [73] assuming GARCH (1, 1) errors, Eε4
0 < ∞ and the existence of a sym-

metric density of ε0.

6.4 Proofs

Since

σ2
k = Λ−1

( ∑
1≤i<∞

g(εk−i)
∏

1≤j<i

c(εk−j)

)

should always be a non-negative real number, we assume either that g(ε0), c(ε0) ≥ 0

and Λ−1 : R+ → R+ or that Λ−1 : R→ R+. We may define now

ykm = εkσkm, (6.31)

where σ2
km is the solution of

Λ(σ2
km) =

∑
1≤i≤m

g(εk−i)
∏

1≤j<i

c(εk−j). (6.32)
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It follows that ykm defines an m-dependent sequence. Setting ηk = f(yk) − Ef(y0)

and ηkm = f(ykm)− Ef(y0) we get

∞∑
m=1

‖η0 − η0m‖2 < ∞. (6.33)

Hence Theorem 6.1 and Theorem 6.2 will follow immediately from Billingsley [19,

Theorem 21.1]. The same approach we will use for the proof of Theorem 6.3. The

difficulty we were facing is that for GARCH (p, q) models there seemed to exist only

a series representation in terms of matrices (cf. Bougerol and Picard [23]) and no

explicit recursion formula as we have at the augmented GARCH (1, 1) model. Em-

ploying the matrix representation we were not able to obtain (6.33) under assuming

only Ey2
0 < ∞. However, we show that it is possible to give an explicit recursion

formula for the GARCH (p, q) variables as well and via this representation we will

obtain (6.33) assuming only the existence of second moments of yk. It is also worth

noting that our approach is similar to the NED approach by Hansen [52] or David-

son [34] for ordinary GARCH sequences. Here the approximating functions η0m are

chosen to be conditional expectations

η0m = E[y0|σ(ε0, ε−1, . . . , ε−m)].

In order to prove Theorem 6.4 we use a result due to Tihomirov [108, Theorem 5.],

which provides a Berry-Esseen bound for m-dependent sequences.

6.4.1 Perturbation error

Lemma 6.1. Assume that the conditions of Theorem 6.1 hold. Set

ηk = f(yk)− Ef(y0) and ηkm = f(ykm)− Ef(y0). (6.34)

Then there are constants C1 > 0 and 0 < % < 1 such that

E|ηk − ηkm|2 ≤ C1%
m (m ≥ 1).
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Proof. We assume without loss of generality that k = 0. Remember that Λ(x) = xδ

and f(x) = xν . By our assumption (6.11) Λ(σ2
km) is non-negative and thus we have

|η0 − η0m|2 = |ε0|2ν
∣∣∣
(
Λ−1 ◦ Λ(σ2

0)
)ν/2

−
(
Λ−1 ◦ Λ(σ2

0m)
)ν/2∣∣∣

2

≤ |ε0|2ν
∣∣∣
(
Λ−1 ◦ Λ(σ2

0)
)ν

−
(
Λ−1 ◦ Λ(σ2

0m)
)ν∣∣∣ (6.35)

= |ε0|2ν
∣∣∣Λ(σ2

0)
ν/δ − Λ(σ2

0m)ν/δ
∣∣∣. (6.36)

Let us first consider the case ν/δ ≤ 1. From (6.10) and from Minkowski’s inequality

(Hardy et al. [53]) we infer

∣∣Λ(σ2
0)

ν/δ − Λ(σ2
0m)ν/δ

∣∣ ≤
( ∞∑

i=m+1

g(ε−i)
∏

1≤j<i

c(ε−j)

)ν/δ

≤
∞∑

i=m+1

g(ε−i)
ν/δ

∏
1≤j<i

c(ε−j)
ν/δ.

Hence it follows from (6.25) that

E|η0 − η0m|2 ≤ E|ε0|2ν

∞∑
i=m+1

Eg(ε−i)
ν/δ

∏
1≤j<i

Ec(ε−j)
ν/δ ≤ c1%

m
1 ,

with some constant c1 > 0 and %1 = Ec(ε0)
ν/δ < 1.

If ν/δ > 1 then by the mean value theorem (6.36) is bounded by

|ε0|2ν ν

δ

∣∣Λ(σ2
0)

∣∣ν/δ−1∣∣Λ(σ2
0)− Λ(σ2

0m)
∣∣.

From this we get by the Hölder and the Minkowski inequality that

E|η0 − η0m|2

≤ ν

δ
E|ε0|2ν

(
E|Λ(σ2

0)|ν/δ
) ν−δ

ν

(
E

( ∞∑
i=m+1

g(ε−i)
∏

1≤j<i

c(ε−j)

)ν/δ
)δ/ν

≤ c2

∞∑
i=m+1

(
Eg(ε−i)

ν/δ
∏

1≤j<i

Ec(ε−j)
ν/δ

)δ/ν

≤ c3(%
δ/ν
1 )m.
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Lemma 6.2. Assume that the conditions of Theorem 6.2 hold and let ηk and ηkm be

defined as in (6.34). Then there is some C2 > 0 such that

E|ηk − ηkm|2 ≤ C2c
m (m ≥ 1). (6.37)

Proof. Assume again that k = 0. We can formally derive (6.35) which reads here as

|η0 − η0m|2 ≤ |ε0|2ν |eν log σ2
0 − eν log σ2

0m |. (6.38)

By the mean value theorem we get

|eν log σ2
0 − eν log σ2

0m | ≤ ν(eν log σ2
0 + eν log σ2

0m)| log σ2
0 − log σ2

0m|. (6.39)

Since ν < µ we can find some ζ > 0 such that ν(1 + ζ) < µ. It follows from

Proposition 6.1 that

Eeν(1+ζ) log σ2
0 < ∞,

and similarly we get

Eeν(1+ζ) log σ2
0m < ∞.

Thus the Hölder inequality and the Minkowski inequality give

Eeν log σ2
0 | log σ2

0 − log σ2
0m|

≤
(
Eeν(1+ζ) log σ2

0

)1/(1+ζ)(
E| log σ2

0 − log σ2
0m|(1+ζ)/ζ

)ζ/(1+ζ)

≤
(
Eeν(1+ζ) log σ2

0

)1/(1+ζ)(
E|g(ε0)|(1+ζ)/ζ

)ζ/(1+ζ)
∞∑

i=m+1

ci−1 (6.40)

≤ c1c
m,

where we used (6.18) to get (6.40). The analogue result can be obtained if we replace

exp (ν log σ2
0) by exp (ν log σ2

0m). Consequently we get from (6.38) and (6.39) relation

(6.37).

As we mentioned in the introduction for the proof Theorem 6.3 we need an explicit

series representation of for the GARCH (p, q) variable. This can be obtained in
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following way. We can assume without loss of generality that p = q. Applying (6.1)

and (6.2) we get that

σ2
k = ω +

∑
1≤i≤p

(
βi + αiε

2
k−i

)
σ2

k−i. (6.41)

Repeated application of (6.41) yields

σ2
k = ω + ω

∑
1≤i1≤p

(
βi1 + αi1ε

2
k−i1

)

+
∑

1≤i1,i2≤p

(
βi1 + αi1ε

2
k−i1

)(
βi2 + αi2ε

2
k−i1−i2

)
σ2

k−i1−i2

and more generally for n ≥ 2

σ2
k = ω

(
1 +

n−1∑
m=1

∑
1≤i1,...,im≤p

m∏
j=1

(
βij + αijε

2
k−i1−i2···−ij

)
)

+
∑

1≤i1,...,in≤p

n∏
j=1

(
βij + αijε

2
k−i1−i2···−ij

)
σ2

k−i1−i2−···−ij
. (6.42)

This suggests as solution of (6.1) and (6.2)

σ2
k = ω

(
1 +

∑
1≤m<∞

∑
1≤i1,...,im≤p

m∏
j=1

(
βij + αijε

2
k−i1−i2···−ij

)
)

. (6.43)

Since

E

( ∑
1≤i1,...,im≤p

m∏
j=1

(
βij + αijε

2
k−i1−i2−···−ij

))
= γm

with 0 ≤ γ = (α1 + · · · + αp)Eε2
0 + β1 + · · · + βq, we get by (6.26) that the random

variable on the right hand side of (6.43) is finite with probability one. It is easy to

see that the right hand side of (6.43) defines a stationary and ergodic solution of the

GARCH equations (6.1) and (6.2) and by Bougerol and Picard [23, Theorem 1.3] this

solution is unique. (It is simple to prove uniqueness anew by using (6.43).)

Every positive integer m can be written as

m = pK + r, (6.44)
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where K, r are integers satisfying K ≥ 0 and 0 ≤ r ≤ p− 1. Next we define

σ2
km = ω

(
1 +

∑

1≤l≤K

∑
1≤i1,...,il≤p

∏

1≤j≤l

(
βij + αijε

2
k−i1−i2−···−ij

))

where K is defined in (6.44). (We define σ2
km = ω if K = 0, i.e. 0 ≤ m ≤ p− 1.)

Lemma 6.3. Assume that the conditions of Theorem 6.3 hold and set ηk = yk−Eyk

and ηkm = εkσkm − Eyk. Then there is a constant C3 such that

E|ηk − ηkm|2 ≤ C3γ
m (m ≥ 1),

with γ = (α1 + · · ·+ αp)Eε2
0 + β1 + · · ·+ βq.

Proof. Again we may assume that k = 0. We have

|η0 − η0m| = |ε0| |σ0 − σ0m| ≤ |ε0| (σ2
0 − σ2

0m)1/2 ≤

≤ ω1/2|ε0|
( ∑

K+1≤l<∞

∑
1≤i1,...,il≤p

∏

1≤j≤l

(
βij + αijε

2
−i1−i2−···−ij

))1/2

.

By (6.6) and the independence of ε0 and σ0m it follows that

E(η0 − η0m)2

≤ ωEε2
0E

( ∑

K+1≤l<∞

∑
1≤i1,...,il≤p

∏

1≤j≤l

(
βij + αijε

2
−i1−i2−···−ij

))

=
ω

1− γ
γK+1Eε2

0.

6.4.2 Proof of Theorems 6.1 – 6.4

According to Billingsley [19, Theorem 21.1], for the proof of Theorems 6.1– 6.3 it is

enough to find measurable mappings gm from Rm into R such that

∑
1≤m<∞

(
E(η0 − ξ0m)2

)1/2
< ∞, (6.45)



110

where ξ0m = gm(ε−m+1, ε−m+2, . . . , ε0). Clearly the r.v.’s η0m defined in the lemmas of

the last subsection meet this demand and thus setting ξ0m = η0m shows Theorems 6.1–

6.3.

Our main ingredient for the proof of Theorem 6.4 will be the following lemma due to

Tihomirov [108, Theorem 5.]:

Lemma 6.4. Let X1, X2, . . . be a strictly stationary sequence of m-dependent random

variables with EX1 = 0 such that

E|X1|3 < ∞.

Let B2
n = varSn and σ2 = EX2

1 + 2
∑m

k=2 EX1Xk. If σ > 0 then absolute constants

C3 and C4 exist such that

sup
x∈R

|P{Sn ≤ Bnx} − Φ(x)| ≤ C3
b2
mE1/3|X1|3

σ3
√

n
+ C4

mbmE1/3|X1|3 log n

σ2n
,

where bm = max1≤p≤m+1 E1/3|∑p
v=1 Xv|3.

Suppose that the conditions of Theorem 6.4 hold. Let ηk be the same as in (6.34).

Now we want that the approximating process has expected value zero and thus we

redefine ηkm by

ηkm = f(εkσkm)− Ef(εkσkm).

By a routine argument we can extend the proof of Lemma 6.1-6.2 to show

E|ηk − ηkm|2 ≤ C5%
m for all m ≥ 1 and k ∈ Z. (6.46)

We choose some n which we assume to be fixed for the moment and set S ′n =
∑n

k=1 ηkm

and (B′
n)2 = varS ′n with m = [t log n]. The specific value of t will be specified later.

Then clearly (ηkm) defines some strictly stationary and m-dependent sequence. Let

(δk) be a sequence of positive reals. A simple estimate gives

P{Sn > xBn} ≤ P{S ′n > (x− δn)Bn}+ P{|Sn − S ′n| > δnBn}

and

P{S ′n > (x + δn)Bn} ≤ P{Sn > xBn}+ P{|Sn − S ′n| > δnBn}.
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A repeated application of the triangular inequality together with the latter inequalities

shows after a moments reflection that

sup
x∈R

|P{Sn ≤ Bnx} − Φ(x)| ≤ R(1)
n + R(2)

n + R(3)
n , (6.47)

where

R(1)
n = sup

x∈R
|P{S ′n ≤ Bn(x + δn)} − Φ(x + δn)|,

R(2)
n = sup

x∈R
|Φ(x + δn)− Φ(x)|,

R(3)
n =P{|Sn − S ′n| > δnBn}.

In the sequel we shall estimate R
(i)
n , i = 1, 2, 3. We set δn = n−1/2 and get by the

mean-value theorem

R(2)
n ≤ n−1/2/(2π)1/2. (6.48)

By (6.27) we conclude that 2B2
n > σ2n for all n ≥ n0. Since we assume that σ > 0

we infer from the Markov and the Minkowski inequality and (6.46)

R(3)
n =P{|Sn − S ′n| > δnBn} ≤ nE|Sn − S ′n|2/B2

n

≤n

(
n∑

k=1

E1/2|yk − ykm|2
)2/

B2
n

≤c1n
2%m,

where c1 can be chosen such that it is not depending on n. (The following constants

ci occurring in the proof are independent of n as well.) Hence if t ≥ −5/ log % we

have

R(3)
n = O(n−1/2). (6.49)

In order to estimate R
(1)
n we will use Theorem 6.4. For this purpose we need the differ-

ence between Bn and B′
n. By the Cauchy Schwarz and again Minkowski’s inequality

we derive

|B2
n − (B′

n)2| ≤E|Sn − S ′n||Sn + S ′n| ≤ c2(E|Sn − S ′n|2)1/2Bn

≤ c3n
1/2

n∑

k=1

E1/2|yk − ykm|2 ≤ c4n
3/2%m/2 ≤ c5n

−1,
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where the last inequality follows from the choice t ≥ −5/ log %. Using again 2B2
n > σ2n

if n ≥ n0 we can reformulate the latter estimate to

(1 + c5n
−2)−1/2 ≤ Bn

B′
n

≤ (1− c5n
−2)−1/2, (6.50)

provided that c5n
−2 < 1. By routine arguments (cf. [88, Lemma 5.2]) it follows that

sup
y∈R

|Φ(yp)− Φ(y)| ≤
{

(p− 1)/(2πe)1/2 if p ≥ 1

(p−1 − 1)/(2πe)1/2 if 0 < p < 1.
(6.51)

Trivially we have

R(1)
n ≤|P{S ′n ≤ Bn(x + δn)} − Φ(Bn/B

′
n(x + δn))|

+ |Φ(Bn/B′
n(x + δn))− Φ(x + δn)| =: R(11)

n + R(12)
n .

From (6.50) and (6.51) we get

R(12)
n = O(n−2). (6.52)

It remains to show that

R(11)
n = O(n−1/2 log2 n). (6.53)

Observe that E|η1m|3 ≤ c6E|f(y1)|3 and that as consequence of (6.50) we have σ′ ∼ σ,

where

σ′ =
(
var η1m + 2

[t log n]∑
j=2

cov(η1m, ηjm)
)1/2

.

Hence (6.53) follows immediately from Lemma 6.4. Finally (6.47) and (6.48)-(6.49)

plus (6.52)-(6.53) complete the proof of Theorem 6.4.



Chapter 7

Strong approximation of the
empirical process of augmented
GARCH sequences

7.1 Introduction and results

This chapter is devoted to the study of the empirical process of augmented GARCH

sequences. For this purpose we define

R(s, t) =
∑

1≤k≤t

(I{yk ≤ s} − P{yk ≤ s}).

We will derive an almost sure approximation theorem for R(s, t) by a two-parameter

Gaussian process K(s, t) under assuming only the existence of logarithmic moments of

the εk and c(εk), g(εk). Our result extends Theorem 1.1 in Berkes and Horváth [15] to

augmented GARCH sequences. In particular, our result will yield a weak invariance

principle for the empirical process

1√
n

n∑

k=1

(I{yk ≤ s} − P{yk ≤ s}) d−→ B(s),

where B(s) is a Gaussian process whose covariance structure will be given below. In

order to formulate our main theorem, we introduce some regularity conditions which

113
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we refer to in the sequel.

(i) E(log+ |g(ε0)|)µ < ∞;

(ii) E(log+ |c(ε0)|)µ < ∞;

(iii) E(log+ |ε0|)(µ−2)/2 < ∞;

(iv) E|g(ε0)|µ < ∞ and E|c(ε0)|µ < 1;

We denote by Λ(σ̃2
k) the truncated expansion of (6.10) at [kρ] where 0 < ρ < 1 (see

(7.5)) and we assume

(v) Λ(σ̃2
k) ≥ ω with some ω > 0;

Set h(x) =
√

Λ−1(x). By (6.7) this definition makes sense. The last condition we

give imposes that h′ exists and there are constants C, γ such that

(vi)
∣∣h′(x)

∣∣ ≤ C|x|γ.

It will be convenient to define Yk(s) = I{yk ≤ s} − F (s), where F (s) = P{yk ≤ s}.

Theorem 7.1. Assume that (6.4)-(6.7) and (6.9) hold. Assume further that the

distribution function H(x) = P{ε0 ≤ x} is Lipschitz continuous of order θ > 0 and

Eσ−θ
0 < ∞. (7.1)

Assume finally that

(I) (i)− (iii) hold with some µ > 10 and (v)− (vi) are satisfied

or

(II) Λ(x) = log x and (iii)− (iv) hold with some µ > 10.

Then the series

Γ(s, s′) =
∑

−∞<k<∞
EY0(s)Yk(s

′) (7.2)

converges absolutely for every choice of parameters −∞ ≤ s, s′ ≤ ∞. Moreover,

there exists a two-parameter Gaussian process K(s, t) such that EK(s, t) = 0 and

EK(s, t)K(s′, t′) = (t ∧ t′) Γ(s, s′) and that for some α > 0

sup
0≤t≤T

sup
s∈R

|R(s, t)−K(s, t)| = o
(
T 1/2(log T )−α

)
a.s.
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Since ε0 and σ0 are independent, we get from the Lipschitz continuity of H and (7.1)

that

|P{y0 ≤ x2} − P{y0 ≤ x1}| = |P{ε0 ≤ x2/σ0} − P{ε0 ≤ x1/σ0}|
≤ E|H(x2/σ0)−H(x1/σ0)|
≤ LEσ−θ

0 |x2 − x1|θ.

We summarize this in the following

Remark 7.1. Under the conditions of Theorem 7.1 the distribution function F (x) =

P{y0 ≤ x} is Lipschitz continuous of order θ. Consequently, F (yk) is uniformly

distributed on the unit interval.

Note that assumption (v) is satisfied in all the given examples for polynomial GARCH

(Section 6.1.2). It is not requested for exponential GARCH and the proof will show

that it can be omitted if γ in (vi) is non-negative. Conditions (i) − (ii) with µ ≥ 1

as well as (iv) imply (6.8). Hence by the assumptions of Theorem 7.1 the unique

nonnegative and strictly stationary solution of (6.4) and (6.5) is given by (6.10). A

sufficient condition for (7.1) is σ0 ≥ δ > 0 which is satisfied in all our examples for

polynomial GARCH processes. In case of exponential GARCH the conditions

|c(ε0)| ≤ c < 1 and E exp(θ/2 |g(ε0)|) < ∞

suffice to assure (7.1). To see this note that

Eσ−θ
0 ≤ E exp(θ/2 |Λ(σ2

0)|).

Hence we use the same arguments as in the proof of Proposition 6.1 to show that the

last term is finite.

An immediate consequence of Theorem 7.1 is the weak convergence of the empir-

ical process of y1, . . . , yn. Let B(s) be a Gaussian process with EB(s) = 0 and

EB(s)B(s′) = Γ(s, s′). Then

n1/2

(
1

n

∑

1≤k≤n

(I{yk ≤ s} − F (s))

)
d−→ B(s) (n →∞).



116

As we pointed out in the introduction, our approach yields sharper results than

the theory of mixing. For example, Carrasco and Chen [26] verified β-mixing with

exponential decay for yk, an approach requiring the existence of a continuous positive

density of ε0 and Eε0 = 0, Eε2
0 = 1 and

|c(0)| < 1, E|c(ε0)| < 1, E|g(ε0)| < ∞. (7.3)

Together with Theorem 2 in Philipp and Pinzur [89] this yields the proposition of

Theorem 7.1. Clearly (7.3) is more restrictive than (i)-(iii). Also, our Theorem 7.1

does not require a positive and continuous density. In the literature special attention

has been paid to the IGARCH (1,1) process, i.e. GARCH (1,1) with E(β +αε2
0) = 1.

For an IGARCH process (7.3) does not hold, but Theorem 7.1 applies. It is worth

pointing out that the moment conditions (7.3) for c(ε0) and g(ε0) are milder than

those of Theorem 7.1 in case of exponential GARCH.

7.2 Proofs

In the previous section we defined Yk(s) = I{yk ≤ s} − F (s), s ∈ R. By Re-

mark 7.1 F (yk) is uniformly distributed and thus it will be comfortable to define

Y ?
k (s) := I{F (yk) ≤ s} − s, s ∈ [0, 1]. Note that since F is monotone we have

Y ?
k (F (s)) = Yk(s). Similarly we may define R?(s, t), Γ?(s, t) etc. Once we prove

the analogue of Theorem 7.1 for R?(s, t) this will immediately show Theorem 7.1,

having the advantage that we only need to study the empirical process of uniformly

distributed r.v.’s. In order to make the notation not too cumbersome we shall agree

to omit the ”?” in the sequel and write Yk(s) when we actually mean Y ?
k (s) etc.

This section is organized as follows. In Subsection 7.2.1 we will derive several esti-

mates on the difference between yk and ykm, where ykm is defined as in (6.31). We

use these estimates in order to obtain moment inequalities as well as probability

inequalities for the empirical process.

Now the rest of the proof will be structured as the proof of Theorem 1 in Berkes and

Philipp [17]. In Subsection 7.2.2 we derive upper bounds for the maximal fluctuation
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of R(s, t) and K(s, t) in some rectangle [s0, s1] × [t0, t1]. Finally in Subsection 7.2.3

we construct the approximating Gaussian process on a special grid in [0, 1]× [0,∞).

We will show that the processes are ‘near’ enough on this grid. Together with the

afore derived bounds for the maximal fluctuation of R(s, t) and K(s, t) Theorem 7.1

will follow.

We agree upon denoting ‘local’ constants (within a proof) with c1, c2, · · · and ‘global’

constants (within a subsection) with capital letters C1, C2, · · · .

7.2.1 Probability inequalities for the perturbation error

Lemma 7.1. Assume that (6.4)-(6.7) and (6.9) hold. Assume further that (i) and

(ii) hold for some µ > 2. Then for any t ≥ t0 we have

P{|Λ(σ2
0)| > t} ≤ C0(log t)−(µ−2)/2.

Proof. We set γ1 = E|c(ε0)| and γ2 = E log |g(ε0)|. Let 0 ≤ % < 1 such that

log %− γ1 = a > 0. From (6.10) and the Markov inequality we get

P{|Λ(σ2
0)| > t}

≤
∞∑
i=1

P
{
|g(ε−i)|

∏
1≤j<i

|c(ε−j)| > t(1− %)%i−1
}

=
∞∑
i=1

P
{

log |g(ε−i)|+
∑

1≤j<i

(log |c(ε−j)| − γ1) > log t− c1 + i(log %− γ1)
}

≤
∞∑
i=1

P
{

log |g(ε−i)| − γ2 +
∑

1≤j<i

(log |c(ε−j)| − γ1) >
log t

2
+ ia

}

≤
∞∑
i=1

E
∣∣∣log |g(ε−i)| − γ2 +

∑
1≤j<i

(log |c(ε−j)| − γ1)
∣∣∣
µ( log t

2
+ ia

)−µ

if t is large enough. Hence if (i) and (ii) hold for µ > 2 we get by the Rosenthal
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inequality [88, p. 59] and some routine analysis

P{|Λ(σ2
0)| > t} ≤ c2

∞∑
i=1

iµ/2

(
log t

2
+ ia

)−µ

≤ c3

∞∑
i=1

(
log t

2
+ ia

)−µ/2

≤ C0(log t)−(µ−2)/2.

Lemma 7.2. Assume that (6.4)-(6.7) and (6.9) hold. Assume further that (iii) holds

for some µ > 0. Then for any t ≥ 0 we have

P{|Λ(σ2
0)| > t} ≤ C0t

−µ.

Proof. Let 0 ≤ % < 1 such that %µ > E|c(ε0)|µ. From (6.10) and the Markov

inequality we get

P{|Λ(σ2
0)| > t} ≤

∞∑
i=1

P
{
|g(ε−i)|

∏
1≤j<i

|c(ε−j)| > t(1− %)%i−1
}

≤ c1t
−µE|g(ε0)|µ

∞∑
i=1

(
%µ

E|c(ε0)|µ
)(−i+1)

.

From now on we define

y′k := εkσ̃k, (7.4)

where σ̃k is the solution of

Λ(σ̃2
k) =

[kρ]∑
i=1

g(εk−i)
∏

1≤j<i

c(εk−j) (7.5)

with some 0 < ρ < 1.

Lemma 7.3. Assume that (6.4)-(6.7) and (6.9) hold. Assume also that (i) and (ii)

hold for some µ > 2. Then there are positive constants C1 and C2 such that

P
{
|Λ(σ2

k)− Λ(σ̃2
k)| > exp(−C1k

ρ)
}
≤ C2k

−ρ(µ−2)/2. (7.6)
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Proof. Observe that

|Λ(σ2
k)− Λ(σ̃2

k)| =
[kρ]∏
i=1

|c(εk−i)||Λ(σ2
k−[kρ])|.

Choose c1 > 0 such that −c1 − γ1 > 0. From the stationarity of Λ(σ2
k) we get

P
{
|Λ(σ2

k)− Λ(σ̃2
k)| > exp(−c1/2 kρ)

}

= P

{
[kρ]∏
i=1

|c(εk−i)| |Λ(σk−[kρ])| > exp(−c1/2 kρ)

}

≤ P

{
[kρ]∑
i=1

(log |c(εk−i)| − γ1) > (−c1 − γ1)k
ρ

}
+ P

{
|Λ(σ0)| > exp(c1/2 kρ)

}

and by the Markov inequality and again the Rosenthal inequality [88, p. 59] and

Lemma 7.1

≤ c2E

∣∣∣∣∣
[kρ]∑
i=1

(log |c(εk−i)| − γ1)

∣∣∣∣∣

µ

k−ρµ + P
{
|Λ(σ0)| > exp(c1/2 kρ)

}

≤ c3k
−ρµ/2 + c4k

−ρ(µ−2)/2.

Lemma 7.4. Assume that (6.4)-(6.7) and (6.9) hold. Assume also that we have

(i)−(iii) for some µ > 2 and that (v)−(vi) hold. Then there are constants C3, C4 > 0

such that

P
{
|yk − y′k| > exp(−C3k

ρ)
}
≤ C4k

−ρ(µ−2)/2. (7.7)

Proof. The mean-value theorem gives

|yk − y′k| = |εk|
∣∣h(Λ(σ2

k))− h(Λ(σ̃2
k))

∣∣ = |εk||Λ(σ2
k)− Λ(σ̃2

k)|
∣∣h′(ξ)

∣∣

where ξ is between Λ(σ2
k) and Λ(σ̃2

k). Consequently (vi) implies

|yk − y′k| ≤ C|εk||Λ(σ2
k)− Λ(σ̃2

k)|
(
|Λ(σ2

k)|γ + |Λ(σ̃2
k)|γ

)
.
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It follows that

P{|yk − y′k| > exp(−c1/3 kρ)}
≤ P

{
2C|εk||Λ(σ2

k)− Λ(σ̃2
k)||Λ(σ2

k)|γ > exp(−c1/3 kρ)
}

+ P
{

2C|εk||Λ(σ2
k)− Λ(σ̃2

k)||Λ(σ̃2
k)|γ > exp(−c1/3 kρ)

}
. (7.8)

Assuming that γ > 0 we have

P
{

2C|εk||Λ(σ2
k)− Λ(σ̃2

k)||Λ(σ2
k)|γ > exp(−c1/3 kρ)

}

≤ P
{

log+ 2C|εk| > c1/3 kρ
}

+ P
{
|Λ(σ2

k)− Λ(σ̃2
k)| > exp(−c1 kρ)

}
(7.9)

+ P
{
|Λ(σ2

k)| > exp(c1/(3γ) kρ)
}

.

Since |Λ(σ̃2
k)| ≤ |Λ(σ2

k)|+|Λ(σ2
k)−Λ(σ̃2

k)| we can use similar methods to estimate (7.8).

For an upper bound of the first probability in (7.9) we use the Markov inequality and

(iii). Thus if γ > 0 the result follows easily from Lemma 7.1 and Lemma 7.3. If

γ ≤ 0 we can use (v) to carry out the proof in a similar way.

Lemma 7.5. Assume that (6.4)-(6.7) and (6.9) hold. Let Λ(x) = log x. Assume

further that (iii) − (iv) hold for some µ > 2. Then there are constants C5, C6 > 0

such that

P
{
|yk − y′k| > exp(−C5k

ρ)
}
≤ C6k

−ρ(µ−2)/2. (7.10)

Proof. Observe that (iv) implies (i)− (ii).

|σk − σ̃k| =
∣∣ exp(1/2 Λ(σ2

k))− exp(1/2 Λ(σ̃2
k))

∣∣
≤

∣∣Λ(σ2
k)− Λ(σ̃2

k)
∣∣ exp

(
1/2 (|Λ(σ2

k)|+ |Λ(σ̃2
k)|)

)

≤
∣∣Λ(σ2

k)− Λ(σ̃2
k)

∣∣ exp
(
|Λ(σ2

k)|+ 1/2 |Λ(σ2
k)− Λ(σ̃2

k)|
)
.

Thus

P
{|yk − y′k| > exp(−c1/2 kρ)

}

≤ P
{|εk| > exp(c1/2 kρ)

}
+ P

{|σk − σ̃k| > exp(−c1k
ρ)

}

≤ P
{
log+ |εk| > c1/2 kρ

}
+ P

{|Λ(σ2
k)− Λ(σ̃2

k)| > exp(−2c1k
ρ)

}

+ P
{|Λ(σ2

k)|+ 1/2 |Λ(σ2
k)− Λ(σ̃2

k)| > c1k
ρ
}
.
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Finally, applying the Markov inequality in connection with (iii) and (iv) and Lemma 7.2

and Lemma 7.3 finishes the proof.

Similar to Yn(s) we define

Y
′
n(s) = I{F (y′n) ≤ s} − s.

Lemma 7.6. Under the conditions of Theorem 7.1 we have

|EY0(s)Yk(s
′)| ≤ C7k

−ρ(µ−2)/2, (7.11)

uniformly for 0 ≤ s, s′ ≤ 1.

Proof. Since |Yk(s)| ≤ 1 and Y0(s) is independent from Y
′
k (s′) if k ≥ 2 we have

|EY0(s)Yk(s
′)| = |EY0(s)(Yk(s

′)− Y ′
k(s

′))|
≤ E|Yk(s

′)− Y ′
k(s

′)| = P{Yk(s
′) 6= Y ′

k(s
′)}.

The event {Yk(s
′) 6= Y ′

k(s
′)} implies that F (yk) and F (y′k) are on different sides of s′.

Remember that F (yk) is uniformly distributed on the unit interval. It follows from

Remark 7.1 that for some c1 > 0

P{Yk(s
′) 6= Y ′

k(s
′)} ≤P{F (yk) ∈ (s′ − exp(−c1k

ρ), s′ + exp(−c1k
ρ))}

+ P{|F (yk)− F (y′k)| > exp(−c1k
ρ)}

≤2 exp(−c1k
ρ) + P{|yk − y′k| > c2 exp(−c1/θ kρ)}.

Now the result follows from Lemmas 7.4 and 7.5.

Remark 7.2. The previous lemma shows that the series in (7.2) converges absolutely

if ρ(µ− 2) > 2.

Remark 7.3. The factor k−ρ in (7.11) stems from the definition of Λ(σ̃k) in (6.32),

where we expanded the occuring series up to [kρ]. Assume now we go m steps into

the past, i.e. we replace [kρ] in (6.32) by m. An m step approximation of yk in the

spirit of (7.4) will be denoted by ym+1
k and similar Y m+1

k (s). The same arguments as

before show for 1 ≤ m < k

|EY0(s)Yk(s
′)| ≤ E|Yk(s

′)− Y m+1
k (s′)| ≤ C7m

−(µ−2)/2.
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7.2.2 Increments of the empirical process

We define for 0 ≤ s ≤ s′ ≤ 1

Ȳk(s, s
′) = I{s < F (yk) ≤ s′} − (s′ − s)

Ȳ
′
k (s, s′) = I{s < F (y′k) ≤ s′} − (s′ − s).

The next lemmas are devoted to the estimation of the increments

R(s′, t′)−R(s, t) =
∑

1≤k≤t

Ȳk(s, s
′) +

∑

t<k≤t′
Yk(s

′) (t′ > t). (7.12)

Lemma 7.7. Assume that the conditions of Theorem 7.1 are satisfied. Then for

0 ≤ s ≤ s′ ≤ 1 there are constants C, τ > 0 such that

E

∣∣∣∣∣
∑

1≤k≤N

Ȳk(s, s
′)

∣∣∣∣∣

2

≤ CN(s− s′)τ ,

where C, τ do not depend on N, s, s′.

Proof. From the stationarity of the underlying augmented GARCH process it follows

that EȲk(s, s
′)Ȳl(s, s

′) = EȲ1(s, s
′)Ȳl−k+1(s, s

′). Hence one may easily derive

E

∣∣∣∣∣
∑

1≤k≤N

Ȳk

∣∣∣∣∣

2

= N

{
EȲ 2

1 + 2
N∑

k=2

EȲ1Ȳk − 2

N

N∑

k=2

(k − 1)EȲ1Ȳk

}
, (7.13)

where we shortened for notational reasons Ȳk = Ȳk(s, s
′). The same arguments as in

Lemma 7.6 show that there is a constant c1 > 0 such that

|EȲ1(s, s
′)Ȳk(s, s

′)| ≤ c1k
−ρ(µ−2)/2 ∀ 0 ≤ s ≤ s′ ≤ 1. (7.14)

On the other hand the Cauchy-Schwartz inequality gives

|EȲ1(s, s
′)Ȳk(s, s

′)| ≤ EY 2
1 (s, s′) = (s′ − s)(1− (s′ − s)) ≤ (s′ − s). (7.15)

Putting together (7.14) and (7.15) we have some C > 0 with

|EȲ1(s, s
′)Ȳk(s, s

′)| ≤ Ck−ρ(µ−2)/2(1−τ)(s− s′)τ . (7.16)

Now choose τ > 0 and ρ < 1 such that ρ(µ− 2)(1− τ) > 2. Then by some standard

analysis the proof follows from (7.13) and (7.16).
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Lemma 7.8. Assume that the conditions of Theorem 7.1 are satisfied. Let ρ < 1/2.

There are constants C1, C2, C3, η > 0 such that for all x > 1 and for any choice of

parameters 0 ≤ s ≤ s′ ≤ 1

P

{∣∣∣∣∣
∑

1≤k≤N

Ȳk(s, s
′)

∣∣∣∣∣ > x

}

≤ C1

[
exp(−C2x

2/(N(s′ − s)η)) + exp(−C3x/Nρ) + x−(2+η)
]
.

Proof. We define

SN =
∑

1≤k≤N

Ȳk(s, s
′) and S

′
N =

∑

1≤k≤N

Ȳ
′
k (s, s′).

Again we shorten notation and set Ȳk = Ȳk(s, s
′) and Ȳ ′

k = Ȳ ′
k(s, s

′). Then we get by

the Markov and the Minkowski inequality

P (|SN − S
′
N | > x) ≤ x−κ E|SN − S

′
N |κ

≤ x−κ

[
N∑

k=1

(
E|Ȳk − Ȳ

′
k |κ

)1/κ
]κ

.

Note that |Ȳk − Ȳ
′
k | ∈ {0, 1} . Thus we get by similar arguments as in the proof of

Lemma 7.6

E|Ȳk − Ȳ
′
k |κ = E|Ȳk − Ȳ

′
k | = P{Ȳk 6= Ȳ

′
k} ≤ c1k

−ρ(µ−2)/2. (7.17)

Since µ > 10 we can choose some η > 0 and ρ < 1/2 such that ρ(µ − 2)/2 > 2 + η.

This shows that

P{|SN − S
′
N | > x} ≤ c2x

−(2+η). (7.18)

Observe that by definition the variables Ȳ ′
k , k = 1, · · · , N , are [Nρ]-dependent. We

define

Zl =

(2l+1)[Nρ]∧N∑

k=2l[Nρ]+1

Ȳ ′
k 0 ≤ l ≤ m,

where m is the smallest integer such that 2m[Nρ] < N . Consequently the Zl are

independent. In an analogous way we let Ẑl be the sums over the sets {(2l +1)[Nρ]+

1, · · · , (2l + 2)[Nρ]}.
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We choose ρ close enough to 1/2 in order to get δ = ρ(µ − 2)/4 − 1 > 0. Then we

define Xl similar to Zl only with Ȳk instead of Ȳ ′
k . We get from (7.17) with some

simple analysis

(E|Zl −Xl|2)1/2 ≤
(2l+1)[Nρ]∧N∑

k=2l[Nρ]+1

(E|Ȳ ′
k − Ȳk|2)1/2

≤
(2l+1)[Nρ]∧N∑

k=2l[Nρ]+1

c
1/2
1 k−ρ(µ−2)/4 ≤ c3(2l)

−(1+δ)N−ρδ.

Now we derive with Minkowski’s inequality and Lemma 7.7

E|Zl|2 ≤
[(

E|Xl|2
)1/2

+
(
E|Zl −Xl|2

)1/2]2

≤
[
(CNρ(s′ − s)τ )1/2 + c3(2l)

−(1+δ)N−ρδ
]2

.

Consequently it follows from m ∼ 1/2N1−ρ that

m∑

l=1

E|Zl|2 ≤ c4

[
N(s′ − s)τ + N−2ρδ + Nρ/2−ρδ(s′ − s)τ/2

]

≤ c5N
[
(s′ − s)τ/2 + N−(1+ε)

]
, (7.19)

where ε = 2ρδ. Obviously

|Zl| ≤ Nρ 0 ≤ l ≤ m. (7.20)

Taking into account (7.19) and (7.20) we may apply Kolmogorov’s exponential bound

[88, Lemma 7.1] to get

P

{
m∑

l=1

Zl > x

}
≤ exp

(
−c6x

2/
(
N(s′ − s)τ/2 + N−ε

))
+ exp(−c7x/Nρ).

An analogue inequality can be shown for
∑m

k=1 Ẑl. Since S
′
N =

∑m
l=1(Zl + Ẑl) we have

proved that

P{S ′
N > x} ≤ 2 exp

(
−c6x

2/
(
N(s′ − s)τ/2 + N−ε

))
+ 2 exp(−c7x/Nρ). (7.21)

If N(s′ − s)τ/2 ≥ N−ε the result follows from (7.18). Otherwise the first term on

the righthand side of (7.21) is dominated by 2 x−(2+η) which completes the proof of

Lemma 7.8.
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Lemma 7.9. Under the conditions of Theorem 7.1 we have for any 0 ≤ z0 < z ≤ 1,

T > 1 and λ ≥ min{(z − z0)
η/2, (log T )−1} positive constants C4, C5, α such that

P

{
sup

z0≤s≤z
0≤t≤T

∣∣∣∣∣
∑

k≤t

Ȳk(z0, s)

∣∣∣∣∣ ≥ λT 1/2

}

≤ C4

[
exp(−C5λ

2/(z − z0)
η) + T−α

]
,

where η stems from Lemma 7.8.

Proof. The proof uses a dyadic chaining argument. We assume without loss of gen-

erality that z0 = 0. Assume (t, s) is an element in the rectangle X = [0, T ] × [0, z].

Then we can represent

s = z

∞∑
i=1

εi2
−i εi ∈ {0, 1} and define sv = z

v∑
i=1

εi2
−i,

and similarly let

t = T

∞∑
i=1

ηi2
−i ηi ∈ {0, 1} and tu = T

u∑
i=1

ηi2
−i.

(We set t0 = s0 = 0). Observe that we have

(tu, tu+1]× (sv, sv+1] ⊂ (Ti2−u, T (i + 1)2−u]× (zj2−v, z(j + 1)2−v],

where (i, j) ∈ {0, · · · , 2u − 1} × {0, · · · , 2v − 1} depend on (t, s). Thus if

Mu,v = max
0≤i≤2u−1
0≤j≤2v−1

∣∣∣∣∣
∑

k∈(Ti2−u,T (i+1)2−u]

Ȳk(zj2
−v, z(j + 1)2−v)

∣∣∣∣∣,

then it follows that∣∣∣∣∣
∑

k≤t

Ȳk(0, s)

∣∣∣∣∣

=

∣∣∣∣∣
m∑

u,v=1

∑

tu−1<k≤tu

Ȳk(sv, sv+1) +
∑

tm<k≤t

Ȳk(0, s) +
∑

0<k≤tm

Ȳk(sm, s)

∣∣∣∣∣

≤
m∑

u,v=1

Mu,v +

∣∣∣∣∣
∑

tm<k≤t

Ȳk(0, s)

∣∣∣∣∣ +

∣∣∣∣∣
∑

0<k≤tm

Ȳk(sm, s)

∣∣∣∣∣

≤
m∑

u,v=1

Mu,v +
T

2m
+

∣∣∣∣∣
∑

0<k≤tm

Ȳk(sm, s)

∣∣∣∣∣.
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For any x ≥ 0 we have Ȳk(s, s
′) ≤ Ȳk(s, s

′ + x) + x and since sm ≤ zm = z − z2−m we

get

∣∣∣∣∣
∑

0<k≤tm

Ȳk(sm, s)

∣∣∣∣∣ ≤
m∑

u=1

(∣∣∣∣∣
∑

tu−1<k≤tu

Ȳk(sm, sm + z2−m)

∣∣∣∣∣ +
tu − tu−1

2m

)

≤
m∑

u=1

Mu,m +
T

2m
.

This gives ∣∣∣∣∣
∑

k≤t

Ȳk(0, s)

∣∣∣∣∣ ≤ 2

(
m−1∑
u,v=0

Mu,v +
T

2m

)
.

For T > 1 and λ > 0 we can choose an m = m(T, λ) ∈ N such that

min{1, λ/2}2m−1 ≤ T 1/2 ≤ λ2m−1. (7.22)

Define xβ :=
∑∞

u,v=1 2−β(u+v) where β > 0. Then we get

P

{
m∑

u,v=1

Mu,v+2−mT > λT 1/2

}
≤ P

{
m∑

u,v=1

Mu,v >
λ

2
T 1/2

}

≤P

{
m∑

u,v=1

Mu,v >
λ

2xβ

T 1/2

m∑
u,v=1

2−β(u+v)

}

≤
m∑

u,v=1

P
{

Mu,v >
λ

2xβ

T 1/22−β(u+v)
}

.

By Lemma 7.8 we have

P
{

Mu,v >
λ

2xβ

T 1/22−β(u+v)
}

≤C1 2u+v
[
exp(−c1λ

22−2β(u+v)+u+vηz−η)

+ exp(−c2λ2−β(u+v)+uρT 1/2−ρ) + (λT 1/22−β(u+v)/(2xβ))−(2+η)
]

= : C1 2u+v[s1(u, v) + s2(u, v) + s3(u, v)].
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We fix a small β. Then if 2β < η we have an ε1 > 0 such that

m∑
u,v=1

2u+vs1(u, v) ≤
m∑

u,v=1

2u+v exp(−c3λ
2(2ε1u + 2ε1v)z−η)

≤
(

m∑
u=1

2u exp(−c3λ
22ε1uz−η)

)2

(7.23)

≤ c4 exp(−c5λ
2z−η).

Here we used the relation λ2z−η ≥ 1 to assure that c4, c5 do no longer depend on λ

and z.

Choose β and n such that n(β − ρ) < −1. Since e−x ≤ c(n)x−n for any x > 0 we

derive

m∑
u,v=1

2u+vs2(u, v) ≤
m∑

u,v=1

c6λ
−n2n(β(u+v)−uρ)+u+vT−n(1/2−ρ)

≤ c6λ
−n2m(βn+1)T−n(1/2−ρ)m

∑
u≥1

2u(nβ−nρ+1)

≤ c7λ
−n2m(βn+1)T−n(1/2−ρ)m.

By (7.22) and λ ≥ (log T )−1 we get 2m ≤ 4T 1/2(log T + 1). Choosing β and n such

that (β/2+ρ−1/2)n < −1/2 gives
∑m

u,v=1 2u+vs2(u, v) ≤ c8T
−ε2 for some positive ε2.

Using similar arguments it is now very easy to show that
∑m

u,v=1 2u+vs3(u, v) ≤ c9T
−ε3

with some ε3 > 0. Subsuming our results completes the proof.

Now we proceed in estimating the increments of the approximating Gaussian process.

Lemma 7.10. Assume the process K(s, t) is defined as in Theorem 7.1. Then there

is a constant C6 > 0 such that for all x ≥ x0 and any 0 ≤ z0 ≤ z ≤ 1 and 0 ≤ T0 ≤ T

P

{
sup

(s,t)∈I

|K(s, t)−K(z0, T0)| ≥ x(T (z − z0)
τ + |T − T0|)1/2

}
≤ C6 e−C7x2

,

where I = [z0, z]× [T0, T ] and τ stems from Lemma 7.7.
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Proof. We define

Z(s, t) := K(z0 + s(z − z0), T0 + t(T − T0))−K(z0, T0), (s, t) ∈ [0, 1]2.

Then clearly sup(s,t)∈I |K(s, t) − K(z0, T0)| = sup(s,t)∈[0,1]2 |Z(s, t)|. We note that

Γ(s, s′) = Γ(s′, s) which implies

E|K(s, t)−K(s′, t)|2 = t(Γ(s, s) + Γ(s′, s′)− 2Γ(s, s′))

= t
∑

k∈Z
EȲ0(s, s

′)Ȳk(s, s
′).

Using (7.16) we obtain from the previous relation

E|K(s, t)−K(s, t′)|2 ≤ c1t|s− s′|τ .

It follows from the definition of Z(s, t) that

E|Z(s, t)− Z(s′, t)|2 ≤ c2T |s− s′|τ (z − z0)
τ . (7.24)

Lemma 7.6 shows that Γ(s, s′) is uniformly bounded. Thus

E|Z(s, t)− Z(s, t′)|2 ≤ c3(T − T0)|t− t′|. (7.25)

Next observe that by the Minkowski inequality

E|Z(s, t)|2 ≤
(
E1/2|Z(s, t)− Z(0, t)|2 + E1/2|Z(0, t)− Z(0, 0)|2

)2

.

Together with (7.24) and (7.25) this yields

sup
(s,t)∈[0,1]2

E|Z(s, t)|2 ≤ c4(T (z − z0)
τ + (T − T0)). (7.26)

Combining (7.24)-(7.26) with Lemma 2 in [70] completes the proof.

We partition the set [0, 1]× [0,∞) in rectangles [ski
, ski+1

]× [tk, tk+1], with

ski
= i2−[log k/(2 log 2)] (0 ≤ i ≤ dk) and tk = exp(k1−ε) (k ≥ 1),
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where dk = 2[log k/(2 log 2)] and ε is some positive constant to be specified later. Addi-

tionally we set t0 = 0. Let

G =
⋃

k≥0

{(ski
, tk)|0 ≤ i ≤ dk}

denote the grid defined by this partition. Lemma 7.11 below shows, that in order to

prove Theorem 7.1 it suffices to construct a Gaussian process K(s, t) with EK(s, t) =

0 and EK(s, t)K(s′, t′) = (t ∧ t′)Γ(s, s′) which satisfies for some γ1 > 0

max
0≤i≤dk−1

|R(ski
, tk)−K(ski

, tk)| = O
(
t
1/2
k (log tk)

−γ1

)
a.s. (7.27)

I.e. it suffices to show that K(s, t) and R(s, t) are near on the grid G.

Lemma 7.11. Let R̂(i, k) denote the maximal fluctuation of R(s, t) over the rectangle

[ski
, ski+1

]× [tk, tk+1]. Similarly define for K(s, t) the random variables K̂(i, k). Then

there is a γ0 > 0 such that

max
0≤i≤dk−1

R̂(i, k) = O
(
t
1/2
k (log tk)

−γ0

)
a.s.

A similar result is true for K̂(i, k).

Proof. Note that by (7.12)

max
0≤i≤dk−1

R̂(i, k) ≤ 2 max
0≤i≤dk−1

sup
tk≤t≤tk+1

ski
≤s≤ski+1

|R(s, t)−R(ski
, tk)|

≤ 2 max
0≤i≤dk−1

sup
ski
≤s≤ski+1

∣∣∣
∑

1≤l≤tk

Ȳl(ski
, s)

∣∣∣ + 2 sup
tk≤t≤tk+1

s∈[0,1]

∣∣∣
∑

tk<l≤t

Ȳl(0, s)
∣∣∣.

By Lemma 7.9 we get

P

{
max

0≤i≤dk−1
sup

ski
≤s≤ski+1

∣∣∣
∑

1≤l≤tk

Ȳl(ski
, s)

∣∣∣ ≥ t
1/2
k (log tk)

−η/8

}

≤ c1k
1/2

[
exp(−c2(log tk)

−η/4kη/2) + t−α
k

]

≤ c3k
1/2

[
exp(−c2k

η/4) + exp(−αk1−ε)
]
≤ c4k

−2,

(7.28)
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where we used dk ∼ k1/2. Observing that

tk+1 − tk ∼ (1− ε)tk(log tk)
−ε/(1−ε) (7.29)

and again by Lemma 7.9 we have

P

{
sup

tk≤t≤tk+1
s∈[0,1]

∣∣∣
∑

tk<l≤t

Ȳl(0, s)
∣∣∣ ≥ t

1/2
k (log tk)

−ε/4

}

≤ P

{
sup

tk≤t≤tk+1
s∈[0,1]

∣∣∣
∑

tk<l≤t

Ȳl(0, s)
∣∣∣ ≥ (tk+1 − tk)

1/2(log tk)
ε/4

}

≤ c5

[
exp(−c6(log tk)

ε/2) + (tk+1 − tk)
−α

]

≤ c7

[
exp(−c8k

(1−ε)ε/2) + exp(−αk1−ε)kεα
]
≤ c9k

−2.

(7.30)

The Borel-Cantelli lemma implies the first proposition. Using Lemma 7.10 one can

show easily a similar result for the fluctuation of K(s, t).

7.2.3 Construction of the approximating Gaussian process

We define

∆
(j)
` = R(s`j

, t`+1)−R(s`j
, t`) ` ≥ 0

B
(j)
` = R(s`j

, t`)−R(s`m , t`) ` ≥ 1, m = max{j − 1, 0}.

If (s, tk) is an element of the grid G we can represent R(s, tk) as sum of horizontal

and vertical increments ∆
(j)
` and B

(j)
` . Depending on s there are constants m` and j`

such that

R(s, tk) =
∑

1≤`≤k

(
δ`B

(j`)
` + ∆

(m`)
`

)
, (7.31)

where δ` is either zero or one, depending on s as well. A similar representation holds

for K(s, tk).

K(s, tk) =
∑

1≤`≤k

(
δ`B̂

(j`)
` + ∆̂

(m`)
`

)
, (7.32)
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where the definition of B̂
(j`)
` and ∆̂

(m`)
` is obvious. Choosing ε in the definition of tk

smaller than η/8 we get by (7.28) and the Borel-Cantelli lemma some γ2 > 0 such

that for k →∞
∣∣∣∣∣
∑

1≤l≤k

δ`B
(j`)
`

∣∣∣∣∣ ≤
∑

1≤l≤k

max
0≤i≤dl−1

sup
sli
≤s≤sli+1

∣∣∣∣∣
∑

1≤j≤tl

Ȳj(si, s)

∣∣∣∣∣

¿
k∑

l=1

t
1/2
l (log tl)

−η/8 a.s.

¿ t
1/2
k (log tk)

−γ2 .

Here ak ¿ bk means |ak/bk| = O(1). By similar arguments we get an analogous result

for the process K(s, t). Hence, in view of (7.27) and (7.31)-(7.32) Theorem 7.1 will be

proved if we succeed in constructing the approximating Gaussian process such that

for any s = ski
, i = 1, . . . , dk the sum of vertical increments

∣∣∣∣∣
∑

1≤`≤k

(∆
(m`)
` − ∆̂

(m`)
` )

∣∣∣∣∣

is not too large. Specifically Theorem 7.1 follows from

k∑

`=1

max
0≤i≤d`−1

∣∣∣R(s`i
, t`)−R(s`i

, t`−1)− (K(s`i
, t`)−K(s`i

, t`−1))
∣∣∣

¿ t
1/2
k (log tk)

−γ3 a.s.

(7.33)

for some γ3 > 0 and for k →∞.

Lemma 7.12. Let {Xl, l ≥ 1} be a sequence of independent Rdl, dl ≥ 1, valued

random variables with characteristic functions fl(u), u ∈ Rdl, and let {Gl, l ≥ 1}
be a sequence of probability distributions on Rdl with characteristic functions gl(u),

u ∈ Rdl. Suppose that for some nonnegative numbers λl, δl and Wl ≥ 108dl

|fl(u)− gl(u)| ≤ λl

for all u with ‖u‖ ≤ Wl and

Gl{u : ‖u‖ > Wl/4} ≤ δl.
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Then without changing its distribution we can redefine the sequence {Xl, l ≥ 1} on a

richer probability space together with a sequence {Yl, l ≥ 1} of independent random

variables such that Yl
d
= Gl and

P{‖Xl −Yl‖ ≥ αl} ≤ αl (l ∈ N)

where α1 = 1 and

αl = 16dlW
−1
l log Wl + 4λ

1/2
l W dl

l + δl (l ≥ 2).

Similar to (7.4) we define for j ∈ {tl−1 + 1, · · · , tl} the random variables ŷj = εjσ̂j

where σ̂j is the solution of

Λ(σ̂2
j ) =

∑

1≤i≤[tρl ]

g(εj−i)
∏

1≤m<i

c(εj−m) for some 0 < ρ < 1/2.

Next we set

Ŷj(s) = I{F (ŷj) ≤ s} − P{F (ŷj) ≤ s}
and for pl−1 = [tρl ] we divide the interval Il = {tl−1 + pl−1 + 1, · · · , tl} into blocks

Il1 , Jl1 , Il2 , Jl2 · · · Iln , Jln where |Ilk | = [|Il|ρ∗ ], ρ < ρ∗ < 1/2, and |Jlk | = [tρl ]. This

implies that |Jlk |/|Ilk | ¿ t−δ
l , for 0 < δ < ρ∗ − ρ. The last blocks may be incomplete

and of course n = n(l). Then

tl∑
j=tl−1+pl−1+1

Ŷj(s) =
n∑

k=1

∑
j∈Ilk

Ŷj(s) +
n∑

k=1

∑
j∈Jlk

Ŷj(s) =:
n∑

k=1

Tlk(s) +
n∑

k=1

T
′
lk
(s).

We set

Tlk :=
(
Tlk(sl0), · · · , Tlk(sldl

)
)
.

Clearly n is proportional to |Il|1−ρ∗ and by definition {Tl1 , · · · ,Tln} is an Rdl valued

i.i.d. sequence with ETl1 = 0. Next we introduce the random vectors

ξlk
= |Il1|−1/2 Tlk (1 ≤ k ≤ n).

Lemma 7.13. Set var ξl1 = Σl = ((Σl(sli , slj)))
dl
i,j=0. Under the conditions of Theo-

rem 7.1 there is a constant C5 such that

sup
0≤i,j≤dl

|Σl(sli , slj)− Γ(sli , slj)| ≤ C5|Il1|−1 (l ≥ 1).
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Proof. Using the stationarity of {Yk(s), k ∈ Z} little algebra shows that

1

N −M
E

( ∑

M<k,m≤N

Yk(s)Ym(s′)

)
=

∑

|k|<(N−M)

EY0(s)Yk(s
′)

− 1

N −M

(N−M)−1∑

k=1

k(EY0(s)Yk(s
′) + EYk(s)Y0(s

′)) (M < N).

Hence we may write

Γ(s, s′) =
1

|Il1|
E

( ∑

k,m∈Il1

Yk(s)Ym(s′)

)

+
1

|Il1|
|Il1

|−1∑

k=1

k(EY0(s)Yk(s
′) + EYk(s)Y0(s

′)) +
∞∑

|k|=|Il1
|
EY0(s)Yk(s

′)

=
1

|Il1|
E

( ∑

k,m∈Il1

Yk(s)Ym(s′)

)
+ O

(|Il1|−1
)

(l →∞), (7.34)

where (7.34) follows from Lemma 7.6. (Note that O is uniformly in 0 ≤ s, s′ ≤ 1.)

Consequently we have

|Σl(sli , slj)− Γ(sli , slj)|
≤ 1

|Il1|
∑

k,m∈Il1

E|Ŷk(sli)Ŷm(slj)− Yk(sli)Ym(slj)|+ O
(|Il1|−1

)
.

By Remark 7.3 we infer for k, m ∈ Il1

E|Ŷk(s)Ŷm(s′)− Yk(s)Ym(s′)| ≤ E|Ŷm(s′)− Ym(s′)|+ E|Ŷk(s)− Yk(s)|
≤ c1t

−ρ(µ−2)/2
l .

By (7.29) we get |Il1| = O
(
tρ
∗

l l−ερ∗
)
. Since ρ∗ < 1/2 it suffices e.g. to choose ρ < 1/2

such that ρ(µ− 2)/2 ≥ 1 in order to finish the proof.

We set Γl = ((Γ(sli , slj)))
dl
i,j=0 and denote ‖A‖∞ = supi,j |aij| for some matrix A =

((aij)). Since Γ(s, s′) is a bounded function we infer by the last lemma that supl ‖Σl‖∞ <

∞.
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Set

Xl = (n− 1)−1/2

n−1∑

k=1

ξlk

and denote by
〈·|·〉 the inner product of real vectors.

Lemma 7.14. Let ‖u‖ ≤ K exp(l1/2) for some absolute number K. Then there are

constants C6, C7 such that

∣∣E exp
(
i
〈
u|Xl

〉)− exp
(−1/2

〈
u|Γlu

〉)∣∣ ≤ C6 exp(−C7l
1−ε)‖u‖2,

where ε stems from the definition of tl.

Proof. Let A be a d× d matrix. Some elementary estimates show that for u ∈ Rd

|〈u|Au
〉| ≤ d ‖A‖∞‖u‖2.

Thus by Lemma 7.13 and the Cauchy Schwarz inequality we derive

∣∣∣exp
(−1/2

〈
u|Γlu

〉)− exp
(−1/2

〈
u|Σlu

〉)∣∣∣ ≤
≤ |〈u|Γlu

〉− 〈
u|Σlu

〉| ≤ C5|Il1|−1dl‖u‖2 ≤ c4 exp(−c5l
1−ε)‖u‖2.

(7.35)

Since the the vectors ξlk
= (ξlk(sl0), . . . , ξlk(sldl

)), 1 ≤ k ≤ n− 1, are i.i.d. we obtain

E exp
(
i
〈
u|Xl

〉)
=

(
E exp

(
i n−1/2

dl∑
j=0

ujξlk(slj)
))n

.

Some routine analysis shows |eix − (1 + ix − x2/2)| ≤ |x|3/6, hence there is some

complex Θ (which may depend on u and l) with |Θ| ≤ 1 such that

E exp
(
i n−1/2

dl∑
j=0

ujξlk(slj)
)

= 1− 1

2n

〈
u|Σlu

〉
+

Θ

6n3/2
E

∣∣∣
dl∑

j=0

ujξlk(slj)
∣∣∣
3

.

From |ξlk(s)| ≤ |Il1|1/2 we infer by the Cauchy Schwartz inequality

E
∣∣∣

dl∑
j=0

ujξlk

∣∣∣
3

≤
∥∥∥

dl∑
j=0

ujξlk(slj)
∥∥∥
∞

E
∣∣∣

dl∑
j=0

ujξlk(slj)
∣∣∣
2

≤ d
1/2
l |Il1|1/2‖u‖〈u|Σlu

〉 ≤ c|Il|ρ∗/2d
3/2
l ‖u‖3.
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Since n ∼ |Il|1−ρ∗ we infer that there is some Θ′ within the complex unit circle (which

may depend on u and l) such that

E exp
(
i n−1/2

dl∑
j=0

ujξlk(slj)
)

= 1− 1

2n

〈
u|Σlu

〉
+

cΘ′

6
|Il|2ρ∗−3/2d

3/2
l ‖u‖3

=: 1− 1

2n

〈
u|Σlu

〉
+ r(l,u).

The relation |(1− t)r− e−rt| ≤ t/2, which holds for 0 ≤ t ≤ 1 and every r > 0 implies

for
〈
u|Σlu

〉 ≤ 2n

| exp(−1/2
〈
u|Σlu

〉
)− (1− 1

2n

〈
u|Σlu

〉
)n| ≤ 1

4n

〈
u|Σlu

〉
. (7.36)

Again assuming
〈
u|Σlu

〉 ≤ 2n we get by some basic analysis

|(1− 1

2n

〈
u|Σlu

〉
)n − (1− 1

2n

〈
u|Σlu

〉
+ r(l,u))n| ≤ n|r(l,u)|. (7.37)

(Note that the absolute value of both functions occurring on the left hand side of

(7.37) are within the complex unit circle; the first by assumption and the second

since it is a characteristic function.) Combining (7.35)-(7.37) with the appropriate

value for n and the restriction for ‖u‖ will yield the proof.

Let fl(u) be the characteristic function of Xl and let gl(u) be the characteristic

function of a dl-dimensional Gaussian vector Gl = (Gl(1), · · · , Gl(dl)) with covariance

matrix Γ. Since Γ(s, s′) is bounded we get by choosing Wl = exp(c6l
ε)

P{‖Gl‖ > Wl/4} ≤ P{max
1≤i≤dl

|Gl(i)| > (Wl/dl)/4}
≤ c7dl exp(−c8(Wl/dl)

2)

≤ c9 exp(−c10l
ε).

(7.38)

By Lemma 7.12, Lemma 7.14 and (7.38) we can redefine the sequence {Xl} on a

richer probability space together with a sequence of independent Gaussian vectors

{Yl} with covariance matrix Γl such that

P{‖Xl −Yl‖ ≥ c11 exp(−c12l
ε)} ≤ c11 exp(−c12l

ε).
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Next we define

Zl = (tl − tl−1)
−1/2

(
R(sli , tl)−R(sli , tl−1)

)dl

i=0
,

and

Vl = (tl − tl−1)
−1/2

(
K(sli , tl)−K(sli , tl−1)

)dl

i=0
,

Yet again applying similar estimates as in our consideration so far we can easily derive

P{‖Zl −Xl‖ ≥ exp(−c13l
ε)} ≤ c14l

−2.

Hence by the Borel-Cantelli lemma we have constants c15, c16 > 0 such that for all

l ≥ l0(ω)

‖Zl −Yl‖ ≤ c15 exp(−c16l
ε).

By the definition of Vl we have

{Yl, l ≥ 1} d
= {Vl, l ≥ 1}.

We can enlarge the probability space such that

{Yl, l ≥ 1} = {Vl, l ≥ 1}.

Summing up our results shows that

max
0≤i≤dl

∣∣∣(R(sli , tl)−R(sli , tl−1))− (K(sli , tl)−K(sli , tl−1))
∣∣∣

≤ c17(tl − tl−1)
1/2 exp(−c18l

ε) a.s. (l →∞).

This shows (7.33) and completes the proof of Theorem 7.1.
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[5] A. Aue, I. Berkes, and L. Horváth. Strong approximations for the sums of

squares of augmented GARCH sequences. Bernoulli, 12:583–608, 2006.

[6] F. Avram and M. S. Taqqu. Noncentral limit theorems and Appell polynomials.

Ann. Probab., 15:767–775, 1987.

[7] P. Becker-Kern. Almost sure limit theorems of mantissa type for semistable

domains of attraction. Acta Math. Hungar. To appear.

[8] I. Berkes. Results and problems related to the pointwise central limit theorem.

In Asymptotic Methods in Probability and Statistics (Ottawa, ON, 1997), pages

59–96. North-Holland, Amsterdam, 1998.

137



138
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[58] S. Hörmann. A note on the almost sure convergence of central order statistics.

Probab. Math. Stat., 25:317–329, 2005.
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