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Abstract

In this thesis, we discuss linear regression type models allowing for one
change as well as for multiple changes in the mean structure. Such a change is
located at a specific point of the data, the so-called change point. Models with
both, discontinuous or continuous changes at the change points are considered.

First, we introduce into the topic of ordinary linear models with one change
point. Then we gradually extend this rather simple concept onto the class of
generalized linear models (GLMs). In addition to some classical approaches
for testing on the necessity of a change point we consider a test which is
based on recursive residuals. After introducing recursive residuals for GLMs
we investigate the performance of this test by a Monte Carlo (MC) simulation
study. GLMs with multiple change points are then presented and two methods
to estimate these change points are introduced. Again, some MC simulations
are performed to compare the two methods. In a next step, we examine GLMs
with a continuity constraint at the change points. For this class of models we
apply a grid search and an exact method to estimate the change points.

Finally, we introduce change point models for panel data. In particular,
we assume that the slope parameters of the last segments of all panels are the
same. A new iterative algorithm is presented that allows to estimate the change
points under these special assumptions. We then investigate the performance
of this new algorithm by means of a further MC simulation study.

The new method is applied on hydrological data describing the discharges
of a river after several rainstorms.

To apply this new algorithm and several other methods to estimate change
points to real data, these methods are implemented in the R system for statis-
tical computing. All these functions are combined in a new R-package called
CpInGLM.
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Chapter 1

Introduction

In ordinary linear models (OLMs) and generalized linear models (GLMs), it
is usually assumed that the considered model holds for the whole data. In
contrast, in this thesis, we consider linear models, where the structure of the
model changes. There might be a single change or multiple changes in the
structure of the model. Such a change is determined by a specific point of
the data. In the remainder of this thesis we denote such a specific point as a
change point. In general, change points can be known or unknown. The latter
case is of main interest in this thesis. Thus, we are interested in estimating
the unknown change points under different assumptions.

First, we consider a simple linear regression with one change point. Then
we gradually extend this to the cases of OLMs and GLMs. In addition to
classical approaches to test the necessity of a change point we consider a test
based on recursive residuals. Therefore, first we describe this test in the case
of OLMs. Then we introduce recursive residuals for GLMs and investigate the
performance of this test applied on GLMs via Monte Carlo (MC) simulations.
GLMs with multiple change points are then presented. Moreover, two different
methods to estimate the change points are introduced. Again, MC simulations
are performed to compare these two methods.

So far, the models of different segments are not restricted to each other.
Consequently a discontinuous change of the models at the change points are
allowed. In a next step, GLMs with a continuous change at the change point
are considered. Therefore, a continuity constraint at the change points is
mandatory. GLMs with one change point, as well as those with multiple change
points are considered. Furthermore, a grid search and an exact method to
estimate the change points are presented.

Finally, change point models for panel data are considered. In particular,
it is assumed that the slope of the last segment of each panel is the same.
To estimate the change points under these special models a new algorithm is
presented. The performance of this new algorithm is investigated with MC
simulations.

To apply this new algorithm and several other methods to estimate change
points to real data, these methods are implemented in the R system (Ihaka &
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CHAPTER 1. INTRODUCTION 2

Gentleman, 1996) for statistical computing. Moreover, all these functions are
combined in a new R-package called CpInGLM.

In this work, matrices and vectors are denoted by boldface letters like
X and x = (x1, . . . , xn)T , respectively, where vectors are usually defined as
column vectors.

1.1 Motivation

This thesis is motivated by a real problem in hydrology. The general question is
to find a suitable statistical model that allows one to describe some properties
of the catchment of a river. Such a catchment is defined as the area of the
landscape where all the rain falling in this area discharges into the river. One
of the properties of interest is the groundwater storage. Information about
the groundwater storage can be obtained by analyzing the runoff of a river
after a rainstorm. The runoff after a rainstorm is the discharge measured at
a gauging station at the river. Under certain circumstances, two changes can
be recognized in the time dependent behavior of the runoff. A main part of
the hydrological analysis is to determine these points of change that divide the
runoff into three segments. The determination of these change points is usually
done by an experienced hydrologist applying graphical methods combined with
a simple linear regression. Thus, results are often subjective and depend on the
experience of the hydrologist. The goal is to establish a method for detecting
the change points based on the data themselves. As the runoff can be described
by a linear model (for details see Section 3.1), the challenge is to detect the
change points in such a model. Usually there exists data from more than
one runoff due to the fact that more than one rainstorm occurs over the entire
observation period. Thus, observing more than one runoff yields a data set that
can be interpreted as a panel data set where each panel represents one runoff
after a rainstorm. According to hydrological considerations about the runoff
behavior, a common slope for the last segment of each runoff is mandatory
(Fank et al., 1993). Consequently, this common slope must be considered in
the analysis. Thus, the statistical challenge is to detect the change points in
a linear model for panel data sets where the slope in the last segment is the
same for each panel.

1.2 Change Points in Linear Models

Linear models are widely used in statistics to describe the relationship between
a response variable and one or more explanatory variables. Usually it is as-
sumed, that the same linear model holds for the whole data set, but this is
not always the fact. In contrast, the model may change after a specific point,
which may or may not be known. Such a change point partitions the data into
two segments where the models of these segments are different. Thus, a linear
model with a change point is appropriate for data sets, where the structure
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of the linear model changes after a specific point. The data must have some
natural ordering to be able to find such a change point. This ordering can
be determined by the time of observation or by some other observed variable
(e.g. time, space, age, etc.). In general, there may be multiple change points
that partition the data into several segments with the structure of the model
changing after each change point. The change in the structure can be in the
mean structure, in the variance structure, or in both. The most common case
is a change only in the mean structure, assuming that the variance structure
is the same for the whole data. In this thesis, a change in the mean structure
provides a change in the parameters describing the mean, but the function,
which connects the explanatory variables and the response, remains the same
for all observations. A less frequent case is a change in the variance structure
without a change in the mean structure.

In general, change point models can be divided into two groups. Models
with a discontinuous change at the change point (denoted as discontinuous
change point models) and models with a continuous change at the change point
(denoted as continuous change point models). Regardless of this classification,
change point models involve three issues: First, the choice of the location of the
change points; second, the choice of an appropriate number of change points;
and third, the choice of a suitable model for each segment. The main aim in
this work is to develop a method for estimating the change points, especially
under some restrictions mentioned later. The second question will be only
briefly discussed here (Subsection 2.2.3) and we assume, that for each segment
the same type of model holds but we allow for different parameter values.

In the remaining part of this section various types of linear models with one
or multiple change points are illustrated to give a short overview on different
change point models.

The first change point model under consideration is a simple linear regres-
sion with one discontinuous change point. Consider n pairs of observations
(xi, yi), where y is the response variable and x is the explanatory variable.
The index i = 1, . . . , n describes the ordering of these observations. Note, this
induces that the explanatory variable xi need not to be ordered. Furthermore
it is assumed that the relationship between x and y can be described by a sim-
ple linear regression, where the structure of the mean changes after a change
point τ ∈ {i|3 ≤ i ≤ n − 2}. This restriction on i is needed to ensure that the
parameters in the model are estimable. Thus, the observations (xi, yi) follow
a linear model for i ≤ τ and another linear model for i > τ . In addition, there
is no continuity constraint for the models at the change point, which allows a
discontinuous change at the change point. Therefore, the model is given by

yi =

{

α1 + β1xi + ε1i i = 1, . . . , τ
α2 + β2xi + ε2i i = τ + 1, . . . , n ,

(1.1)

where αd and βd, d = 1, 2, are the unknown parameters of interest and εdi are

independent errors, with εdi
iid∼ N(0, σ2

d). Note, the case of different variances



CHAPTER 1. INTRODUCTION 4

(σ2
1 6= σ2

2) indicates an additional change in the variance structure. In con-
trast, for equal variances only the mean structure changes at the change point.
Indeed, model (1.1) can be extended in several ways. First, there might be
multiple changes in the linear model. Second, the response y can depend on
more than one explanatory variable. These explanatory variables may or may
not include the variable which describes the natural ordering. Again, if it is
not included, the index i describes the ordering.

Example 1.1 This example was first illustrated by Quandt (1958). A simple
linear regression model with one discontinuous change point is considered. The
artificial data was generated in the following way. For the explanatory variable
x, a single independent variable was generated by a random permutation of the
first 20 integers. The errors εi were generated as 20 iid normal variates with
zero mean and variance equal to one. These errors were added to a mean model
that changed after the first 12 observations, giving

yi =

{

2.5 + 0.7xi + εi i = 1, . . . , 12
5.0 + 0.5xi + εi i = 13, . . . , 20 .

The data, listed in Table 1.1, and the fitted model with a change point at τ̂ = 12
are plotted in Figure 1.1. Note, that in this data the ordering is determined

i xi yi i xi yi

1 4 3.473 11 15 13.036
2 13 11.555 12 11 8.264
3 5 5.714 13 3 7.612
4 2 5.710 14 14 11.802
5 6 6.046 15 16 12.551
6 8 7.650 16 10 10.296
7 1 3.140 17 7 10.014
8 12 10.312 18 19 15.472
9 17 13.353 19 18 15.650

10 20 17.197 20 9 9.871

Table 1.1: Quandt’s data.

by the index i of the observation. Consequently, the explanatory variable need
not to be ordered, which can be seen in Table 1.1. The results are two different
fitted lines for the first 12 and last 8 observations, respectively (Figure 1.1).

If the change point is a nuisance parameter and not of main interest, a
discontinuous change point model can be interpreted as a mixture of two linear
regressions. This was first considered by Quandt and Ramsey (1978). Leisch
(2004) introduced a general framework for estimating finite mixtures of linear
models, which is based on the EM-algorithm. In addition, he developed the
R-package flexmix for estimating such mixture models.
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Figure 1.1: The two fitted models for Quandt’s data.

For another type of change point model, model (1.1) is again considered,
but now the explanatory variable describes the ordering. This is often the case
when the time of observation is important. Let the explanatory variable x be
the time of observation, then xi ≤ xi+1 for all i ∈ {1, . . . , n− 1}. In general, it
is assumed, that the change point lies within the interval [min xi; max xi] and
can be any value within this interval. However, without additional information
about the change point, it is not possible to determine the exact change point.
In contrast, it is only possible to determine the two consecutive observations
in between which the change point is located. Thus, regardless of whether the
index or an explanatory variable describes the ordering, the index i is used to
describe the change point.

Example 1.2 The data we considered in this example is published at the web-
site (http://reddingpolice.org/) of the police department located in the
City of Redding, California. On pure chance we found this data set on the web
and decided that this is a good example for a change point model where the
time of observation describing the ordering is the explanatory variable. Here
monthly data about the number of assaults of the years 1989-2004 was ana-
lyzed. Between 1989 and 1999, simple assaults were included in the assault
totals. Since 2000, only aggravated assaults were included for the totals. This
change can be clearly seen in Figure 1.2, where the data and the fitted linear
model with two discontinuous change points are plotted. In addition, there is
a second change detected at January 1994. Up until this date, the number of
assaults follow an increasing trend, and afterwards, a decreasing one.
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Figure 1.2: Fitted change point model with two discontinuous change points
at τ̂1 = 61 and τ̂2 = 132 for the crime data of Redding.

The next type of a change point model is again a linear model, but with a
continuity constraint at the change point. Consider again n pairs of observa-
tions (xi, yi), with a linear model up to an unknown change point and another
linear model afterwards. In contrast to model (1.1), a continuity constraint at
the change point is assumed. Thus, both models must predict the same mean
value at the change point, which results in a continuous transition of the two
models. Furthermore, it is assumed that the explanatory variable is sorted in
ascending order, i.e. xi ≤ xi+1, i = 1, . . . , n−1. Now the location of the change
point is no longer restricted to an observed xi. Instead, it can be any value
from within the interval [a; b], where a = min xi = x1 and b = maxxi = xn.
To distinguish the continuous case from the discontinuous one, we now denote
the change point by γ. The model of a linear regression with one continuous
change point can then be stated as

yi =

{

α1 + β1xi + ε1i a ≤ xi ≤ γ
α2 + β2xi + ε2i γ < xi ≤ b ,

(1.2)

with continuity constraint

α1 + β1γ = α2 + β2γ.

Again αd and βd are the unknown parameters of interest and εdi are iid errors,

with εdi
iid∼ N(0, σ2

d). Of course, this model can also be extended to the case
of multiple continuous change points. A multiple linear regression model with
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continuous change points in more than one explanatory variable is imaginable,
but is not considered in this work.

Example 1.3 The data is from a health study in Styria (Austria) of the lung
capacity of people living in two regions and may be found in Friedl (1998).
One point of interest was the dependence of vital capacity V C on the age of
the person. In this study, 79 male persons between the ages of 16 years and
56 years were examined. The data shows a clear, increasing trend for younger
people and a decreasing trend for older people (Figure 1.3). Assuming that both
trends are linear, a simple linear regression with one change point seems to be
appropriate for this data set. Of course, only a continuous change of the model
at the change point makes sense. Thus, the two models must predict the same
mean value at the change point and a continuity restriction is mandatory. The
fitted model with an estimated continuous change point at the age of γ̂ = 22 is
plotted in Figure 1.3.
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Figure 1.3: The fitted continuous change point model for the lung capacity
data set with an estimated change point at the age of γ̂ = 22.

The last type of change point model considered in this section is the ex-
tension of change point models to the wide class of GLMs. For a detailed
description of GLMs see Appendix A. In GLMs, a change in the mean struc-
ture can be either a change in the parameters or a change in the link function.
Furthermore, a change in the variance structure is either due to a change in
the dispersion parameter or because the variance function is different in each
segment. In this thesis, only change point models are considered where the
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link function and the variance function are the same for all segments. Thus,
only the linear parameters change at the change points. Again, discontinuous
or continuous change points are considered in the GLM framework.

GLMs with multiple continuous change points play a main role in this
thesis. This is due to the fact that the runoff can be modeled in the GLM
framework and the changes in the runoff model must be continuous. In the
next example, the mean runoff is modeled through a GLM with two continuous
change points.

Example 1.4 The data of a runoff recorded at a gauging station located on the
river Sulm in Styria (Austria) is analyzed. The runoff was recorded in summer
1999, starting on 08/08/99 and continued for almost 5 days. The discharge
was measured in m3/sec and is modeled as a function of time using a GLM
with two continuous change points. It is assumed that the response follows
a Normal distribution and the link function is g(µ) = µ−1/2. Furthermore,
it is assumed that the dispersion parameter is the same for all observations.
The data and the fitted model are plotted in Figure 1.4. The estimated change
points are at γ̂1 = 0.33 and γ̂2 = 1.71 days.
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Figure 1.4: The fitted continuous change point model for the runoff of the river
Sulm with estimated change points (dotted lines) at γ̂1 = 0.33 and γ̂2 = 1.71
days.
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1.3 Implementation in R

All the calculation and simulation in this work was done within the R system.
Therefore, several functions to estimate change points under the assumptions
mentioned above are implemented in R. These functions are summarized in
a new package called CpInGLM. The help documentation of this package is
included in Appendix B.

With the use of some examples, the usage of these functions is demon-
strated. To highlight the R-code, it is printed in verbatim. Lines beginning
with the prompt ”>” are the input to R, e.g.

> 2 + 3

and the resulting output are lines without a prompt, e.g.

5

The source files of R and a detailed description can be obtained from the Home
Page http://www.r-project.org/. As R is an open source project which its
syntax very similar to S, the script language of S-plus, the book of Venables
and Ripley (2002) provides a comprehensive description of many statistical
applications using S.

1.4 Overview

The remainder of this thesis is organized as follows. Section 2.1 describes
change point models with a discontinuous change point. They are consid-
ered for OLMs and GLMs. In addition, recursive residuals for both type of
models are introduced. Section 2.2 presents the extension to the case of mul-
tiple discontinuous change points in GLMs. Furthermore, two algorithms for
estimating these change points are presented. These two algorithms are com-
pared using an MC simulation. Section 2.3 gives an introduction to continuous
change point models in the GLM framework. Models with either one or mul-
tiple continuous change points are discussed. In Section 2.4 a new method for
estimating continuous change points for panel data sets is introduced. This
new method considers continuous change points in GLMs where the slope of
the last segment is the same for all panels. Finally, an MC simulation demon-
strates nice properties of the performance of this new algorithm

In Chapter 3, the new method is applied to a hydrological data set. Section
3.1 provides a short discussion on a theoretical hydrological runoff model and
how this model fits into GLM framework. Section 3.2 describes the data and
the data preprocessing. Section 3.3 presents the results of this application.

Appendix A gives a short overview on GLMs. Appendix B describes R-
functions for fitting change points in the GLM context.



Chapter 2

Theory

2.1 Discontinuous Models with One Change

Point

Discontinuous change point models are models with no continuity constraints
at the change points. Thus, the models of all segments are not restricted to
common values at the change points. Consequently, for a known change point,
the models of each segment are autonomous and all parameters in the linear
predictor can be estimated separately. An unknown change point can be either
estimated by a simple grid search over all feasible possibilities or by analyzing
recursive residuals (see Subsection 2.1.4). The second method is appropriate
if there is only one change point in the model, or the number of change points
is small with respect to the sample size.

This section considers change point models with one discontinuous change
point. After introducing such a model for OLMs, it is then generalized for
the wider class of GLMs. Finally, recursive residuals for OLMs and GLMs are
introduced, which can be used to estimate the change point as well as to test
the necessity of a change point.

2.1.1 Simple Linear Regression

Consider a simple linear regression model with a discontinuous change at a
fixed but unknown change point. Let (xi, yi), i = 1, . . . , n, denote pairs of
observations, where yi is the response and xi some explanatory variable. Let
us further assume that such n pairs (xi, yi) of observations can be arranged
in some natural ordering. In this thesis, if not quoted otherwise, the index i
describes this kind of order. Thus, the change point τ is given by any index
i and determines the observation xτ , after which the structural change in the
relationship between xi and yi might occur. The change point τ partitions the
data into two separate segments, in which the mean structure as well as the
variance may be different. In fact, the first τ observations in a sample of size
n follow one OLM and the last n − τ observations follow another OLM. The

10
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linear parameters of these two models are β1 = (β10, β11)
T and β2 = (β20, β21)

T ,
respectively. Then, such an OLM can be written as

yi =

{

β10 + xiβ11 + ε1i i = 1, . . . , τ
β20 + xiβ21 + ε2i i = τ + 1, . . . , n ,

(2.1)

where the errors εdi are independent random variables and follow a normal
distribution with zero mean and variance σ2

1 for i ≤ τ and variance σ2
2 for

i > τ , i.e. ε1i
iid∼ N(0, σ2

1) and ε2i
iid∼ N(0, σ2

2), respectively. Such a model was
first considered by Quandt (1958). He introduced a maximum likelihood (ML)
method for estimating the unknown parameters β = (βT

1 , βT
2 )T , σ2 = σ2

1 = σ2
2

and τ , which we describe in the following paragraph. Quandt’s data and the
corresponding change point model are illustrated in Example 1.1.

The parameters of interest are the linear parameter β and the change point
τ . To guarantee the estimable of the parameters β and σ2 = (σ2

1 , σ
2
2)

T , possible
values of τ are restricted to {3, 4, . . . , n−3}. To estimate these parameters with
the ML method, we have to take a closer look to the log likelihood according
to model (2.1). The log likelihood of a simple linear regression is

ℓ(α, β, σ2|y) = −n

2
log(2πσ2) − 1

2σ2

n
∑

i=1

(yi − α − βxi)
2 ,

where α and β are the intercept and slope of the simple linear regression,
respectively. Then, in the case where τ is known, the log likelihood under
model (2.1) is

ℓ(β, σ2|τ, y) = −τ

2
log(2πσ2

1) −
1

2σ2
1

τ
∑

i=1

(yi − β10 − β11xi)
2

− n − τ

2
log(2πσ2

2) −
1

2σ2
2

n
∑

i=τ+1

(yi − β20 − β21xi)
2,

or

ℓ(β, σ2|τ, y) = ℓ
(

β10, β11, σ
2
1|y1, . . . , yτ

)

+ ℓ
(

β20, β21, σ
2
2|yτ+1, . . . , yn

)

. (2.2)

The first term on the right hand side of (2.2) is the log likelihood of the first
τ observations and the second term is the log likelihood of the last n − τ
observations. For τ known, both terms are mutually independent. Thus, the
ML estimates for β and σ2 are the ML estimates of the two separate models.

In the case of τ unknown, the change point has to be estimated. The main
problem in estimating the change point is that there is no solution in closed
form for estimating the parameter β and τ simultaneously. This is due to the
fact that the ML estimate of the parameter β is a function of τ . It is only
possible for a given value of τ to derive the ML estimate of β. Therefore, the
only feasible way to estimate the change point is to apply a grid search over a
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set of all possible values of τ . Now, for an arbitrary τ ∈ {3, 4, . . . , n − 3} the
log likelihood given the ML estimates β̂ and σ̂2 is

ℓu(τ |β̂, σ̂2, y) = −n

2
log(2π) − τ

2
log σ̂2

1 −
n − τ

2
log σ̂2

2 −
n

2
(2.3)

for σ2
1 6= σ2

2 and

ℓe(τ |β̂, σ̂2, y) = −n

2
log(2π) − n

2
log(τ σ̂2

1 + (n − τ)σ̂2
2) −

n

2
(2.4)

for σ2
1 = σ2

2 = σ2, where the subscripts u and e stand for unequal and equal
variances, respectively. The ML estimate τ̂ is the value of τ that maximizes
(2.3) respectively (2.4).

Next we consider testing whether there is a change in the regression regime
or not. A very common method for testing hypothesis is the likelihood ratio
(LR) test. It is applicable for testing nested models and the test statistic is
defined as

λ(y) =
supΘ0

L(θ|y)

supΘ L(θ|y)
,

where L(θ|y) is the likelihood function of the parameter vector θ for the given
data y and Θ is the entire parameter space. The set Θ0 is the parameter space
restricted under H0 and is necessarily a subset of Θ, i.e. Θ0 ⊂ Θ. Using the ML
method for estimating the parameter θ, the LR test statistic can be written
as

λ(y) =
L(θ̂0|y)

L(θ̂|y)
,

where θ̂ is the unrestricted ML estimate of θ which can be realized in the
entire parameter space Θ, and θ̂0 is the restricted ML estimate where the
maximization is restricted to Θ0. Under some regularity conditions, minus
twice the LR test statistic, i.e.

Λ(y) = −2 log λ(y) ,

follows asymptotically a χ2-distribution with q degrees of freedom, where q is
the difference of the number of parameters in the models under H0 and H1,
respectively (see Casella & Berger, 2002, for a detailed discussion).

To test whether there is a change in the regression regime or not, and
considering model (2.1), the hypothesis is

H0 : β1 = β2

H1 : β1 6= β2.

An assumption for applying the LR test is that the models under H0 and H1

are nested. For model (2.1) it is not obvious that a simple linear regression
without a change point is nested in model (2.1). To see this let β2 = β1 + δ

with δ = (δ0, δ1)
T and

zi =

{

0 i = 1, . . . , τ
1 otherwise .
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Then (2.1) can be written as

yi = β10 + β11xi + zi(δ0 + δ1xi) + εi i = 1, . . . , n , (2.5)

and it can be clearly seen, that an OLM without a change point, given by

yi = β10 + β11xi + εi i = 1, . . . , n ,

is nested in (2.5). Thus, this assumption for the LR test is satisfied.
Recall that the maximized log likelihood according to a simple linear re-

gression is

ℓ(β̂, σ̃2|y) = −n

2
log(2π) − n

2
log(σ̃2) − n

2
, (2.6)

where σ̃2 is the usual ML estimate of σ2 based on all observations. Then Λu(y)
is obtained by subtracting (2.4) from (2.6) as

Λu(y) = n log(σ̃2) − τ log(σ̂2
1) − (n − τ) log(σ̂2

2) .

In case of equal variances this becomes

Λe(y) = n log
(

σ̃2) − n log(τ σ̂2
1 − (n − τ)σ̂2

2

)

.

As mentioned above, under standard regularity conditions Λe(y) is asymp-
totically χ2-distributed. However, as Seber and Wild (1989) noted, standard
asymptotical theory does not apply here because τ takes only discrete values
and H0 : β1 = β2 is also true if the change point lies outside the range of the
data. Moreover, Hawkins (1980) showed that the LR test statistic tends to
infinity as n increases. Therefore, the LR test can only be used as an approxi-
mative device. Another test was introduced by Chow (1960). He assumed that
the change point is known and uses the usual F-test statistic for testing two
nested models in linear regression. As usually the change point is unknown
it is taken to be τ = n/2. The problem that arises here is, that either the
model on the left hand side or the model on the right hand side of the change
point contains observations of the other regime. Thus, this test only provides
satisfactory results if the true change point is n/2.

Farley and Hinich (1970) presented another test statistic for testing a
change point in an OLM based on a Bayesian approach. They considered
the model

yi =

{

α + βxi + εi i = 1, . . . , τ − 1
α − δxτ + (β + δ)xi + εi i = τ, . . . , n ,

(2.7)

where δ determines the shift at the change point and εi
iid∼ N(0, σ2). Using the

notation from above and defining

zi =

{

0 i = 1, . . . , τ − 1
xi − xτ otherwise ,
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then (2.7) can be written as

yi = α + βxi + δzi + εi i = 1, . . . , n ,

and the hypothesis for testing a shift δ in the OLM at the change point is

H0 : δ = 0

H1 : δ 6= 0.

Farley and Hinich (1970) suggested, that a priori every value of τ is equally
likely, i.e.

P (τ = i) = 1/n for i = 1, . . . , n . (2.8)

Then under H0 the marginal response mean is assumed to follow

E0[yi] = α + βxi . (2.9)

Under the alternative, i.e. if a shift of size δ occurs at the change point τ = i∗,
we have the conditional mean model

Eδ[yi|τ = i∗] = α + βxi + δzi .

which is

Eδ[yi|τ = i∗] =

{

α + βxi i = 1, . . . , i∗

α + βxi + δ(xi − xi∗) otherwise .

Using (2.8) yields the marginal mean

Eδ[yi] =
1

n

n
∑

j=1

Eδ[yi|τ = j]

which is

Eδ[yi] =

{

α + βxi i = 1

α + βxi + δ 1
n

∑i
j=1(xi − xj) otherwise .

(2.10)

Farley and Hinich (1970) substituted (2.9) and (2.10) in the likelihood function
of the OLM with and without a change point respectively, and gave a first order
approximation of the LR test statistic. Furthermore, they mentioned that for
σ2 known, this statistic follows a normal distribution.

Example 2.1 (Example 1.1 continued) The change point τ for Quandt’s
data is estimated by a simple grid search over all reasonable change points
τ ∈ {3, 4, . . . , 17}. The values of the log likelihood (2.3) and (2.4) under both
assumptions on the variances (σ2

1 and σ2
2) are given in Table 2.1. In both cases,

the maximum is at τ̂ = 12, which equals the true value. For the case of equal
variances the values of ℓe(τ |β̂, σ̂2, y) are plotted in Figure 2.1. This plot shows
that the maximum of ℓe(τ |β̂, σ̂2, y) at τ̂ = 12 seems to be well defined.
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τ ℓe(τ |β̂, σ̂2, y) ℓu(τ |β̂, σ̂2, y) τ ℓe(τ |β̂, σ̂2, y) ℓu(τ |β̂, σ̂2, y)
3 −32.05 −62.12 11 −30.49 −60.81
4 −34.51 −64.92 12 −27.63 −57.89
5 −33.89 −63.97 13 −31.66 −62.38
6 −33.37 −63.32 14 −31.55 −62.04
7 −31.90 −61.86 15 −30.09 −61.20
8 −31.25 −61.30 16 −30.55 −61.37
9 −30.79 −61.04 17 −31.93 −63.29

10 −30.65 −60.72

Table 2.1: Log likelihood (2.3) and (2.4) for all reasonable change points τ ,
assuming equal and unequal variances, respectively.
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Figure 2.1: Maximized log likelihood ℓe(τ |β̂, σ̂2, y) for several change points,
τ = 3, . . . , 17, assuming equal variances.

2.1.2 Multiple Linear Regression

Next we consider an OLM with more than one explanatory variable, com-
monly known as multiple linear regression. Again, let yi, i = 1, 2, . . . , n denote
observations on the response variable. In contrast to Subsection 2.1.1, let
xi ∈ R

p×1 denote the column vector of p independent explanatory variables,
i.e. xi = (1, xi2, . . . , xip)

T , with xi1 = 1 for all i, to include an intercept in the
model. Then an OLM with one discontinuous change point can be written as

yi =

{

xT
i β1 + ε1i i = 1, . . . , τ

xT
i β2 + ε2i i = τ + 1, . . . , n ,

(2.11)



CHAPTER 2. THEORY 16

where βd, d = 1, 2, are p × 1 vectors of unknown parameters and εdi are iid

errors with εdi
iid∼ N(0, σ2

d). To ensure valid estimates for βd and σ2
d the possible

values of τ are restricted to {p + 1, . . . , n − p − 1}. Moreover, it is assumed
that the first p+1 and the last n−p−1 vectors of xi are linearly independent.

In matrix representation, model (2.11) can be written as two separate
OLMs

y1 = X1β1 + ε1

y2 = X2β2 + ε2,
(2.12)

where y1 and y2 are both column vectors of the first τ and the last n − τ ob-
servations of the response variable, respectively. The matrices X1 and X2 are
the first τ and the last n− τ row vectors of the design matrix respectively, and
hence given by X1 = (x1, . . . , xτ )

T and X2 = (xτ+1, . . . , xn)
T . Furthermore,

the error vectors follow a Normal distribution, i.e. εd ∼ N(0, σ2
dId), where Id

is the identity matrix with rank τ for d = 1 and rank n − τ for d = 2.
As there is no continuity constraint for the two models at the change point,

the two models of (2.12) are autonomous and can be written as
(

y1

y2

)

=

(

X1 0
0 X2

) (

β1

β2

)

+

(

ε1

ε2

)

. (2.13)

Note that the design matrix in (2.13) is block diagonal, which indicates inde-
pendence between the estimates of β1 and β2. Thus, if the change point τ is
known, the log likelihood can be partitioned into two terms, namely

ℓ(β, σ2|τ, y) = ℓ
(

β1, σ
2
1|y1, . . . , yτ

)

+ ℓ
(

β2, σ
2
2|yτ+1, . . . , yn

)

, (2.14)

with σ2 = (σ2
1, σ

2
2)

T . These two terms correspond to the log likelihood of the
first τ observations and the last n−τ observations and both terms are mutually
independent. Thus, the ML estimates for β and σ2 are the ML estimates of
the two separate models and are given by

β̂d = (XT
d Xd)

−1XT
d yd , d = 1, 2

and

σ̂2
1 =

1

τ
Ŝ2

1 , σ̂2
2 =

1

n − τ
Ŝ2

2 ,

where
Ŝ2

d = (yd − Xdβ̂d)
T (yd − Xdβ̂d)

is the residual sum of squares for the model in the dth segment.
In the case of τ unknown, however, the change point has to be estimated.

The ML estimate of τ is again the value which maximizes the log likelihood
(2.14) at the given ML estimates β̂ = (β̂T

1 , β̂T
2 )T and σ̂2 of the two models.

Note that β̂ and σ̂2 are again functions of τ and have to be estimated for each
τ separately. The log likelihood (2.14) at these ML estimates is given by

ℓ(τ |β̂, σ̂2, y) = −n

2
log(2π) − τ

2
log σ̂2

1 −
n − τ

2
log σ̂2

2

− 1

2σ̂2
1

τ σ̂2
1 −

1

2σ̂2
2

(n − τ)σ̂2
2 .
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Thus, τ̂ is obtained by maximizing

ℓ(τ |β̂, σ̂2, y) = −n

2
log(2π) − τ

2
log σ̂2

1 −
n − τ

2
log σ̂2

2 −
n

2
, (2.15)

with respect to τ = p + 1, . . . , n − p − 1.
Under the assumption σ2

1 = σ2
2 = σ2 the ML estimate of σ2 is

σ̂2 =
1

n

(

Ŝ2
1 + Ŝ2

2

)

and (2.15) reduces to

ℓ(τ |β̂, σ̂2, y) = −n

2
log(2π) − n

2
log σ̂2 − n

2
.

This means, that in the case of equal variances, τ̂ minimizes Ŝ2
1 + Ŝ2

2 .
For testing the necessity of a change in an OLM, consider again the LR test

statistic and Chow’s test. The quantity Λu(y) based on the LR test statistic
for model (2.12) is

Λu(y) =

[

n log
S̃2

n
− τ log

Ŝ2
1

τ
− (n − τ) log

Ŝ2
2

n − τ

]

τ=τ̂

, (2.16)

where

S̃2 = (y − Xβ̂)T (y − Xβ̂)

is the residual sum of squares for the model assumed under the null hypothesis.
This statistic can be used to tests for a change in the variance as well as for
a change in the regression coefficients (Worsley, 1983). In the case of equal
variances, σ2

1 = σ2
2 = σ2, we have

Λe(y) = n log

[

S̃

Ŝ2
1 + Ŝ2

2

]

τ=τ̂

.

For τ known and σ2
1 = σ2

2 the usual F -test statistic for H0 : β1 = β2 is

Fτ =

[

S̃2 − (Ŝ2
1 + Ŝ2

2)
]

/p

(Ŝ2
1 + Ŝ2

2)/(n − 2p)
,

which under H0 follows an F -distribution with p and n−2p degrees of freedom.
Worsley (1983) and Beckman and Cook (1979) suggested to use a generalized
F -test statistic, namely

Fmax = max
p<τ<n−p

Fτ

for testing H0 : β1 = β2. They gave an approximation to the distribution
of Fmax under the null hypothesis based on the Bonferroni inequality. As the
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distribution of the F -test statistic depends on the configuration of the design
matrix, Beckman and Cook (1979) simulated four OLMs with different design
matrices to investigate the influence of the design on the distribution of the
F -test statistic. They showed that there is a non-negligible influence. Further-
more, they gave approximative upper bounds for the 90% percentiles of the
Fmax distribution based on these simulations. The bounds were conservative
when testing for a change in the linear regression or if the variability of the
explanatory variable is large. Therefore, if the variability of the explanatory
variable is greater than in the considered design of Beckman and Cook (1979),
they recommended to apply the usual Bonferroni inequality instead of the sim-
ulated values. Worsley (1983) introduced upper bounds for the percentiles of
the Fmax distribution, based on an improved Bonferroni inequality (Worsley,
1982). Furthermore, to avoid the integration for calculating these bounds, he
approximated these bounds using the MacLaurin series. He showed that both,
the exact and the approximated bounds are more accurate than the bounds
calculated with the usual Bonferroni inequality.

Farley, Hinich, and McGuire (1975) introduced a simpler interpretation of
the test presented by Farley and Hinich (1970). Furthermore, they compared
the power of the three methods, the Chow test, the approach based on Fmax

and the method introduced by Farley and Hinich (1970). Their results, based
on a few simulations were that Chow’s test using τ = n/2 is most powerful
if the change point lies in the middle of the data. In this case, the method
introduced by Farley and Hinich (1970) has less power than that of Chow, but
performs better than the LR test. In contrast, if the change point lies near the
left or right extremes of the data, the LR test is most powerful.

Esterby and El-Shaarawi (1981) considered a linear regression with one
change point, where the explanatory variables are polynomials of unknown de-
gree p1 and p2 for the first and second segment, respectively. They showed that
the maximum likelihood for the assumed change point model is proportional to
σ̂−τ

1 σ̂
−(n−τ)
2 assuming equal variances, and proportional to (τ −p1−1)σ̂2

1 +(n−
τ−p2−1)σ̂2

2 assuming unequal variances, where σ̂2
d are the ML estimates of σ2

d.
Thus, in the case of equal variances, maximizing the log likelihood corresponds
to minimizing the residual sums of squares. Furthermore, they proposed an
iterative method for estimating simultaneously the degrees of the polynomials
and the change point.

Tests for general hypotheses, where the variance additionally changes at the
change point, were first introduced by Brown, Durbin, and Evans (1975) using
recursive residuals. These residuals will be considered in Subsection 2.1.4. A
more detailed discussion on testing a change point in OLMs is given in Seber
and Wild (1989).

2.1.3 Generalized Linear Model

In this section GLMs with one discontinuous change point are considered. A
short introduction into GLMs is given in Appendix A. GLMs are a gener-
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alization of OLMs. First, the response variable must be no longer normal
distributed, but can follow any distribution from the linear exponential fam-
ily. Second, in GLMs the mean structure is determined by a continuous link
function g(·) and an unknown parameter vector β, namely,

g(µ) = η = xTβ ,

where η is the so called linear predictor. Third, it follows that the response
variance is the product of a so-called dispersion parameter φ and the variance
function V (·), which is allowed to depend on µ, i.e.

V ar(y) = φV (µ) .

In general, a change in the mean structure as well as a change in the variance
structure is imaginable. A different mean structure for both segments may be
due to different link functions as well as different linear predictors, where the
difference of the linear predictors may be due to different sets of explanatory
variables or different values of the linear parameter β. A change in the variance
structure can be due to different probability models for each segment, which
indicates different variance functions V (·) or different dispersion parameters
specific for each segment. However, in this work only a change in the linear
parameters is considered. Moreover, the probability model is the same for
all segments and we assume that the dispersion parameter is constant for all
observations and segments. Thus, in the remainder of this work a common
dispersion parameter φ is considered. It is important to note that the variance
of the observation y is a function of the mean µ. Thus, a change in the mean
indicates a change in the variance of y, as well, even if the dispersion parameter
is constant for all observations and the variance function is the same for all
segments.

As GLMs are generalizations of OLMs, the model (2.11) with one discon-
tinuous change point is extended to GLMs as

g(µi) =

{

xT
i β1 i = 1, . . . , τ

xT
i β2 i = τ + 1, . . . , n ,

(2.17)

where both parameter vectors β1 = (β11, . . . , β1p)
T and β2 = (β21, . . . , β2p)

T

are of the same dimension (p × 1). Again, the change point τ is an index i
and determines the observation xτ after which the relationship between the
response and the explanatory variable changes. Under the assumptions about
a unique link function and a unique variance function for both segments, (2.17)
can be partitioned into two autonomous GLMs, which can be written as

g(µ1) = X1β1

g(µ2) = X2β2 ,
(2.18)

where µ1 and µ2 are both column vectors containing the first τ and last n− τ
values of the mean µ = (µ1, . . . , µn)

T , and the matrices X1 and X2 are build up
by the first τ and the last n− τ row vectors of the design matrix, respectively.
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To derive the ML estimates of βd, d = 1, 2, φ, and τ , again a closer look at
the log likelihood is necessary. The log likelihood of GLMs without a change
point of a sample y = (y1, . . . , yn)T is

ℓ(θ, φ|y) =

n
∑

i=1

[

yiθi − b(θi)

φ
+ c(yi, φ)

]

, (2.19)

where θ = (θ1, . . . , θn)T is the vector of the canonical parameter of the expo-
nential family. Usually in GLMs, β is the parameter of interest. Thus, it is
common to write the log likelihood in terms of β, i.e. ℓ(β, φ|y).

First, consider the case where τ is known. The log likelihood for a GLM
with one discontinuous change point τ and the parameter of interest β =
(βT

1 , βT
2 )T is given by

ℓ(β, φ|τ, y) =
τ

∑

i=1

[

yiθi − b(θi)

φ
+ c(yi, φ)

]

+
n

∑

i=τ+1

[

yiθi − b(θi)

φ
+ c(yi, φ)

]

.

(2.20)
Note that b′(θi) = µi, and (2.17) holds. As the yi’s are independent, again,
both terms on the right hand side are autonomous (see Subsection 2.1.1).
Consequently the ML estimates β̂d are the ML estimates of the two models
of (2.18) corresponding to the first τ and last n− τ observations, respectively.
The dispersion parameter φ is estimated by the usual Pearson statistic (A.3)
based on all observations.

In the case where τ is unknown, the change point has to be estimated. As
the estimates of the parameters βd and φ depend on the change point τ , the
same problem arises as in OLMs. That is, there is no closed form solution of
the estimates τ̂ , β̂d, and φ̂. Hence, a grid search over all reasonable change
points is applied to find the global maximum of the log likelihood

ℓ(β, φ, τ |y) = ℓ(β1, φ|y1, . . . , yτ) + ℓ(β2, φ|yτ+1, . . . , yn) .

To guarantee the estimable of the parameters βd and φ, the reasonable values
of τ are restricted to {p + 1, . . . , n − p − 1}.

A common quantity to evaluate the goodness-of-fit of a GLM is the de-
viance. As the fitted value µ̂i of a GLM is a function of the explanatory
variables and the estimated linear parameter β̂, we reparameterize the log
likelihood. Thus, in what follows, we denote the log likelihood in terms of µ̂

instead of β̂. In a GLM without a change point, the deviance is defined as

D = D(y, µ̂, φ) = 2φ [ℓ(y, φ|y)− ℓ(µ̂, φ|y)] ,

where ℓ(y, φ|y) is the log likelihood of the saturated model with µ̂ = y. As for
a given φ and given data set, ℓ(y, φ|y) is a constant, maximizing the log likeli-
hood is equivalent to minimizing the deviance. Besides applying the deviance
to evaluate the goodness-of-fit of GLMs, it is widely used to compare nested
models. This is done by considering the difference between the deviances of
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the two models under consideration. In particular, differences between the de-
viances are used to decide if some additional explanatory variables improve the
fit of the model. In general, the difference of the deviance of two nested GLMs
equals the LR test statistic. Therefore, under certain regularity conditions, it
follows asymptotically a χ2-distribution with q degrees of freedom, where q is
the difference of the number of parameters of these two models.

As mentioned in Subsection 2.1.1, an OLM without a change point can be
considered as nested in a OLM with a change point. This holds for GLMs if
the structure of the variance is the same over the entire model and because
the design matrix for a GLM with a change point is the same as for an OLM
with a change point. Hence, an intuitive and obvious method to compare a
GLM with a change point to a GLM without a change point is to analyze the
difference between the deviances of these two models. The deviances of the
two submodels of (2.18) are

D(y1, µ̂1, φ) = 2φ

[

τ
∑

i=1

ℓ(yi, φ|yi) −
τ

∑

i=1

ℓ(µ̂i, φ|yi)

]

D(y2, µ̂2, φ) = 2φ

[

n
∑

i=τ+1

ℓ(yi, φ|yi) −
n

∑

i=τ+1

ℓ(µ̂i, φ|yi)

]

,

where y1 and y2 are column vectors of the first τ and last n − τ observations,
respectively. As the deviance of two autonomous models are additive, the
deviance of a GLM with a change point is

Dcp = Dcp(y, µ̂1, µ̂2, φ) = D(y1, µ̂1, φ) + D(y2, µ̂2, φ) ,

where the superscript denotes that this is the deviance corresponding to a
GLM with a change point. Then the difference between the deviance D of a
GLM without change point and Dcp is

D − Dcp = −2φ [ℓ(µ̂, φ|y) − ℓ(µ̂1, φ|y1, . . . , yτ) − ℓ(µ̂2, φ|yτ+1, . . . , yn)] .

By definition, this is minus twice the LR test statistic of a GLM with and
without a change point. For normal errors, identity link function and equal
variances, this difference is

D − Dcp = (y − µ̂)T (y − µ̂)

−
[

(y1 − µ̂1)
T (y1 − µ̂1) + (y2 − µ̂2)

T (y2 − µ̂2)
]

= S̃2 −
[

Ŝ2
1 + Ŝ2

2

]

,

which is the difference between the residual sum of squares of the two models.
As the same deviations from the regularity conditions mentioned in Subsection
2.1.1 arises, the difference D − Dcp does not follow a χ2-distribution, even in
the case of a common dispersion parameter for all observations. Thus, this
difference can only be used as an approximative test. Further work in this
area has to be done.



CHAPTER 2. THEORY 22

2.1.4 Recursive Residuals

In general, residuals can be used to detect departures from a specified model.
Brown et al. (1975) first introduced recursive residuals to detect the depar-
ture from an OLM after a change point. In this section, we discuss recursive
residuals in OLMs and present an extension suitable for GLMs.

In general, raw residuals are defined as the difference between the observed
values yi and the fitted values µ̂i (for example see Davison & Snell, 1991). Here
it is important to note, that the fitted values µ̂i are usually based on estimates
from the entire data. This is in contrast different for recursive residuals where
the fitted model is only based on part of the data. In particular, the recursive
residual of the rth observation is defined as the difference between yr and the
fitted mean µ̂r−, where µ̂r− is only based on the first r− 1 observations. Note,
that for this definition an ordering of the data is mandatory.

First, consider an OLM where some raw recursive residuals are defined as

ur = yr − µ̂r− = yr − xT
r β̂r− , r = p + 1, . . . , n .

Here β̂r− is the ML estimate of β based on only the first r − 1 observations
and p is the number of parameters in the linear predictor. The expectation
E[ur] of the recursive residual is

E[ur] = E
[

yr − xT
r β̂r−

]

= E[yr] − xT
r E

[

β̂r−

]

= µr − xT
r β

= 0 ,

as β̂r− is of course also an unbiased estimate of β. In order to achieve a
suitable standardization of the recursive residuals, the variance of ur has to be
calculated. The ML estimate µ̂r− is based on the first r − 1 observations and
therefore independent from the remaining observations, in particular, from yr.
Consequently, the two components in ur are independent and the variance of
ur is the sum of the variances of yr and µ̂r−. The variance of yr is σ2 by
assumption and the variance of µ̂r− is

V ar(µ̂r−) = V ar(xT
r β̂r−) = xT

r V ar(β̂r−)xr = σ2xT
r (XT

r−1Xr−1)
−1xr, (2.21)

where Xr−1 is the design matrix containing the first r − 1 row vectors of X.
Thus,

V ar(ur) = σ2(1 + xT
r (XT

r−1Xr−1)
−1xr)

and standardized recursive residuals are defined as

u∗
r =

yr − xT
r β̂r−

√

1 + xT
r (XT

r−1Xr−1)−1xr

.
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Both, yr and xT
r β̂r− are normally distributed, hence u∗

r ∼ N(0, σ2). More-
over, Brown et al. (1975) provided that under the assumption that there is
no change in the regime in a homoscedastic OLM, these recursive residuals

are independent, hence u∗
r

iid∼ N(0, σ2). As the ur are normally distributed it
is only necessary to show that the covariance Cov[ur, us], r 6= s, of two arbi-
trary recursive residuals is zero in order to obtain this result. That is, we are
interested in

Cov[ur, us] = E[urus] − E[ur]E[us] . (2.22)

As E[ur] = 0, the second term on the right hand side of (2.22) is zero. Next, we
consider E[urus]. Without loss of generality, it is assumed that r < s. To cal-
culate E[urus], the recursive residuals are expressed in terms of εi. Therefore,
β̂r− is rewritten as

β̂r− = (XT
r−1Xr−1)

−1XT
r−1yr−1

= (XT
r−1Xr−1)

−1XT
r−1 (Xr−1β + εr−1)

= β + (XT
r−1Xr−1)

−1XT
r−1εr−1 ,

where yr−1 and εr−1 are column vectors of the first r − 1 components of the
response variable and the error vector, respectively. The recursive residual ur

can then be expressed as

ur = yr − xT
r β̂r−

= yr − xT
r β − xT

r (XT
r−1Xr−1)

−1XT
r−1εr−1

= εr − xT
r (XT

r−1Xr−1)
−1

r−1
∑

i=1

xiεi

and

E[urus] = E [εrεs]

− E

[

εsx
T
r (XT

r−1Xr−1)
−1

r−1
∑

i=1

xiεi

]

(2.23)

− E

[

εrx
T
s (XT

s−1Xs−1)
−1

s−1
∑

i=1

xiεi

]

+ E

[

xT
r (XT

r−1Xr−1)
−1

r−1
∑

i=1

xiεi × xT
s (XT

s−1Xs−1)
−1

s−1
∑

i=1

xiεi

]

.

As the εi’s are independent and E[εi] = 0, the first term above is zero. Second,
r < s indicates that εs is independent of ε1, . . . , εr−1, thus all components of
the second term in (2.23) are also independent and, hence, this term is zero
as well. Next, consider the third term in (2.23). By defining a set of indices
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A = {1, . . . , r − 1, r + 1, . . . , s − 1}, then

E

[

εrx
T
s (XT

s−1Xs−1)
−1

s−1
∑

i=1

xiεi

]

= E
[

εrx
T
s (XT

s−1Xs−1)
−1xrεr

]

+ E

[

εrx
T
s (XT

s−1Xs−1)
−1

∑

i∈A

xiεi

]

.

The components of the second term of the right hand side are independent
and hence the expectation of this term is zero. Thus, the third term in (2.23)
is the product of three scalars and can be represented as

E
[

ε2
rx

T
s (XT

s−1Xs−1)
−1xr

]

= σ2xT
s (XT

s−1Xs−1)
−1xr .

The forth term in (2.23) can be split up in the same way, i.e.

E

[

xT
r (XT

r−1Xr−1)
−1

r−1
∑

i=1

xiεi × xT
s (XT

s−1Xs−1)
−1

s−1
∑

i=1

xiεi

]

=

E

[

xT
r (XT

r−1Xr−1)
−1

r−1
∑

i=1

xiεi × xT
s (XT

s−1Xs−1)
−1

r−1
∑

i=1

xiεi

]

(2.24)

+ E

[

xT
r (XT

r−1Xr−1)
−1

r−1
∑

i=1

xiεi × xT
s (XT

s−1Xs−1)
−1

s−1
∑

i=r

xiεi

]

,

where the components in the second term on the right hand side in (2.24) are
independent and thus this second term is zero. The first term on the right
hand side in (2.24) can be written as

E
[

xT
r (XT

r−1Xr−1)
−1XT

r−1εr−1 × xT
s (XT

s−1Xs−1)
−1XT

r−1εr−1

]

. (2.25)

As the two terms in this expectation are scalars, the second term can be
transposed and (2.25) becomes

E
[

xT
r (XT

r−1Xr−1)
−1XT

r−1εr−1 × εT
r−1Xr−1(X

T
s−1Xs−1)

−1xs

]

. (2.26)

In this equation, the terms xT
r (XT

r−1Xr−1)
−1XT

r−1 and Xr−1(X
T
s−1Xs−1)

−1xs

are constant, thus (2.26) can be written as

xT
r (XT

r−1Xr−1)
−1XT

r−1E
[

εr−1ε
T
r−1

]

Xr−1(X
T
s−1Xs−1)

−1xs , (2.27)

consequently, we are interested in E
[

εr−1ε
T
r−1

]

. This product, εr−1ε
T
r−1, is a

matrix of dimension (r−1)×(r−1) with diagonal elements ε2
i and off diagonal

elements εiεj , i 6= j. Taking the expectation of this matrix results in

E
[

εr−1ε
T
r−1

]

= σ2Ir−1 ,

since E[ε2
i ] = σ2 and E[εiεj] = 0, for all i 6= j. Consequently, (2.27) becomes

xT
r (XT

r−1Xr−1)
−1XT

r−1σ
2Ir−1Xr−1(X

T
s−1Xs−1)

−1xs
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and simplifies to
σ2xT

r (XT
s−1Xs−1)

−1xs .

Applying these results to equation (2.23) yields the desired result

E[urus] = 0 − 0 − σ2xT
r (XT

s−1Xs−1)
−1xs + σ2xT

r (XT
s−1Xs−1)

−1xs = 0 ,

i.e. Cov[ur, us] = 0 and the recursive residuals are uncorrelated.
To determine the location of the change point and to test if the change

point is necessary or not, Brown et al. (1975) did not use the pure standardized
recursive residuals, but instead used the quantities

Ur =
1

σ

r
∑

j=p+1

u∗
j , r = p + 1, . . . , n . (2.28)

If σ is unknown, it can be estimated by standard deviation based on all data,
i.e. σ̂2 = (y − Xβ̂)T (y − Xβ̂)/(n − p).

As long as β is constant, i.e. one OLM is appropriate for the entire data,
the mean of Ur is zero. From that point onwards, where the relationship be-
tween response and explanatory variable changes, Ur will have non-zero mean.
Thus, the sequence Up+1, . . . , Un drifts away from zero. Therefore, this se-
quence can be used to test the necessity of a change point. The considered
null hypothesis, H0, is that there is no change in the regime. Under this H0,
Up+1, . . . , Un is a sequence of normal variates with

E[Ur] = 0 , V ar[Ur] = r − p

and with r < s
Cov[Ur, Us] = r − p .

To test for change, we need to define boundaries such that the probability that
the path of Up+1, . . . , Un crosses these boundaries is α. As for an arbitrary
p + 1 ≤ t ≤ n, the variance of Ut is t− p, these boundaries should be curves of
the form ±λ

√
t − p, where λ is a constant. For simplicity, however, we follow

the approach of Brown et al. (1975) and consider straight lines. These straight
lines should be tangents to these curves at the point t∗ = p + (n− p)/2, which
lies half a way between p and n. We assume that the probability that the
path crosses both boundaries is negligible. Therefore, only the positive curve
λ
√

t − p is considered and α/2 is taken as crossing probability instead of α.
For such a line we consider the function

ξ(t) = a + bt . (2.29)

First, we calculate the slope b of this function, which is the derivative of the
function f(t) = λ

√
t − p at the point t∗. The derivative is

f ′(t) =
λ

2

1√
t − p

,
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which, at the point of interest, is

b = f ′(t∗) =
λ

2

1
√

n−p
2

+ p − p

=
λ

2

√

n−p
2

n−p
2

=
λ

n − p

√

n − p

2

=
λ
√

2

2

√
n − p

n − p
. (2.30)

Next, the intercept a has to be calculated. For that reason consider f(t∗),
which is

f(t∗) =
λ
√

2

2

√
n − p . (2.31)

Substituting (2.30) and (2.31) in (2.29) yields

λ
√

2

2

√
n − p = a +

λ
√

2

2

√
n − p

n − p

[

p +
n − p

2

]

λ
√

2

2

√
n − p = a +

λ
√

2

2

√
n − p

[

p

n − p
+

n − p

2(n − p)

]

λ
√

2

2

√
n − p = a +

λ
√

2

2

√
n − p

[

n + p

2(n − p)

]

a =
λ
√

2

2

√
n − p

[

1 − n + p

2(n − p)

]

a =
λ
√

2

2

√
n − p

[

n − 3p

2(n − p)

]

.

The function ξ(t) then becomes

ξ(t) =
λ
√

2

4

√
n − p

n − p
(n − 3p + 2t) , p ≤ t ≤ n . (2.32)

While this function is not very well aesthetically appealing, it can be described
by two well defined points. Therefore, consider (2.32) at the points p and n.

Substituting d = λ
√

2
4

these two points are (p, d
√

n − p) and (n, 3d
√

n − p). To
obtain a general straight line for any arbitrary n and p < n, we transform
t to the interval [0; 1]. In this way, any index p ≤ i ≤ n can be given by
i = ⌊t(n − p) + p⌋ for 0 ≤ t ≤ 1. Thus, these points become (0, d

√
n − p)

and (1, 3d
√

n − p). From these two points, it is obvious that by substituting
ν = d

√
n − p, function (2.32) can be expressed as

ξ(t) = ν + 2νt but with 0 ≤ t ≤ 1 .



CHAPTER 2. THEORY 27

To calculate ν for a given crossing probability, we rewrite (2.28) as

Un(t) =
1

σ

⌊p+t(n−p)⌋
∑

j=p+1

u∗
j , 0 ≤ t ≤ 1 .

Krämer, Plomberger, and Alt (1988) showed that for n → ∞

Un(t) → B(t)

in distribution, where B(t) is the standard Brownian motion. In addition,
Durbin (1971) examined that the probability that such a Brownian motion
crosses a line a + bt once is

P (B(t) > a + bt for some 0 ≤ t ≤ 1) =

1 − Φ(a + b) + exp(−2ab)Φ(b − a) ,

where Φ(·) is the standard normal distribution function. Thus, the asymptotic
probability for n → ∞ that Un(t) crosses the line ξ(t) is

P (Un(t) > ν + 2νt for some 0 ≤ t ≤ 1) =

1 − Φ(3ν) + exp(−4ν2)Φ(ν) . (2.33)

Solving equation (2.33) for α/2 yields ν = (1.143, 0.948, 0.85) for common
α = (0.01, 0.05, 0.1). Note, here it is assumed that the probability that Un(t)
crosses the lines more than once is zero. However, Zeileis (2004) showed, that
for small α (2.33) is a rather good approximation even for the case of multiple
crossings.

It is also important to note that this method tests a general departure from
the assumed model after the change point and is not restricted to a change
only in the parameter β. Furthermore, the observation after which Un(t) fall
outside these lines provides an estimate of the change point. The properties of
this estimate are investigated in an MC simulation at the end of this section.

Considering a GLM, the raw recursive residuals are

ur = yr − µ̂r− = yr − g−1(η̂r−) , r = p + 1, . . . , n ,

where η̂r− = xT
r β̂r−. Again, β̂r− is the ML estimate of β based on the first r−1

observations. For a suitable standardization of the raw recursive residuals, the
variance of ur has to be calculated. As yr and µ̂r− are independent, V ar(ur)
is the sum of V ar(yr) = φV (µr) and V ar(µ̂r−). Therefore, we are interested
in a method for calculating V ar(µ̂r−). Recall, that standard results about
inference in GLMs (see e.g. Fahrmeir & Kaufmann, 1985) provide

√
n(β̂ − β) → N

(

0, nφ(XT WX)−1
)

in distribution, where W is a diagonal matrix with

1/wi = V (µi)[g
′(µi)]

2 .
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In addition, µ̂r− is a function of β̂r−. These two results make it obvious to apply
the Delta Method to approximate V ar(µ̂r−). The Delta Method is appropriate
to calculate an approximative variance of some function of a random variable
if the variance of the random variable itself is known, or at least approximately
known. Two things have to be satisfied to apply the Delta Method. First, a
sequence of random variables Yn satisfies

√
n(Yn−θ) → N(0, σ2) in distribution

and, second, there exists a function h(·) with h′(θ) 6= 0. Then

√
n (h(Yn) − h(θ)) → N

(

0, σ2h′(θ)2
)

in distribution (see Casella & Berger, 2002, for a detailed discussion). Here,
Yn = η̂r−, θ = ηr = xT

r β, and the function h(·) = g−1(·) is the inverse link
function. However, the Delta Method provides only an asymptotic variance for
n → ∞. In contrast, µ̂r− is based on a finite sample. Moreover, in most cases it
is only based on a few observations. Thus, from a theoretical point of view, the
Delta Method is not appropriate to calculate the variance of µ̂r−. However,
practical results showed that it provides at least a useful approximation of
V ar(µ̂r−).

First, consider the derivative of h(·) at an arbitrary ηr, which is

h′(ηr) =
dµr

dηr
=

dµr

dg(µr)
=

1

g′(µr)
.

Then, applying the Delta Method to calculate V ar(µ̂r−) yields

V ar(µ̂r−) =
1

g′(µr)2
V ar(η̂r−) . (2.34)

Recall, that the asymptotic variance of η̂r− is

V ar(η̂r−) = φ xT
r (XT

r−1Wr−1Xr−1)
−1xr ,

where Wr−1 is the matrix of the first r − 1 rows of W . Then, the variance of
µ̂r− is

V ar(µ̂r−) =
1

g′(µr)2
φ xT

r (XT
r−1Wr−1Xr−1)

−1xr . (2.35)

As mentioned above, V ar(ur) = V ar(yr) + V ar(µ̂r−). Thus, using the Delta
Method to calculate the variance of µ̂r− yields

V ar(ur) = φ

[

V (µr) +
1

g′(µr)2
xT

r (XT
r−1Wr−1Xr−1)

−1xr

]

. (2.36)

Using (2.36) to standardize the raw recursive residuals ur leads to the stan-
dardized recursive residuals for GLMs, which are defined as

u∗
r =

yr − µ̂r−
√

φ
[

V (µr) + 1
g′(µr)2

xT
r (XT

r−1Wr−1Xr−1)−1xr

]

. (2.37)
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For a canonical link function g′(·) = 1/V (·) and (2.35) simplifies to

V ar(µ̂r−) = φV (µr)
2xT

r (XT
r−1Wr−1Xr−1)

−1xr

and (2.37) becomes

u∗
r =

yr − µ̂r−
√

φV (µr)
[

1 + V (µr)xT
r (XT

r−1Wr−1Xr−1)−1xr

]

.

In the case of normal distributed yi and identity link function we have
1/wi = 1, φ = σ2, and g′(µ) = 1. Hence (2.35) becomes

V ar(µ̂r−) = σ2xT
r (XT

r−1Xr−1)
−1xr

which equals the exact result for V ar(µ̂r−) in (2.21). Thus, for normal dis-
tributed responses, the variance approximated by the Delta Method equals the
exact variance.

As β̂r− and therefore µ̂r− are asymptotically unbiased estimators for β

and µr respectively, the asymptotical expectation of u∗
r is zero. Thus, the

standardized recursive residuals are at least asymptotically (0, 1) variates.
Deletion residuals can also be taken as recursive residuals. For this reason

we consider the first r observations. Then, we fit a model based on these data,
but leave the rth observation out. The deletion residual of the rth observation
can then be interpreted as recursive residual. Pregibon (1979) first introduced
a one step approximation for the deletion residuals rGi. This approximation is
given by

rGi = sign(yi − µ̂i)
√

(1 − hi)r2
Di + hir2

Pi, (2.38)

where rPi are the standardized Pearson residuals, rDi are the standardized
deviance residuals, and hi is the ith diagonal element of the generalized Hat-
Matrix H = W 1/2X(XT WX)−1XT W 1/2 (see Appendix A). In general,
the deletion residuals are closer to the standardized deviance residuals than
to the standardized Pearson residuals. This is due to the fact that, for most
observations the quantity hi is close to p/n, which is the average of the diagonal
elements of H . This gives, for most observations, more weight to the rDi than
to the rPi. Only for points which are extreme in the domain of x, the hi’s are
markedly greater than p/n and therefore weights the rPi more than the rDi.
However, here, the deletion residuals of interest corresponds to an explanatory
variable at an extreme in the domain of x. Therefore, the deletion residuals
are close to the standardized Pearson residuals and inherit their properties. In
the case of non-normal responses this means that the deletion residuals inherit
the skewness of the standardized Pearson residuals.

Now, two different types of standardized recursive residuals are described,
i.e. u∗

r and rGi. Both types are at least asymptotically (0,1) variates but do not
necessarily follow a normal distribution. However, we try to establish, whether
the method proposed by Brown et al. (1975) can be either used to determine
the location of the change point or as a test statistic, and to establish whether
the change point is necessary or not. These two questions are investigated in
the following MC simulation.
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Simulation Study

In this MC simulation, two different GLMs are considered both with one change
point. The response variable in both models follows a Poisson distribution,
hence the dispersion parameter is known and equals 1 for all segments. These
two models differ only in the magnitude of change at the change point.

Consider first a GLM and a data set of sample size n = 40 and a given
discontinuous change point at τ = 20. The explanatory variable x is given by
xi = i/40, i = 1, . . . , 40, and the supposed model is defined as

g(µi) =

{

5.0 − 2.0xi i = 1, . . . , 20
3.8 − 1.5xi i = 21, . . . , 40 ,

where g(µ) = log µ is the canonical link function. Based on this model 10000
samples of Poisson distributed response vectors y = (y1, . . . , y40)

T are gener-
ated. For each generated sample the standardized recursive residuals u∗

r (2.37)
and the standardized deletion residuals rGi (2.38) are calculated. Of course,
using the first few observations for fitting the model can lead to an insufficient
fit and hence to huge residuals. Therefore, we consider the cumulative sum of
these residuals after the fifth observation. Thus, for both types of residuals,
the quantities

U∗
r =

r
∑

j=3

u∗
j and UGr =

r
∑

j=3

rGj r = 6, . . . , n (2.39)

are calculated and compared to the bounds described above with α = 5%. The
main interest of this simulation study is, whether the paths of the sequences
(2.39) cross these bounds and if so, after which index the crossing can be
observed. This index determines the estimate τ̂ of the change point.

The second model considered differs from the first model only in the inter-
cept of the second segment and is defined as

g(µi) =

{

5.0 − 2.0xi i = 1, . . . , 20
4.2 − 1.5xi i = 21, . . . , 40 ,

Again, 10000 Poisson distributed response vectors are generated.
The MC results of the first model show that the change point is detected

with a lag of a few observations (Figure 2.2). The mode of the simulated
distribution of the estimated change point τ is 22 for both types of residuals.
Thus the most frequently observed lag with respect to the true change point
is two. The relative frequency of this mode is 28.25% for using rGi and 25.2%
for using u∗

r. Furthermore, using the rGi leads to slightly better results than
the use of u∗

r. This can be seen in the higher bars for τ̂ = 21, 22 in Figure 2.2
and in the faster increase of the cumulative relative frequencies of the change
point estimate in Figure 2.3. Besides, in 99.6% of the replications using rGi

and 98.9% of the replications using u∗
r the quantities (2.39) fall outside the
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Figure 2.2: Relative frequencies of the change point estimate for the first model.
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Figure 2.3: Cumulative relative frequencies of the change point estimate for
the first model.
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bounds (Figure 2.3). Thus, in almost all replications, the necessity of a change
point is found.

The MC simulation under the second model leads to similar results. Again,
for both types of residuals, the change point is detected after a lag of a few
observations. Here, the mode of the simulated distribution of the estimated
change points is 23. Note, that the relative frequencies at the mode are
markedly lower than in the first model. They are only 10.4% for using rGi

and 9.0% for using u∗
r (Figure 2.4). Furthermore, the variability of the es-

timated change point is greater. Again, the standardized deletion residuals
provide better results. The lower magnitude of change means that only 64.7%
of the change points are detected using rGi and 57.4% using u∗

r (Figure 2.5).
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Figure 2.4: Relative frequencies of the change points estimate for the second
model.

These MC simulations give a first indication that the standardized deletion
residuals should probably be preferred to the standardized recursive residuals
for detecting the change point using the method of Brown et al. (1975).

Furthermore, the location of the change point is detected with a lag of a
few observations. This lag depends on the deviation between the two models
partitioned by the change point. In addition, the frequency of detecting a
change point, again, depends strongly on this deviation. Therefore, in most
cases, this method detects the change point with a lag of a few observations.
Moreover, it is a conservative test for testing the significance of the change
point.

One question that arises is whether such a lag is due to the fact that the
considered recursive residuals are asymptotic (0, 1) variates even though do
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Figure 2.5: Cumulative relative frequencies of the change point estimate for
the second model.

not necessarily follow a normal distribution. Hence, the considered bounds are
not appropriate to detect a change point as well as to test the necessity of the
change point. To investigate this, a second MC simulation based on an OLM
with one change point is performed. To enable a comparison of the results,
similar assumptions for the OLM with one change point are necessary. That is,
the magnitude of the change at the change point, as well as the variance of the
observations at the change point, should be similar. Therefore, the considered
model is

yi =

{

9 + 22xi + εi i = 1, . . . , 20
−45 + 180xi + εi i = 21, . . . , 40

with εi
iid∼ N(0, 36). 10000 normal distributed response vectors are generated.

For each of the 10000 replications the quantities (2.28) are calculated. We are
particularly interested in investigating, whether the path of these sequences
crosses the considered bounds and if so, after which index this crossing can
be observed. Using this index as an estimate for the change point, this MC
simulation again yields a lag of the estimated change point between zero and
five observations (Figure 2.6). The mode of the frequency of the estimated
change point is 21 with a relative frequency of about 31%. Thus the most
observed lag is one observation. This is quite smaller than in the case of GLMs,
but a lag can be still observed. Thus even in the case of iid normal distributed
recursive residuals, the method introduced by Brown et al. (1975) yields an
estimated change point with a lag of up to five observations. Consequently,
regardless of whether this method is applied to OLMs or GLMs, it provides an
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estimate of the change point with a lag of up to a few observations. Therefore,
in the case of a marked change at the change point this method can be applied
on GLMs as well.
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Figure 2.6: Relative frequencies of the change point estimate for the OLM.

2.2 Discontinuous Change Points in GLMs

In this section, the change point model previously considered is extended to
a linear model with multiple discontinuous change points. Therefore, it is
assumed that there are at least two changes in the regime of the linear model.
OLMs are a special case of GLMs, hence, in the remainder of this thesis,
only change point models for GLMs are considered. As in the case of linear
models with one change point, multiple change points partition the data into
several segments. It is assumed that the number of change points is known.
Moreover, it is assumed that for all segments, the same type of model holds
but with different parameters. The challenge of change point models with
more than one discontinuous change point is to find an appropriate method
for estimating the change points. Two different methods are discussed, the
hierarchic binary splitting algorithm (Hawkins, 2001) and a method based on
a dynamic programming algorithm (Hawkins, 2001). Furthermore, these two
methods are compared using an MC simulation.
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2.2.1 Multiple Discontinuous Change Points

In this section, GLMs with multiple discontinuous change points are considered
where the change points are fixed but unknown. In particular, d − 1 change
points partition the data into d segments. Again only a change in the linear
parameter βk = (βk1, . . . , βkp)

T , k = 1, . . . , d, is considered, whereas all other
quantities defining a GLM, i.e. g(·), V (·), and φ, are the same for all segments.

In the case of multiple discontinuous change points, the vector of change
points is denoted as τ = (τ1, . . . , τd−1)

T where τk is any index. For simplicity,
these change points are augmented with τ0 = 0 and τd = n which are artificial
change points. To guarantee the estimable of βk these change points must
fulfill τk − τk−1 > p for all k = 1, . . . , d. A GLM with d − 1 discontinuous
change points can then be given by

g(µi) =



















xT
i β1 τ0 < i ≤ τ1

xT
i β2 τ1 < i ≤ τ2
...

...
xT

i βd τd−1 < i ≤ τd ,

(2.40)

where βk are the parameter vectors of interest. As there are no continuity
constraints at the change points, (2.40) can be separated in d autonomous
GLMs, which can be written in matrix representation as

g(µ1) = X1β1

g(µ2) = X2β2
...

g(µd) = Xdβd ,

(2.41)

where µk = (µτk−1+1, . . . , µτk
)T and Xk contains the corresponding row vectors

of the design matrix.
First, consider the case where all change points are known. Then, the log

likelihood under model (2.40) can be separated into d terms, namely

ℓ(β, φ|τ , y) =
d−1
∑

k=0

ℓ (βk+1, φ|yτk+1, . . . , yτl
) , (2.42)

with β = (βT
1 , . . . , βT

d )T and l = k + 1. The ML estimates of β and φ are the
ML estimates of the GLMs of each segment and can therefore be calculated
with the common IWLS method and the Pearson statistic, respectively. If the
change points are unknown, the ML estimate τ̂ is obtained by maximizing

ℓ(β, φ, τ |y) =
d−1
∑

k=0

ℓ (βk+1, φ|yτk+1, . . . , yτl
) . (2.43)

Again, the ML estimates of βk and φ depend on τ , hence these parameters
can not be estimated simultaneously. A grid search over all possible combi-
nations of change points seems appropriate to solve this problem. However,
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as τ contains d − 1 unknown change points, a grid search over all possible
combinations of change points is computationally burdensome. The order of a
standard grid search is O(nd) (Bai & Perron, 2003). Thus, the computational
complexity increases rapidly with the number of change points and effective
algorithms are necessary.

2.2.2 Fitting Algorithms

In this section, two algorithms for finding multiple change points are presented:

• the hierarchic binary splitting (HS) algorithm

• and a dynamic programming (DP) algorithm.

Furthermore, an MC simulation is performed to compare these two algorithms.

Hierarchic Binary Splitting Algorithm

The HS algorithm to find multiple change points in a linear model is a Greedy
type algorithm. It splits the data in a hierarchic way like in regression trees
(Breiman, Friedman, Olshen, & Stone, 1984). The first step is to split the data
into two segments. These two segments are partitioned by that change point
which maximizes the sum of the log likelihood of both segments. The second
step is to find a potential change point in each of these two segments. From
these new potential change points, choose that one which increases the sum
of the log likelihood of all three segments the most. Thus, one step of the HS
algorithm consists of two tasks,

• find a potential change point in each segment,

• given these potential change points in each segment, choose that one
which increases the log likelihood the most.

This procedure is repeated until the final number of change points is achieved.
This final number can be limited for practical reasons or determined by us-
ing any information criterion such as Akaike’s information criterion (AIC) or
Bayesian information criterion (BIC) (e.g. see Burnham & Anderson, 1998).

The advantage of this algorithm is it’s simplicity and speed. At each step,
the maximum number of possible change points is n. Thus, the computational
order of this algorithm is O(n(d − 1)), as for each of these d − 1 steps, at
most n different potential change points have to be investigated. In addition,
it is very easy to implement it in any commonly used programming language.
Furthermore, the algorithm also performs well in problems with large data
sets. The disadvantage is, however, that a determined change point is fixed
for all subsequent steps. This can lead to a suboptimal solution for models
with more than one change point. The first change point maximizes the log
likelihood for a model with one change point, but for a model with multiple
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change points this primarily found change point may no longer be an optimal
choice.

So it is desirable to be able to find different change points for models with
different numbers of change points. One method to achieve this goal is the DP
algorithm (Hawkins, 2001).

Dynamic Programming Algorithm

The DP algorithm allows the determination of different change points if the
number of change points increases. It is based on Bellman’s principle of op-
timality (Bellman & Dreyfus, 1962) and is built up recursively. Consider a
GLM and a data set of size n with d − 1 change points (d segments). Then,
knowing the rightmost change point, the problem can be reduced to split the
remaining data on the left hand side of this change point into d− 1 segments.
This is repeated until all d segments are determined. A prerequisite for this al-
gorithm is that, for known change points, the models in the segments must be
autonomous, i.e. at least the parameters βk are unrestricted for each segment
(see Subsection 2.2.1).

We consider a GLM with d−1 inner change points where βk, k = 1, . . . , d−
1, changes at each change point. Again, the extended set of change points is
denoted by τ = (τ0, . . . , τd)

T . Then, the log likelihood for known change points
is given by (2.42). For an arbitrary pair of consecutive change points (τk, τl),
with l = k + 1, let Q(τk, τl) be the maximized log likelihood for the data
yτk+1, . . . , yτl

, namely

Q(τk, τl) = ℓ
(

β̂k+1, φ̂|yτk+1, . . . , yτl

)

,

with τl − τk > p to guarantee the estimable of the parameters βk+1 and φ.
Then, the overall maximized log likelihood can be written as

ℓ(β̂, φ̂, τ̂ |y) = max
τ

[

max
β,φ

ℓ (β, φ|τ , y)

]

= max
τ

d−1
∑

k=0

Q(τk, τl). (2.44)

Thus, finding the maximum of (2.44) can be split into two problems. The
first problem is to find the ML estimate τ̂ . The second problem is to find the
ML estimate β̂ for given change points τ̂ . Hawkins (2001) denoted these as
the outer and inner problem respectively. We start with searching the ML
estimate τ̂ , the outer problem.

The main idea of solving this outer problem is to build up a GLM with d
segments recursively based on the maximized log likelihood of different sub-
models. That is, first calculate the maximized log likelihoods of GLMs based
on all feasible combinations of observations for the first segment. In particular,
these are the first m observations, where the possible range of m is specified
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later on. Second, based on these GLMs, calculate all feasible GLMs with two
segments, again based on the first m observations. This is repeated until a
GLM with d segments is determined. The cleverness of the DP algorithm is to
do this in a very efficient way. Finally, if a GLM with d segments is determined,
the estimates τ̂k can then be obtained by back-tracing the DP algorithm.

To describe this algorithm in detail, let us define F (k, m) as the maximized
log likelihood of a GLM with k segments for the first m observations. Moreover,
let pk = k(p + 1) be the smallest possible endpoint of the kth segment, i.e. the
smallest possible value for the kth change point, where p is the number of
the unknown linear parameters. Furthermore, let nk = n − (d − k)(p + 1) be
the largest possible endpoint of the kth segment. Thus, the largest possible
range for the kth segment is pk − p, . . . , pk, . . . , nk. This is due to the fact,
that at least k(p + 1) observations are mandatory for the first k segments and
for the remaining d − k segments on the right hand side of the kth segment,
(d − k)(p + 1) observations are mandatory.

As the maximized log likelihoods for all possible submodels are the basis
for this algorithm, first calculate Q(r, s) for all possible combinations of 0 ≤
r < s − p ≤ n. Then we consider Q(0, m) for m = p1, . . . , n1, which is the
maximized log likelihood for a GLM without a change point based on these
first m observations, i.e. Q(0, m) = F (1, m).

To illustrate this algorithm with the help of an example, consider a data
set of size n = 12. Furthermore, we are interested to fit a GLM with d = 3
segments to this data, where the number of linear parameters is p = 2. Then,
the first segment can be based on the first m = 3, . . . , 6 observations, as for the
remaining two segments at least six observations are mandatory, i.e. y7, . . . , y12.
These four different cases for the first segment are plotted in Figure 2.7. The
length of the lines are drawn with respect to the corresponding observations.
They are colored to distinguish them in the following steps. The red vertical
line determines the largest possible observation for the first segment.

In a next step, we are interested in the maximized log likelihood of a GLM
with two segments for the first m = p2, . . . , n2 observations, i.e. F (2, m). For
an arbitrary m this is

F (2, m) = max
p1≤τ1<m−p

[Q(0, τ1) + Q(τ1, m)]

= max
p1≤τ1<m−p

[F (1, τ1) + Q(τ1, m)] . (2.45)

For back-tracing the DP algorithm, it is necessary to store the change point,
that yields the maximized log likelihood at each step. Let us denote H(k, m)
as that change point that yields the maximum of F (k− 1, τk−1) + Q(τk−1, m).
Then, for (2.45), H(2, m) is that change point that maximizes the log likelihood
of a GLM with one change point based on the first m observations.

In Figure 2.8, all possible combinations to obtain F (2, m), m = 6, . . . , 9, are
illustrated. For m = 6, the only possible combination to obtain the maximum
F (2, 6) is a change point at τ1 = 3, which is denoted as H(2, 6). In the case
of m = 7, there are two possible combinations, namely τ1 = 3 and τ1 = 4. In
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Figure 2.7: Possible models for the 1st segment.

this example, it is assumed that τ1 = 4 yields the maximum, i.e. H(2, 7) = 4.
Thus, F (2, 7) = F (1, 4)+Q(4, 7) and the corresponding lines in Figure 2.8 are
colored blue and red respectively. In general, a red line on the right hand side
of the potential change point shows that this combination yields the maximum.
For m = 8 and m = 9, three and four combinations have to be investigated
respectively. The maximum is obtained by a change point at H(2, 8) = 4 and
H(2, 9) = 5 respectively.

After F (2, m) is obtained for all possible m’s, we are interested in F (3, m)
for m = p3, . . . , n3 and so on. This is repeated until F (d, m) is determined.
Thus, this algorithm can be expressed as following recursion

F (1, m) = Q(0, m)

F (k + 1, m) = max
pk≤τk<m−p

[F (k, τk) + Q(τk, m)] , (2.46)

with k = 1, . . . , d − 1 and m = pk, . . . , nk. Hence, the (k + 1)th step of the
algorithm consists of finding the change point τk in the remaining pk, . . . , m−
p−1 observations, where, for the first pk −p observations, k−1 change points
are already determined. This can be repeated until the largest achievable
number of change points is determined which is, at most, dmax = ⌊n/p⌋. The
big advantage of this recursion is, that at the (k +1)th step, the maximization
in (2.46) is autonomous of the previous steps. Thus, for the maximization of
F (k, τk)+Q(τk, m) it is irrelevant which (τ1, . . . , τk−1)

T yields the maximum of
F (k, τk). Hence, at the (k + 1)th step, only nk − pk possible values for τk have
to be investigated. Therefore, once all possible values of Q(r, s) are calculated,
F (k, τk) are easily obtained. Finally, the maximized log likelihood of the full
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Figure 2.8: Possible combinations for the first two segments.

data with d − 1 change points is F (d, n).
In the considered example, this is F (3, 12). Figure 2.9 shows all possible

combinations that can lead to F (3, 12). Moreover, for completeness, the cases
for m = 9, 10, 11 are also illustrated in this figure even though they are not
necessary for the remaining analysis. Here it is assumed that F (2, 8)+Q(8, 12)
yields the maximum. Thus H(3, 12) = 8 and, again, the corresponding line on
the right hand side of this change point in Figure 2.9 is red.

Given F (d, n) the estimate of the change points can be obtained by back-
tracing the algorithm, i.e. solving the inner problem. Note that the rightmost
change point for all observations is the artificial change point τd = n and is,
of course, always known. Knowing this rightmost change point, the second
rightmost change point τd−1 is given by H(d, n). This is the change point
which maximizes F (d − 1, τd−1) + Q(τd−1, n). Consequently, the remaining
change points are given by τ̂k = H(k + 1, τ̂k+1). Thus, following this back-
tracing, the maximized log likelihood F (d, n) can be split in its d autonomous
components, namely

F (d, n) =
d−1
∑

k=0

Q(τ̂k, τ̂l) .

Finally, the ML estimate of βk is the parameter which maximizes Q(τ̂k, τ̂l).
To solve the inner problem in the example, we start with H(d, n), i.e.

H(3, 12) = 8. Thus, τ̂2 = 8 is the estimate of the second rightmost change
point. Knowing this change point, the remaining eight observations have to
be partitioned into two segments. The maximized log likelihood for a GLM
with one change point (two segments) for this remaining data is F (2, 8). This
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Figure 2.9: Possible combinations for a GLM with three segments for the first
m = 9, . . . , 12 observations, in particular, for the entire data set of size n = 12.

is represented by the dark magenta line in Figure 2.9. The corresponding case
with m = 8 in Figure 2.8 is also dark magenta (i.e. F (2, 8)). The change point
that yields this maximum is H(2, 8) = 4. Thus, the estimated change points
are τ̂ = (4, 8)T .

Due to computational efficiency reasons we restrict the calculation F (k, m)
on m = pk, . . . , nk. Hence, we implicitly assume that the number of change
points is known. If this is not the case, one can calculate F (k, m) for m =
pk, . . . , n, with k = 1 . . . , dmax. Then, the dmax maximized log likelihoods,
F (k, n), can be used to decide how many change points are appropriate. To
take the number of estimated parameters into account, this is usually done
by comparing some information criterion of models with different numbers of
change points.

The big advantage of the DP algorithm is its flexibility in determining the
change points. The change points of a model with r change points are not
necessarily a subset of the change points of a model with s > r change points.
For instance, a model with three change points may have completely different
change points than a model with two change points. This is in contrast to
the HS algorithm where the change points of a model with r change points
is always a subset of the change points of a model with s > r change points.
The cost is the greater computational complexity but this becomes only a
problem when analyzing a huge amount of data. Therefore, in most cases the
DP algorithm should be the preferred algorithm for detecting multiple change
points. This is confirmed by the following MC simulation.
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Simulation Study

In this MC simulation, both algorithms are compared with respect to their
bias finding the true change points. The focus lays on the frequency of finding
the true change points under different variance assumptions. Therefore, three
different settings are considered where the mean structure of the model is the
same for all settings but the variance varies between the settings. For all three
settings, the results are based on 2000 replications.

Consider a simple linear regression with three discontinuous change points.
The explanatory variable x is given by xi = i/10, with i = 1, . . . , 60. The
change points are located at the indices τ1 = 15, τ2 = 30 and τ3 = 45. Then,
the linear model

yi =















xi + εi 0 < i ≤ 15
5 + xi + εi 15 < i ≤ 30

18 − 0.8xi + εi 30 < i ≤ 45
1 + 2xi + εi 45 < i ≤ 60

(2.47)

is used to generate artificial data sets. The variances of the errors, εi, vary

over the settings and are ǫi
iid∼ N(0, 0.52), ǫi

iid∼ N(0, 1), and ǫi
iid∼ N(0, 1.52) for

the first, second and third setting, respectively. The MC simulation is done in
R applying the function dcp of the package CpInGLM. For details, see Appendix
B.

Of course, the DP algorithm is expected to perform better than the HS
algorithm as it is the more flexible algorithm. The questions arising are:

• how often do the two algorithms find the true change points and

• does the DP algorithm clearly perform better than the HS algorithm.

From Table 2.2, it can be seen that the frequency depends on the variance of
the errors. For a small variance σ2 = 0.52, the DP algorithm finds the true
change points in 99.9% of the replications, whereas the HS algorithm in only
88.7% of the replications. The ratio between these percentages is 1.12 and is
listed in the last column of Table 2.2.

setting σ DP HS ratio
1 0.5 99.9% 88.7% 1.12
2 1 73.7% 35.1% 2.10
3 1.5 26.4% 9.2% 2.65

Table 2.2: Percentage of finding the true change points for both algorithms in
the three settings based on 2000 replications.

If σ2 = 1, the DP algorithm performs well, finding the true change points
in 73.7% of the replications, which is more than twice the frequency of the HS
algorithm, as shown by the ratio of 2.1. If the variance of the errors increases
to σ2 = 1.52 both algorithms perform poorly.
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To measure the deviation of the estimated change points from the true
ones, we define the following quantity

Dτ =
3

∑

k=1

|τ̂k − τk| .

This quantity, Dτ , is plotted for the second setting in Figure 2.10 and for the
third setting in Figure 2.11. Both figures show a better performance of the
DP algorithm. Furthermore, a second peak of the relative frequencies of Dτ

around 8 can be observed. This can be interpreted as evidence that, if one
change point is not found at the true location, the others are not estimated at
the true location as well.
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Figure 2.10: Relative frequency of the cumulative difference of the change

points for ε
iid∼ N(0, 1).

To resume, this MC simulation shows that a DP algorithm should be ap-
plied to detect multiple change points. In particular, if the variance of the
errors are not a negligible quantity, the HS solution is outperformed by the
DP result.

Example 2.2 Simple linear model with three change points
In this example, a generated data set (Figure 2.12) of the model (2.47) con-
sidered in the simulation study above, is analyzed. In particular, a data set
from the second setting with σ2 = 1 is considered. Both algorithms to detect
the change points are used to compare their results.
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Figure 2.11: Relative frequency of the cumulative difference of the change

points for ε
iid∼ N(0, 1.5).

In the first step, the HS algorithm finds a change point at 37. This change
point maximizes the sum of the log likelihood of both segments. The second
change point is found in the first segment at 30 and the third change point is
found at 15. Thus, the estimated change points are τ̂ = (15, 30, 37)T (Figure
2.12), which are different to the true change points, τ = (15, 30, 45)T . This
is due to the fact that once a change point is determined, it is fixed for the
remaining part of the algorithm.

To find discontinuous change points in a GLM, the function dcp was im-
plemented in the programming language R and is used in this example. First,
a GLM is fitted with the usual function glm. The output of this function is an
object of class glm. Whereas several functions in R can handle an object either
of class glm or of class lm, this function are designed to work only with objects
of class glm. This object is the basis of the dcp function call. Two additional
arguments of the function call of dcp are nOfCp and dps. These arguments
determine the number of change points and the minimum number of observa-
tions in each segment respectively. The fitting algorithm used, is determined
by the argument method and is set to ''hs'' for the HS algorithm. Then, the
R-code for fitting a GLM with three change points and its results are given as

> data(HSvsDP)

> m1 <- glm(y~x, data=HSvsDP)

> m1.hs <- dcp(m1, nOfCp=3, dps=5, method="hs")

> m1.hs
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Call:

dcp(object = m1, nOfCp = 3, dps = 5, method = "hs")

Coefficients:

(Intercept) x

segment1 0.2815 1.1461

segment2 3.7080 1.2672

segment3 20.6459 -1.1850

segment4 -3.9691 2.5309

Degrees of Freedom: 59 Total (i.e. Null); 49 Residual

Null Deviance: 2417

Residual Deviance: 58.61

AIC : 186.2

BIC : 209.3

Indices of Discontinuous Change Points : 15 30 37

> m1.hs$logLikelihood

[1] -82.10936

The output of the function is an object of class dcp with several elements.
The generic function print can be used to obtain a short overview of the fitted
model. This overview includes the estimates of the linear parameter and the
change points and some information about the goodness-of-fit. As the estimate
of the third change point is not the true change point, the parameter estimates
of the third an fourth segment differ more from the true values than that one
from the first and second segment. The null deviance is related to a GLM with
out a change point and one intercept. Therefore, the corresponding degrees of
freedom are 59. The residual deviance corresponds to the fitted change point
model with four intercepts, four slopes, and three change points. Hence the
number of estimated parameters is eleven and the degrees of freedom reduces to
49. An additional element of this class is the maximized log likelihood, which is
−82.1 for this model. Using the definitions of the information criteria described
in Subsection 2.2.3 results in an AIC of 186.2 and a BIC of 209.3.

Next, the DP algorithm is applied. For a model with one change point,
the change point is the same as determined by the HS algorithm, namely 37.
The change points for a model with two change points are (30, 45)T , which
are different from the change points determined by the HS algorithm. Accord-
ingly, the change point 37 for the model with one change point, is not a subset
of the change points (30, 45)T of the model with two change points. Finally,
the change points of the model with three change points are τ̂ = (15, 30, 45)T

(Figure 2.13), which match the true ones exactly.
The discontinuous change points can be again estimated with the function

dcp, but with method=''dp''. Again, the GLM without a change point, i.e.
model m1, is the basis for the dcp function call. Then the R-code and its results
are as follows:
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Figure 2.12: Fitted linear model with three change points τ̂ = (15, 30, 37)T

using the HS algorithm.

> m1.dp <- dcp(m1, nOfCp=3, dps=5, method="dp")

> m1.dp

Call:

dcp(object = m1, nOfCp = 3, dps = 5, method = "dp")

Coefficients:

(Intercept) x

segment1 0.2815 1.1461

segment2 3.7080 1.2672

segment3 16.6363 -0.4869

segment4 -1.1808 2.2342

Degrees of Freedom: 59 Total (i.e. Null); 49 Residual

Null Deviance: 2417

Residual Deviance: 52.6

AIC : 180.7

BIC : 203.7

Indices of Discontinuous Change Points : 15 30 45

> m1.dp$logLikelihood

[1] -79.32898

As the estimate of the first and the second change point are the same using
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the HS algorithm, the estimates of the linear parameter of the first and sec-
ond segments are the same, as well. In contrast, the estimates of the linear
parameter of the third and fourth segment differ and are closer to the true val-
ues. Furthermore, the maximized log likelihood is −79.3, which is greater than
that one found by the HS algorithm. Moreover, both information criteria are
smaller than that one of the HS algorithm, which also indicates, that the DP
algorithm yields the better fit.
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Figure 2.13: Fitted linear model with three change points τ̂ = (15, 30, 45)T

using the DP algorithm.

2.2.3 Determining the Number of Change Points

Of course one important question in the case of multiple change points is still
to be answered. ”How many change points are necessary to describe the data”.
As for the data considered in this work, where the number of change points is
fixed to two, only a brief overview on this topic is given.

Recall the results for testing the necessity of a change point in an OLM.
Even in this very simple case no exact method exists. All methods considered
are based on approximations of quantiles of the distribution of the test statis-
tic. Besides, Bai and Perron (2003) introduced methods for testing no change
versus a fixed number of change points and for testing k change points versus
k+1 change points. Both tests are considered for an OLM with several change
points. These tests can be used for sequential testing whether an additional
change point is necessary or not. Again, the Bonferroni inequality has to be
applied to correct for the true significance level. Thus, even for these simple
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circumstances no exact methods are available. So, one can expect that for
estimating the number of change points in a GLM, more technical difficulties
will arise. Therefore, in both cases (OLMs and GLMs), the use of an infor-
mation criterion is a good alternative. In general, there are two well known
information criteria used for model selection, i.e. Akaike’s information criterion
(AIC) and Bayesian information criterion (BIC) (see Burnham & Anderson,
1998, for a detailed discussion), which are defined as

AIC = −2 log(L) + 2p

BIC = −2 log(L) + p log(n) ,

where p is the number of estimated parameters, i.e. the linear parameters and
the change points, n is the sample size, and log(L) is the maximized log likeli-
hood. Yao (1988) and Chen and Gupta (1997), among others, suggested to use
the BIC for estimating the number of change points. This is confirmed by the
suggestion of Bai and Perron (2003). They found that the AIC performs very
badly and tends to overfit the model. Chen and Gupta (2000) recommended
the use of the BIC in several parametric change point models, in particular
for OLMs. Thus, it also seems appropriate if the number of change points in
a GLM has to be estimated. Nevertheless, Hawkins (2001) recommended to
additionally use a graphical method to figure out an appropriate number of
change points. He suggested to plot the maximized log likelihoods of consec-
utive models, i.e. the maximized log likelihoods of a GLMs with k = 1, . . . , d
change points, and looking for an ”elbow” in the plot. Though these methods
provide good approximate results, further work has to be done in this area,
especially for estimating the number of change points in GLMs.

Example 2.3 (Continuation of Example 2.2) Recall the artificial data
set of Example 2.2, where an OLM with three change points is considered.
The DP algorithm was used to estimate change point models with zero to eight
change points. The AIC, as well as the BIC, of these nine models are plotted
in Figure 2.14. Using the BIC, k = 3 change points is the best solution, which
is also the true number of change points. In contrast, using the AIC would
result in k = 6 change points, which is twice the true number. Thus, this again
confirms the recommendation that the BIC should be used instead of the AIC.
Next, we consider the plot of the maximized log likelihood with respect to the
number of change points (Figure 2.15). This plot does not establish a clearly
formed ”elbow”. While using this kind of plot it is not easy to decide how many
change points are appropriate.

2.3 Continuous Change Points in GLMs

In this section, GLMs with a continuous change at each change point are
considered. Consequently, the predicted means of consecutive models are the
same at the change point. Thus, the parameter estimates of β in each model are
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restricted to this continuity constraint and the estimates of the parameters in
each segment are no longer autonomous. Therefore, the algorithms introduced
in Subsection 2.2.2 for fitting multiple change points can not be applied and
other methods have to be considered.

Note that because of the continuity constraint, the exact location of the
change point can be estimated. Moreover, the change point is no longer re-
stricted to any observed value of the explanatory variable but can be any value
inside the interval [min xi; max xi] and is not an index as in Section 2.1 and
2.2. Therefore, the continuous change point is denoted as γ to distinguish it
from a discontinuous change point.

Subsection 2.3.1 presents GLMs with one continuous change point and
an MC simulation shows, that recursive residuals can be applied the get a
bound for a continuous change point in GLMs. Furthermore, two algorithms
to estimate the change point are presented, one is based on an ordinary grid
search and the other one is an exact method. In Subsection 2.3.2, GLMs with
multiple change points are considered and both algorithms are adapted for
these models.

2.3.1 One Continuous Change Point

In this section, GLMs with response variable yi, a single explanatory variable
xi, i = 1, . . . , n, and one continuous change point γ are considered. Then, the
model can be written as

g(µi) =

{

β10 + β11xi a ≤ xi ≤ γ
β20 + β21xi γ < xi ≤ b ,

(2.48)

with a = min xi and b = maxxi, where β1 = (β10, β11)
T and β2 = (β20, β21)

T

are the parameters of interest. Furthermore, it is assumed that there is a
continuous transition between the two models at the change point. Thus, the
model must satisfy a continuity constraint at the change point.

In general, in GLMs the model for the mean µi = E[yi|xi] is given by

g(E[yi|xi]) = xT
i β .

Using this notation for model (2.48) gives

g(E[yi|xi]) =

{

β10 + β11xi a ≤ xi ≤ γ
β20 + β21xi γ < xi ≤ b .

The continuity constraint at the change point γ implies that E[yi|xi] at the
change point is the same for the model of both segments, i.e.

E[yi|γ] = g−1(β10 + β11γ) = g−1(β20 + β21γ) . (2.49)

As the link function is a monotonic differentiable function and is the same for
both segments, the continuity constraint (2.49) can be simplified to

β10 + β11γ = β20 + β21γ . (2.50)
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Without loss of generality, the intercept of the second model can be written as
a function of the intercept and slope of the first model and the change point
γ, i.e.

β20 = β10 + β11γ − β21γ. (2.51)

Thus, model (2.48) can be rewritten as

g(µi) =

{

β10 + β11xi a ≤ xi ≤ γ
β10 + β11γ + β21(xi − γ) γ < xi ≤ b .

(2.52)

Therefore, a change point model with one continuous change point can be
interpreted as a model with one intercept and two different slopes for the
different segments. Due to the continuity constraint, the intercept of the second
segment is determined by the parameters β10, β11 and β21 and the change point
γ. It can be calculated through equation (2.51).

Again, the change point γ divides data into two segments with respect
to the explanatory variable. Without loss of generality, it is assumed, that
xi ≤ xj for i < j and xs ≤ γ < xs+1, then x(1) = (x1, . . . , xs)

T and x(2) =
(xs+1, . . . , xn)T . Consequently, GLMs with one continuous change point can
be written in matrix notation as

g(µ) =



















1 x1 0
...

...
...

1 xs 0
1 γ xs+1 − γ
...

...
...

1 γ xn − γ























β10

β11

β21



 , (2.53)

with µ = (µ1, . . . , µn)
T . As it was very easy to include the continuity constraint

into the structure of the model, the big disadvantage of this structure is that
model (2.53) can only be fitted with the standard IWLS method if the change
point is known. Of course, usually the change point is unknown. Nevertheless,
consider the case where the change point γ is known with xs ≤ γ < xs+1.
Then, the log likelihood of model (2.52) with β = (βT

1 , βT
2 )T is

ℓ(β, φ|γ, y) = ℓ (β1, φ|γ, y1, . . . , ys) + ℓ (β1, β21, φ|γ, ys+1, . . . , yn) . (2.54)

Note, the log likelihood can be separated with respect to the first s and the
last n − s observations, but the estimates of the parameters depend on both
sets. This dependency can be seen from the parameter score functions under
this model, which are given by

∂ℓ(β, φ|γ, y)

∂β10

=
s

∑

i=1

[

(yi − µi)

φV (µi)

∂µi

∂ηi

]

+
n

∑

i=s+1

[

(yi − µi)

φV (µi)

∂µi

∂ηi

]

∂ℓ(β, φ|γ, y)

∂β11
=

s
∑

i=1

[

(yi − µi)

φV (µi)

∂µi

∂ηi
xi

]

+

n
∑

i=s+1

[

(yi − µi)

φV (µi)

∂µi

∂ηi
γ

]

∂ℓ(β, φ|γ, y)

∂β21

=
n

∑

i=s+1

[

(yi − µi)

φV (µi)

∂µi

∂ηi

(xi − γ)

]

,
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with

ηi =

{

β10 + β11xi a ≤ xi ≤ γ
β10 + β11γ + β21(xi − γ) γ < xi ≤ b .

Thus, (β10, β11)
T and (β20, β21)

T can not be estimated separately as it is the
case for discontinuous change point models. However, the usual IWLS method
based on model (2.53) can be used to estimate the parameters β10, β11 and β21.
The ML estimate of β20 can then be obtained by plugging in the ML estimates
β̂10, β̂11 and β̂21 into equation (2.51).

Next, consider the case where the change point γ is unknown and has to
be estimated. The ML estimate of γ is the value, which maximizes

ℓ(β, φ, γ|y) = ℓ (β1, φ|γ, y1, . . . , ys) + ℓ (β1, β21, φ|γ, ys+1, . . . , yn) , (2.55)

where, again, the ML estimates of β and φ depend on the location of the change
point. Using the same model structure as in (2.52), one difficulty arises. The
design matrix in (2.53) depends on the continuous change point γ for two rea-
sons. First, the separation of the rows in it’s two components representing the
two models depends on γ. Second, the value of γ is an element of the design
matrix. Thus, no analytical solution for estimating γ is available. Stasinopou-
los and Rigby (1992) suggested to use a grid search for estimating the change
point. Note that the change point is not restricted to an observed value of the
explanatory variable, hence the grid can be freely chosen. Regardless of this
possibility, an intuitive grid search seems to be a search over all observed xi,
in particular, in the case of equidistant xi. Then, the ML estimate γ̂ is that
observed xa with

a = arg max
2≤s≤n−2

[ℓ (β1, φ|γ, y1, . . . , ys) + ℓ (β1, β21, φ|γ, ys+1, . . . , yn)] .

After a grid search over all feasible xi, the grid search can be refined on a
region around xa, with lower bound xa−1 and upper bound xa+1. Regardless
of the refinement of the grid size, the solution of the grid search will always
be suboptimal. Thus, it would be desirable to define a method for an exact
estimation of the change point.

For such an exact method, consider the change point model (2.48) with
continuity constraint (2.50). This exact method consists of two steps. First,
we assume that the change point lies in an arbitrary open interval (xs; xs+1),
s = 3, . . . , n − 3, and calculate a candidate of the ML estimate of the change
point. If this candidate lies in this open interval, it is the ML estimate. Second,
for all intervals where this candidate is not an element of the corresponding
interval, the endpoint of the interval, i.e. xs and xs+1 are considered.

Therefore, we first assume that the the change point γ lies in the interval
(xs; xs+1). Then, the log likelihood of (2.48) is given by

ℓ(β, φ, γ|y) = ℓ (β1, φ, γ|y1, . . . , ys) + ℓ (β2, φ, γ|ys+1, . . . , yn) , (2.56)

where both terms on the right hand side are the log likelihood functions of the
GLMs of the first s and last n − s observations respectively. Given the two
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observations between which the change point is located, i.e. xs ≤ γ < xs+1,
these two log likelihood functions do not depend on the value γ of the change
point. This independency can be again seen from the parameter score functions
which are given by

∂ℓ(β, φ, γ|y)

∂β10
=

s
∑

i=1

[

(yi − µi)

φV (µi)

∂µi

∂ηi

]

∂ℓ(β, φ, γ|y)

∂β11

=
s

∑

i=1

[

(yi − µi)

φV (µi)

∂µi

∂ηi

xi

]

∂ℓ(β, φ, γ|y)

∂β20
=

n
∑

i=s+1

[

(yi − µi)

φV (µi)

∂µi

∂ηi

]

∂ℓ(β, φ, γ|y)

∂β21

=
n

∑

i=s+1

[

(yi − µi)

φV (µi)

∂µi

∂ηi

xi

]

,

with

ηi =

{

β10 + β11xi a ≤ xi ≤ γ
β20 + β21xi γ < xi ≤ b .

Consequently, the ML estimates β̂1 and β̂2 are the usual ML estimates of these
two GLMs. Given the continuity constraint (2.50), the change point γ can be
expressed as a function of the components of the parameter vector β, namely

γ =
β20 − β10

β11 − β21
.

Due to the invariance property of ML estimators, i.e. if θ̂ is the ML estimate of
an unknown parameter θ, then for any function h(·), the ML estimate of h(θ)
is h(θ̂) (for details see for example Casella & Berger, 2002), the ML estimate
of γ is

γ̂ =
β̂20 − β̂10

β̂11 − β̂21

. (2.57)

Let β̂10, β̂11 be the usual ML estimates of the GLM of the first s observations
and β̂20, β̂21 be the ML estimates of the GLM of the last n − s observations.
Then a candidate of the ML estimate is given by (2.57). Note, however that
because the change point is restricted to be within the interval (xs; xs+1), this
is only the ML estimate of γ, if γ̂ ∈ (xs; xs+1). If this is not the case, then
the ML estimate of γ is either xs or xs+1. Thus, finding a continuous change
point between two consecutive observations can lead to two different cases.
Either the continuous change point is found in the open interval between these
two observations or it is one of these two observations. Regardless which of
these two cases appears, this is the ML estimate of γ restricted to the interval
[xs; xs+1]. To obtain an unrestricted change point, i.e γ ∈ [x3; xn−2], this has
to be repeated for each interval [xs; xs+1] with s = 3, . . . , n − 3.
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Küchenhoff (1997) first proposed this method for an exact estimation of
the change point. He recommended to derive (2.57) for each open interval
(xs; xs+1) with s = 3, . . . , n − 3. If γ̂ ∈ (xs; xs+1), then there exists a local
maximum of the log likelihood and hence the ML estimate of γ is given by
(2.57). If γ̂ /∈ (xs; xs+1), then there is no local maximum in (xs; xs+1), but it
is either xs or xs+1. This second step is to maximize the log likelihood at the
endpoint xs of each interval, which is nothing else than the grid search over
all observed xi mentioned above. The global maximum is then given by the
maximum of this final number of local maxima of both steps.

For a huge data set, this exact method can be very time consuming. One
way to save time is to apply a grid search with a larger grid size, e.g. use
only every fifth observation to get an indication where the change point might
be. Then the exact method can be applied in the vicinity of this first clue.
A second way is to use recursive residuals to find the change point. The
simulation study in Subsection 2.1.4 demonstrated, that the method of Brown
et al. (1975), which was developed to find change points in OLMs, can also
be applied to find discontinuous change points in GLMs. Furthermore, the
MC simulation showed that the performance of this method depends on the
amount of the difference of the two GLMs at the change point. In contrast,
in GLMs with a discontinuous change point, this amount is determined by the
difference between the intercept and the slope of the two GLMs. In GLMs with
a continuous change point this amount is only determined by the difference of
the slopes of these two models. Thus, one would expect that the performance
of Brown’s method depends on this difference. To establish this dependency
and how useful it is to apply recursive residuals to find a continuous change
point in GLMs, the following MC simulation is performed.

Simulation Study

In this MC simulation, the usefulness of the method proposed by Brown et
al. (1975) (see Subsection 2.1.4) for detecting a continuous change point in
GLMs is examined. For that reason, two different GLMs with one continuous
change point are considered. As in Subsection 2.1.4, the performance of this
method using either the standardized recursive residuals (2.37) or the deletion
residuals (2.38) are of main interest.

For both models Poisson responses are considered. The explanatory vari-
able x is xi = i/40, i = 1, . . . , 40 and a continuous change point is located
at γ = 0.5125, which is (x20 + x21)/2. Furthermore, it is assumed that the
link function g(µ) = log(µ) is the same for both segments. The first GLM
considered, denoted as Model 1, is given by

g(µi) =

{

4 + 0.5xi 1/40 ≤ xi ≤ γ
3.4875 + 1.5xi γ < xi ≤ 1
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and the second GLM, denoted as Model 2, is

g(µi) =

{

4 + 0.5xi 1/40 ≤ xi ≤ γ
3.23125 + 2xi γ < xi ≤ 1 .

Thus, the two models differ in the slope of the second segment and, conse-
quently, also in the intercept of the second segment to guarantee a continuous
transition at the change point. Based on these two models, 10000 samples of
Poisson responses for both models were generated. These samples are analyzed
in the same way as in the MC simulation in Subsection 2.1.4.

One result of this MC simulation is, that there is a large lag between the
true change point (between the 20th and 21th observation) and the detected
change point in the simulation study. Second, there is no marked difference
in the results between the two considered types of residuals, i.e. standardized
recursive residuals and deletion residuals.

For Model 1, the change point was detected in only 45.5% of the 10000
replications using the deletion residuals and in 43.4% of the replications using
the recursive residuals (see Figure 2.16). This was done with a lag of up to
20 observations (Figure 2.17). For Model 2, the change point was detected
in 91.9% of the replications using the deletion residuals and in 91.5% of the
replications using the recursive residuals (Figure 2.16), but also with a large
lag with its mode at 13 observations for both types of residuals (Figure 2.18).
The relative frequency of detecting the change point at these modes are 9.8%
and 9.6% using deletion residuals or recursive residuals, respectively. As it
was expected, the lag of detecting the change point depends strongly on the
difference between the slope of the models in the two segments, i.e. β21 − β11,
which is 1 for Model 1 and 1.5 for Model 2.

Thus, finding a continuous change point in GLMs using Brown’s method
can be applied if the difference between the two slopes of the two GLMs is a
marked quantity. The power of this method decreases as the difference between
the two slopes decreases. In the case where this difference is small with respect
to the variance of the data at the change point, this method can only be applied
as a first screening device. Regardless of the difference between the two slopes,
this method can only be used to obtain an upper bound for the true continuous
change point. This upper bound has to be investigated carefully, however, as
in some cases this method provides smaller estimates than the true change
point.

To get a lower bound for the continuous change point, one can start the
analysis from the other side of the data, in this case the right hand side. How-
ever, this is only valid if it can be assumed that there is only one continuous
change point. This lower and upper bound can be used as restrictions for a
final grid search or the exact method suggested by Küchenhoff (1997). The
computational expense for this combined method is greater than for an ordi-
nary grid search. Nevertheless, in this thesis the recursive residuals are applied
in Section 2.4 as an initial screening device to provide a first guess of the true
continuous change point.
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Figure 2.16: Cumulative relative frequencies of the change point estimate.
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Figure 2.17: Relative frequencies of the change point estimate for Model 1.
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Figure 2.18: Relative frequencies of the change point estimate for Model 2.

Example 2.4 (Continuation of Example 1.3)
Recall, that for the data of the vital capacity an OLM with one continuous
change point was assumed. To fit this model the function ccp can be used. As
the call of this function requires an object of class glm, first, a GLM without a
change point, Gaussian distribution for the response, and identity link function
is fitted to the data. The result is stored in the object aimu.glm. Then the
function ccp applied to aimu.glm fits a GLM with a continuous change point.
The arguments nOfCp and method specify the number of change points and the
method, either a grid search or the exact method, to estimate the change point,
respectively. The result, stored as aimu.ccp is an object of class ccp. There
exist a few generic accessor functions to extract some useful features of the
fitted model. One of these is the function print, which gives a short overview of
the fitted model. This includes the call of the function, the estimated coefficients
and change points and some information about the goodness-of-fit.

> aimu.glm <- glm(vc~age, data=aimu)

> aimu.ccp <- ccp(aimu.glm, nOfCp=1, method="exact")

> print(aimu.ccp) # or only: aimu.ccp

Call:

ccp(object = aimu.glm, nOfCp = 1, method = "exact")

Coefficients:

(Intercept) age.seg1 age.seg2

252.154 17.050 -5.556
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Continuous Change Point at :

cp.1

22

Degrees of Freedom: 78 Total (i.e. Null); 75 Residual

Null Deviance: 453700

Residual Deviance: 323000

AIC : 891.2

BIC : 897

Another useful generic function is the plot function, which plots the fitted
model (Figure 1.3), produces a normal plot of the deviance residuals (Figure
2.19), plots the fitted values versus the deviance residuals (Figure 2.20), and
the profile log likelihood of the change point (Figure 2.21).

> plot(aimu.ccp, which=2)

> plot(aimu.ccp, which=3)

> plot(aimu.ccp, which=4)

The normal plot (Figure 2.19) shows a fairly good alignment of the deviance
residuals to the Gaussian distribution. Moreover, there appears to be no pattern
in Figure 2.20, hence the change point model seems appropriate for this data.
This is confirmed by the goodness-of-fit criterion AIC = 891, which is quite
smaller than that one of an OLM with a linear trend (AIC = 906) and with a
quadratic trend (AIC = 901).

In Figure 2.21 the curve of the difference between the maximized log like-
lihood at γ̂ = 22 and the profile log likelihood is plotted. Under certain regu-
larity conditions the profile log likelihood with respect to one parameter follows
asymptotically a χ2-distribution with one degree of freedom. Thus, the points
where the curve intersects a line, that corresponds to the 95% quantile of a
χ2

1-distribution, i.e. χ2
1;0.95 = 3.84, provides approximative bounds of a 95%

confidence interval for the change point. This 95% quantile is plotted as a
dashed line in Figure 2.21. As, to the left hand side of τ̂ = 22, this curve does
not intersect the dashed line the lower bound for the confidence interval is the
smallest possible value for the change point, that is 18.85. The upper bound
is 25, hence an approximative 95% confidence interval for the change point is
[18.85; 25].

Next, consider an extension of GLMs with one continuous change point
where additional explanatory variables are augmented to the linear predic-
tor, but with a constant parameter for all observations for these additional
explanatory variables. Then the model is given by

g(µi) =

{

β10 + β11xi + zT
i ϑ a ≤ xi ≤ γ

β20 + β21xi + zT
i ϑ γ < xi ≤ b ,

(2.58)
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Figure 2.19: Normal plot of the deviance residuals.
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Figure 2.21: Curve of the difference between the maximized log likelihood at
γ̂ = 22 and the profile log likelihood of the change point. The dashed line at
3.84 corresponds to the 95% quantile of the χ2

1-distribution.

where zi = (zi1, . . . zi,p−2)
T are the additional explanatory variables without

a change point and ϑ is a (p − 2) × 1 column vector of unknown parameters
which has to be estimated. Thus, assuming that the continuous change point
γ lies between xs and xs+1, this model can be written in matrix representation
as

g(µ) =



















1 x1 0 0 z11 · · · z1,p−2
...

...
...

...
...

. . .
...

1 xs 0 0 zs1 · · · zs,p−2

0 0 1 xs+1 zs+1,1 · · · zs+1,p−2
...

...
...

...
...

. . .
...

0 0 1 xn zn1 · · · zn,p−2































β10

β11

β20

β21

ϑ













. (2.59)

The log likelihood under this model is

ℓ(β, ϑ, φ|γ, y) = ℓ (β1, ϑ, φ|γ, y1, . . . , ys) + ℓ (β2, ϑ, φ|γ, ys+1, . . . , yn) ,

where again both terms on the right hand side are the log likelihood functions
of the first s and last n − s observations, respectively. Now, however, both
terms are functions of the parameter vector ϑ, which is the same for both
segments. Thus, the ML estimate of ϑ cannot be calculated by analyzing the
two models of (2.58) separately. This is confirmed by the score function with
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respect to any element ϑj , j = 1, . . . , p − 2, of ϑ, which is given by

∂ℓ(β, ϑ, φ|γ, y)

∂ϑj

=
s

∑

i=1

[

(yi − µi)

φV (µi)

∂µi

∂ηi

zij

]

+
n

∑

i=s+1

[

(yi − µi)

φV (µi)

∂µi

∂ηi

zij

]

.

Consequently, the same algorithm presented above must be used for estimating
the unknown parameters β, ϑ, φ, and γ. That is, first calculate the solution
(2.57) of each interval (xs; xs+1) and verify whether this is the ML estimate of
the change point in this interval. If this is not the case, then establish which of
the endpoints of the interval maximizes the log likelihood and is therefore the
ML estimate of the change point in this interval. For the first step of this algo-
rithm, model (2.58) can be used to fit the unknown parameters, in particular,
the four components of β, which are necessary to calculate the ML estimate
of γ. For the second step, the grid search over those observations where a
valid solution for the change point was not found between their corresponding
intervals has to be applied. For that reason, model (2.58) is rewritten as

g(µ) =



















1 x1 0 z11 · · · z1,p−2
...

...
...

...
. . .

...
1 xs 0 zs1 · · · zs,p−2

1 γ xs+1 − γ zs+1,1 · · · zs+1,p−2
...

...
...

...
. . .

...
1 γ xn − γ zn1 · · · zn,p−2



























β10

β11

β21

ϑ









, (2.60)

which is a generalization of model (2.53). Due to the continuity constraint,
the intercept β20 of the second model is given by equation (2.51) and the ML
estimate can be obtained by plugging in the ML estimate β̂10, β̂11 and β̂21 into
this equation.

The final ML estimates of the unknown parameters are those local ML
estimates corresponding to the local maximum of the log likelihood, which is
the global maximum.

2.3.2 Multiple Continuous Change Points

In this section, GLMs with one continuous change point are generalized to
GLMs with at least two continuous change points. Therefore, consider a GLM
with d − 1 continuous change points γk, k = 1, . . . , d − 1, with γk < γk+1 and
one explanatory variable xi with a = min xi and b = maxxi. These d − 1
change points partition the data into d segments and the considered model is

g(µi) =



















β10 + β11xi, a ≤ xi ≤ γ1

β20 + β21xi, γ1 < xi ≤ γ2
...

...
βd0 + βd1xi, γd−1 < xi ≤ b ,

(2.61)



CHAPTER 2. THEORY 62

where at each change point γk, a continuity constraint

g(E[yi|γk]) = g(βk0 + βk1γk) = g(βk+1,0 + βk+1,1γk) , k = 1, . . . , d − 1

is considered. As the link function is the same for all segments and is a mono-
tonic differentiable function, these continuity constraints can be simplified to

βk0 + βk1γk = βk+1,0 + βk+1,1γk , k = 1, . . . , d − 1 .

Then model (2.61) can be rewritten as a model with one intercept β10 and d
different slopes βk1, k = 1, . . . , d. The intercept of each segment, except the
first one, is then given by

βk+1,0 = βk0 + βk1γk − βk+1,1γk , k = 1, . . . , d − 1 .

As the intercept of the succeeding segment is a function of the intercept and
slope of the previous segment and the corresponding change point, the intercept
of each segment can be built up recursively. Thus, (2.61) can be written as

g(µi) =



























β10 + β11xi a ≤ xi ≤ γ1

β10 + β11γ1 + β21(xi − γ1) γ1 < xi ≤ γ2

β10 + β11γ1 + β21(γ2 − γ1) + β31(xi − γ2) γ2 < xi ≤ γ3
...

...
β10 + β11γ1 + β21(γ2 − γ1) + . . . + βd1(xi − γd−1) γd−1 < xi ≤ b ,

which in matrix notation is

g(µ) =















e1 x(1) 0 0 . . . 0
e2 γ1e2 x(2) − γ1e2 0 . . . 0
e3 γ1e3 (γ2 − γ1)e3 x(3) − γ2e3 . . . 0
...

...
...

...
. . .

...
ed γ1ed (γ2 − γ1)ed (γ3 − γ2)ed . . . x(d) − γd−1ed

































β10

β11

β21

β31
...

βd1



















,

(2.62)
where the elements of the design matrix are column vectors of the same length
for each row. In particular, x(k) is a column vector of elements given by
{xi|γk−1 < xi ≤ γk}, with k = 1, . . . , d, γd = b and γ0 = a − ξ with ξ > 0.
Furthermore, ek = (1, . . . , 1)T is a column vector of ones with length |x(k)|.
Thus, the length of these column vectors is determined by the location of
the change points γk. This notation of a change point model is practicable
if the change points are known. Thus, for a given vector of change points
γ = (γ1, . . . , γd−1)

T the ML estimates of β10 and βk1, can be derived with the
common IWLS method applied on (2.62).

If the change points are unknown (as it is usually the case) then they
have to be estimated. As it can be seen in the design matrix of (2.62), the
models of each segment are no longer autonomous. Thus, the algorithms for
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determining multiple discontinuous change points (Section 2.2) are not appro-
priate. One way to estimate the change points is to apply a grid search over
all possible cases. However, for an efficient grid search, an appropriate grid
has to be defined and, regardless of the defined grid, the solution of the search
will always be suboptimal. Moreover, the computational complexity increases
rapidly with the number of change points and the required degree of accuracy.
An exact method can be obtained by extending the exact method for one
continuous change point (Subsection 2.3.1) to the case of multiple continuous
change points. Küchenhoff (1997) showed this for models with two continuous
change points. As a GLM with two continuous change points is of main inter-
est in this thesis, this exact method, first introduced by Küchenhoff (1997), is
described in detail in the remainder of this section.

Consider a GLM with one explanatory variable x and two continuous
change points, say γ1 and γ2. It is assumed that xs ≤ γ1 < xs+1 and
xr ≤ γ2 < xr+1 for some s + 2 < r. Then the considered GLM with two
continuous change points equals

g(µi) =







β10 + β11xi a ≤ xi ≤ γ1

β20 + β21xi γ1 < xi ≤ γ2

β30 + β31xi γ2 < xi ≤ b ,
(2.63)

with continuity constraints at the change point given by

β10 + β11γ1 = β20 + β21γ1

β20 + β21γ2 = β30 + β31γ2 .
(2.64)

To write this model in matrix notation the following notation is considered.
To simplify the notation of the design matrix let

Xi|j =







1 xi
...

...
1 xj







be the design matrix of the GLM for the observations yi, . . . , yj and βk =
(βk0, βk1)

T , k = 1, 2, 3, the parameters of interest. Then (2.63) can be rewritten
as

g(µ) =





X1|s 0 0
0 Xs+1|r 0
0 0 Xr+1|n









β1

β2

β3



 . (2.65)

To estimate the unknown change points γ = (γ1, γ2)
T , we assume without

loss of generality, that γ1 ∈ (xs; xs+1) and γ2 ∈ (xr; xr+1). Then, the log
likelihood with β = (βT

1 , βT
2 , βT

3 )T is

ℓ(β, φ|γ, y) = ℓ(β1, φ|γ, y1, . . . , ys)

+ ℓ(β2, φ|γ, ys+1, . . . , yr)

+ ℓ(β3, φ|γ, yr+1, . . . , yn) .
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For the same reason as in the case of one continuous change point (compare
Subsection 2.3.1, equation (2.56)), the terms on the right hand side are au-
tonomous. Hence, the ML estimates of βk are the ML estimates of the GLMs
based on the corresponding observations, i.e. (y1, . . . , ys)

T , (ys+1, . . . , yr)
T , and

(yr+1, . . . , yn)
T . Given these ML estimates β̂k, the candidates for the ML esti-

mates of γ1 and γ2 can be derived through

γ̂1 =
β̂20 − β̂10

β̂11 − β̂21

and γ̂2 =
β̂30 − β̂20

β̂21 − β̂31

. (2.66)

If γ̂1 ∈ (xs; xs+1) and γ̂2 ∈ (xr; xr+1), then γ̂1 and γ̂2 are ML estimates because
they are restricted to the rectangle (xs; xs+1) × (xr; xr+1). If this is not the
case, the ML estimates lie on the boundaries of this rectangle.

In the next step, each of these four boundaries are investigated. For that
reason, one change point is fixed at an observed value xi and the other one
varies in between the two corresponding observations. For instance and with-
out loss of generality, hold the first change point fixed, i.e. γ1 = xs. Then the
second change point varies in between (xr; xr+1). This corresponds to a GLM
with one continuous change point with a slightly different design matrix. To
simplify notation, let

Zi|j|k =



















1 xi 0
...

...
...

1 xj 0
1 xj xj+1 − xj
...

...
...

1 xj xk − xj



















be the design matrix for a change point model with a continuous change point
at xj . Then the model for the first change point fixed at xs and the second
change point may vary between xr and xr+1 is

g(µ) =

(

Z1|s|r 0
0 Xr+1|n

) (

β∗
1

β3

)

, (2.67)

with β∗
1 = (β10, β11, β21)

T . As the second change point is restricted to (xr; xr+1),
the ML estimates of β∗

1 and β3 do not depend on the value of the change point
but only on it’s location and are therefore autonomous. Thus, the ML esti-
mates of β∗

1 and β3 are the ML estimates of the GLMs with the design matrix
Z1|s|r and Xr+1|n respectively. After fitting these two models, it has to be
again verified, whether the candidate of the second change point

γ̂2 =
β̂20 − β̂10

β̂11 − β̂21

(2.68)

with
β̂20 = β̂10 + (β̂11 − β̂21)γ1 = β̂10 + (β̂11 − β̂21)xs
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lies in the interval (xr; xr+1). If this is the case, then (2.68) is the ML estimate
of the second change point. In contrast, if the second change point is fixed to
a certain observation, i.e. γ2 = xr, then model (2.67) changes to

g(µ) =

(

X1|s 0
0 Zs+1|r|n

) (

β1

β∗
2

)

, (2.69)

with β∗
2 = (β20, β21, β31)

T .
This investigation of the boundary has to be done for all four bound-

aries of the rectangle [xs; xs+1] × [xr; xr+1], i.e. subsequently the first change
point is fixed to xs and xs+1 and then the second change point is fixed to
xr and xr+1. The result of the investigation of these four boundaries can
yield six different patterns. To illustrate these different patterns, the rectangle
[xs; xs+1]× [xr; xr+1] is defined as a graph where each corner of the rectangle is
represented by a node. The edges between the nodes indicate that a maximum
of the log likelihood between these two nodes exists. For instance, the case
where the first change point is fixed at xs and the second change point lies
between xr and xr+1 is illustrated in Figure 2.22. The six different patterns

( xs; xr) ( xs+1; xr)

( xs; xr+1) ( xs+1; xr+1)

Figure 2.22: Example for a graph, where the first change point is fixed at
γ1 = xs and the second change point lies in between xr and xr+1

using this representation are illustrated in Figure 2.23.
If pattern (a) is the result of the investigation of the boundaries, i.e. a local

maximum of the log likelihood is obtained at each boundary, then the ML
estimate of the continuous change point lies on that boundary that corresponds
to the maximum of these four maximized log likelihoods. For pattern (b) and
(c), the ML estimate of γ is also the value, that yields the maximum log
likelihood of these three and two boundaries, respectively. This is due to the
fact that, if there is a local maximum of the log likelihood for one change point
fixed and the other one restricted to an open interval between two consecutive
observations, then the maximum of the log likelihood can not be at the corners
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(a) (b) (c)

(d) (e) (f)

Figure 2.23: Six different pattern which can occur.

of the rectangle. Hence, in the case of pattern (b) and (c) the maximum log
likelihood lies on the boundaries and not at these two observations, i.e. at one
of the corners. For pattern (d) - (f), a subsequent analysis of the corners with
no edge connecting this corner to another one is necessary, i.e. the two change
points are fixed to the corresponding observations. Without loss of generality
it is assumed that the change points are fixed to γ1 = xs and γ2 = xr. Then
the considered model can be written as

g(µ) =

































1 x1 0 0
...

...
...

...
1 xs 0 0
1 xs xs+1 − xs 0
...

...
...

...
1 xs xr − xs 0
1 xs xr − xs xr+1 − xr
...

...
...

...
1 xs xr − xs xn − xr









































β10

β11

β21

β31









, (2.70)

which can be fitted with the usual IWLS method. Again the intercepts of the
second and third segment are obtained by plugging in the ML estimates of β10,
β11, β21 and β31 into the corresponding continuity constraints (2.64).

Summing up, the exact method for estimating the change points of a GLM
with two continuous change points consists of three steps.

1. For each rectangle (xs; xs+1) × (xr; xr+1), model (2.65) is fitted to the
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data and subsequently it has to be investigated if the candidates (2.66)
are the ML estimates of the change points.

2. For each rectangle where at least one candidate is not the ML estimate of
the change point, the boundaries of the rectangle have to be investigated,
i.e. fit model (2.67) respectively (2.69) to the data.

3. For each rectangle where pattern (d) - (f) occur, a subsequent analysis
of the corners of the rectangle is necessary, i.e. fit (2.70) to the data.

Thus, in the worst case, each rectangle has to be investigated in nine dif-
ferent ways to get the ML estimates of the change points restricted to the
considered rectangle. For a global ML estimate of the change point, this has
to be done for all feasible rectangles, thus the computational complexity in-
creases rapidly with the number of observations.

As mentioned in Küchenhoff (1997), this exact method can be extended to
the case of more than two change points. For instance, in the case of three
change points, all feasible cubes [xs; xs+1] × [xr; xr+1] × [xu; xu+1] have to be
investigated.

Example 2.5 (Continuation of Example 1.4)
Recall, that a GLM with two continuous change points is considered for the data
of recorded discharge of a river after a heavy rainstorm. Again, for the call of
the function ccp a GLM without a continuous change point has to be fitted to
the data. As the implemented power link function does not support any negative
power, a new family hyd.const was implemented with Gaussian distribution
for the response variable and a power link function with three different negative
values, i.e. −0.5, −0.4 and −0.3 noted as w05, w04 and w03 respectively. The
fitted GLM is stored as object hyd.glm. This object is the main argument of
ccp. The number of change points (nOfCp) is set to 2 and the exact method is
used to estimate the change points. The estimated coefficients are the intercept
and the slope of the leftmost segment and the slopes of the remaining segments.

> hyd.glm <- glm(discharge~x, data=sulm.dat,

+ family=hyd.const(link=w05),

+ subset=which(sulm.dat[,1]=="rez8"))

> hyd.ccp <- ccp(hyd.glm, nOfCp=2, method="exact")

> hyd.ccp

Call:

ccp(object = hyd.glm, nOfCp = 2, method = "exact")

Coefficients:

(Intercept) x.seg1 x.seg2 x.seg3

0.125999 0.136961 0.047631 0.008015

Continuous Change Points at :
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cp.1 cp.2

0.3259 1.7128

Degrees of Freedom: 28 Total (i.e. Null); 23 Residual

Null Deviance: 5808

Residual Deviance: 13.22

AIC : 73.51

BIC : 81.71

In the case of two continuous change points the profile log likelihood de-
pending on these two change points is shown as a contour plot. The location
of the estimated change points is marked as + and additional horizontal and
vertical dashed lines. In addition, the values of the estimated change points
are printed as subtitle (Figure 2.24).

> plot(hyd.ccp, which=4)
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estimated change points: (0.33, 1.71)

Figure 2.24: Contour plot of the profile log likelihood depending on two con-
tinuous change points.

2.4 Continuous Change Points for Panel Data

In this section, the analysis of continuous change point models is extended
to panel data. First, the case of independent observations both between and
within the panels is considered (Subsection 2.4.1). Second, the same kind of
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model is considered but it is additionally assumed that the slope parameter for
the rightmost segment is the same for all panels (Subsection 2.4.2). Then, a
fitting algorithm to estimate the change points and the parameters of interest
for such a model is presented (Subsection 2.4.3). Finally, an MC simulation
study evaluates the performance of this new algorithm (Subsection 2.4.4).

2.4.1 The Independent Case

Let us consider panel data with j = 1, . . . , n panels (clusters), where each panel
has i = 1, . . . , nj observations. This notation allows either balanced panels,
n1 = n2 = · · · = nn, or unbalanced panels with nj1 6= nj2 for at least one
j1 6= j2 with j1, j2 ∈ {1, . . . , n}. In general, different models for each panel are
possible (e.g. see Subsection 2.2.1). Nevertheless, in this work it is assumed,
that the distribution of the response variable is the same for all panels and
segments within each panel. Furthermore, it is assumed that the link and the
variance function are the same for all segments and all panels. Even though it
is not important for the remaining analysis if the number of change points is
fixed to a certain value or may vary from panel to panel, in the remainder of
this section and without loss of generality, GLMs with two continuous change
points are considered for each panel.

Let yj = (yj1, . . . , yjnj
)T be the response vector of panel j, where yji follows

a distribution from the exponential family. We assume that the corresponding
explanatory variable xji has a natural ordering, i.e. xji ≤ xj,i+1. Moreover,
two continuous change points γj1, γj2 ∈ [xj1; xjnj

], with γj1 < γj2, partition
the data into three segments. Besides the change points, the parameters of
interest, are the linear parameters βjk = (βjk0, βjk1)

T , k = 1, 2, 3, of these
three segments. The continuous change point model for panel j can then be
given by

g(µji) =







βj10 + βj11xji aj ≤ xji ≤ γj1

βj20 + βj21xji γj1 < xji ≤ γj2

βj30 + βj31xji γj2 < xji ≤ bj ,
(2.71)

with aj = min xji and bj = maxxji. As the link function is the same for all
three segments, the continuity constraint at the change points can be simplified
to

βjk0 + βjk1γjk = βjl0 + βjl1γjk , k = 1, 2 (2.72)

with l = k + 1.
First, consider a given pair of change points γj = (γj1, γj2)

T and, without
loss of generality, consider xjs ≤ γj1 < xj,s+1 and xjr ≤ γj2 < xj,r+1 for some
s + 2 < r with s, r ∈ {1, . . . , nj}. Then, using (2.72), the intercepts can be
built up recursively and model (2.71) can be written as

g(µji) =







βj10 + βj11xji aj ≤ xji ≤ γj1

βj10 + βj11γj1 + βj21(xji − γj1) γj1 < xji ≤ γj2

βj10 + βj11γj1 + βj21(γj2 − γj1) + βj31(xji − γj2) γj2 < xji ≤ bj .
(2.73)
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We denote the mean vector of panel j as µj = (µj1, . . . , µjnj
)T and the param-

eter vector of interest as β∗
j = (βT

j1, βj21, βj31)
T . Then (2.73) can be written in

matrix notation as
g(µj) = Zjβ

∗
j (2.74)

with design matrix

Zj =

































1 xj1 0 0
...

...
...

...
1 xjs 0 0
1 γj1 xj,s+1 − γj1 0
...

...
...

...
1 γj1 xjr − γj1 0
1 γj1 γj2 − γj1 xj,r+1 − γj2
...

...
...

...
1 γj1 γj2 − γj1 xj,nj

− γj2

































.

Remember, model (2.74) is a GLM with two change points, as discussed in
Subsection 2.3.2. In addition, the log likelihood is similar to (2.54) but with
an extra term for the third segment, i.e.

ℓ(β∗
j , φ|γj, yj) = ℓ (βj1, φ|γj, yj1, . . . , yjs)

+ ℓ (βj1, βj21, φ|γj, yj,s+1, . . . , yjr)
+ ℓ

(

βj1, βj21, βj31, φ|γj, yj,r+1, . . . , yjnj

)

.

As for a GLM with one continuous change point, the ML estimate of β∗
j is

obtained by analyzing model (2.74). Again, the estimates of both intercepts
βj20 and βj30, are provided by solving restriction (2.72) and plugging in the
ML estimate of β∗

j .
Combining these n models for the entire panel data set leads to the global

model










g(µ1)
g(µ2)

...
g(µn)











=











Z1 0 . . . 0
0 Z2 . . . 0
...

...
. . .

...
0 0 . . . Zn





















β∗
1

β∗
2
...

β∗
n











. (2.75)

Assuming that all observations are mutually independent, i.e. all observations
within a panel are independent as well as all observations between all panels
are independent, the log likelihood of model (2.75) is

ℓ(β, φ|γ, y) =
n

∑

j=1

ℓ(β∗
j , φ|γj, yj) ,

with γ = (γT
1 , . . . , γT

n )T . Furthermore, the terms on the right hand side of this
equation are autonomous, thus each panel can be analyzed separately. As this
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model represents a GLM for given pairs of change points, it is the basis for the
analysis if either the change points are known or are estimated by applying an
ordinary grid search.

Next, consider the case where the change points are unknown and an exact
method should be applied to estimate the change points. Again assume xjs ≤
γj1 < xj,s+1 and xjr ≤ γj2 < xj,r+1, then the model for panel j is

g(µj) = Xjβj (2.76)

with βj = (βT
j1, β

T
j2, β

T
j3)

T and design matrix

Xj =

































1 xj1 0 0 0 0
...

...
...

...
...

...
1 xjs 0 0 0 0
0 0 1 xj,s+1 0 0
...

...
...

...
...

...
0 0 1 xjr 0 0
0 0 0 0 1 xj,r+1
...

...
...

...
...

...
0 0 0 0 1 xjnj

































.

The log likelihood is similar to (2.56) but with an additional term for the third
segment, i.e.

ℓ(βj, φ, γj|yj) = ℓ(βj1, φ, γj|yj1, . . . , yjs)

+ ℓ(βj2, φ, γj|yj,s+1, . . . , yjr)

+ ℓ(βj3, φ, γj|yj,r+1, . . . , yjnj
) .

To estimate the change points of model (2.76), the exact method introduced
in Subsection 2.3.2 can be applied.

Combining these models gives to the global model for the entire panel data
set











g(µ1)
g(µ2)

...
g(µn)











=











X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . Xn





















β1

β2
...

βn











. (2.77)

Again, assuming that all observations are mutually independent, the log like-
lihood of this global model is

ℓ(β, φ, γ|y) =
n

∑

j=1

ℓ(βj, φ, γj|yj) .

As in the case of known change points, the terms on the right hand side are
autonomous and each panel can be analyzed separately.
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2.4.2 Common Slope in the Last Segment

For this special model, we again consider panel data with a GLM with continu-
ous change points for each panel. In addition, we assume that the slope param-
eter of the last segment is the same for all panels. The parameter of interest, be-
sides the change points, are the panel specific parameters βj = (βT

j1, β
T
j2, βj30)

T ,
j = 1, . . . , n, and the common slope δ for the last segment of all panels. Then
the model for panel j can be written as

g(µji) =







βj10 + βj11xji aj ≤ xji ≤ γj1

βj20 + βj21xji γj1 < xji ≤ γj2

βj30 + δxji γj2 < xji ≤ bj

(2.78)

with continuity constraints

β10 + β11γj1 = β20 + β21γj1

β20 + β21γj2 = β30 + δγj2 .
(2.79)

First, consider the case where the change points are known. Then, model
(2.75) is extended to











g(µ1)
g(µ2)

...
g(µn)











=











Z1 0 . . . 0 T ∗
1

0 Z2 . . . 0 T ∗
2

...
...

. . .
...

...
0 0 . . . Zn T ∗

n





















β∗
1
...

β∗
n

δ











, (2.80)

with β∗
j = (βT

j1, βj21)
T , T ∗

j = (0, . . . , 0, xj,r+1 − γj2, . . . , xjnj
− γj2)

T and design
matrix for the jth panel given by

Zj =

































1 xj1 0
...

...
...

1 xjs 0
1 γj1 xj,s+1 − γj1
...

...
...

1 γj1 xjr − γj1

1 γj1 γj2 − γj1
...

...
...

1 γj1 γj2 − γj1

































.

In contrast to model (2.75), the design matrix for the entire panel data set
is no longer block diagonal. Moreover, the estimation of δ depends on the
observations of the last segment of all panels. Furthermore, the observations
belonging to the last segment are determined by the location of the right-
most change point. Consequently, the entire panel data has to be analyzed to
estimate the parameter of interest.
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As the log likelihood of panel j is

ℓ(β∗
j , δ, φ|γj, yj) = ℓ (βj1, φ|γj, yj1, . . . , yjs)

+ ℓ
(

β∗
j , φ|γj, yj,s+1, . . . , yjr

)

+ ℓ
(

β∗
j , δ, φ|γj, yj,r+1, . . . , yjn

)

,

the log likelihood of the global model (2.80) is

ℓ(β, δ, φ|γ, y) =

n
∑

j=1

ℓ(β∗
j , δ, φ|γj, yj) .

Due to the common slope δ, the terms on the right hand side are no longer
autonomous. Let Aj = {i|xji > γj2} denote the set of indices of xji which
corresponds to the last segment of the jth panel. Then the parameter score
function with respect to the common slope δ is

∂ℓ(β, δ, φ|γ, y)

∂δ
=

n
∑

j=1

∂ℓ(β∗
j , δ, φ|γj, yj)

∂δ

=

n
∑

j=1

∑

i∈Aj

yji − µji

φV (µji)

∂µji

∂ηji
xji (2.81)

with
ηji = βj30 + δxji , γj2 < xji ≤ xjnj

.

This score (2.81) contains parameters of each panel. Hence, the estimation of
δ depends on several observations of all panels. Thus, the panels can not be
analyzed separately. In contrast, the global model (2.80) has to be analyzed
to estimate the parameters of interest.

Next, consider the case of unknown change points. There are two ways to
estimate these change points. We either apply a grid search over all feasible
combinations of change points or an exact method. For the grid search model,
(2.80) is used. In contrast, for the exact method, the global model for the
panel data set is











g(µ1)
g(µ2)

...
g(µn)











=











X1 0 . . . 0 T1

0 X2 . . . 0 T2
...

...
. . .

...
...

0 0 . . . Xn Tn





















β1
...

βn

δ











, (2.82)
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with Tj = (0, . . . , 0, xj,r+1, . . . , xjnj
)T and design matrix for panel j given by

Xj =

































1 xj1 0 0 0
...

...
...

...
...

1 xjs 0 0 0
0 0 1 xj,s+1 0
...

...
...

...
...

0 0 1 xjr 0
0 0 0 0 1
...

...
...

...
...

0 0 0 0 1

































.

Recall, that the exact method consists of two steps. We first fit a GLM to each
segment separately, calculate the solutions of the change points, and investigate
if these solutions are the ML estimates of the change points. Second, if this
is not the case, the boundaries of each rectangle have to be considered (see
Subsection 2.3.2). In the case of independent observations (Subsection 2.4.1),
this can be done for each panel separately. To emphasize that this is not
possible in the case of a common slope for the last segment, consider the log
likelihood of the jth panel, namely

ℓ(βj, δ, φ, γj|yj) = ℓ(βj1, φ, γj|yj1, . . . , yjs)

+ ℓ(βj2, φ, γj|yj,s+1, . . . , yjr)

+ ℓ(βj30, δ, φ, γj|yj,r+1, . . . , yjnj
) .

The log likelihood for the global model is then given by

ℓ(β, δ, φ, γ|y) =
n

∑

j=1

ℓ(βj, δ, φ, γj|yj) .

Due to the same reasons as in the case of known change points, the terms on
the right hand side are no longer autonomous. Consequently, the entire panel
data has to be analyzed simultaneously.

Regardless of using either a grid search or the exact method, the com-
putational complexity for fitting this global model increases rapidly with the
number of panels and the number of change points within each panel. Thus,
analyzing the entire panel data simultaneously is not feasible in rational time
and an appropriate algorithm has to be developed.

2.4.3 Fitting Procedure

In this section, a new algorithm for fitting such kind of models is introduced. As
mentioned above, applying either a grid search or an exact method to estimate
the unknown change points and the parameters of interest is not feasible in
rational time. This is due to the fact that a common slope for the last segments
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for all panels induces dependency of the estimation of the change points. Thus,
the idea of this new algorithm is to divide the fitting procedure into two steps.
In the first step we estimate the common slope for the last segments. In the
second step, given this estimate of the common slope we estimate the change
points. The advantage of this separation is, that for a given last slope δ, the
design matrix of the model (2.75) and (2.77) respectively, can be divided into
two terms. That is, the linear terms corresponding to the common slope can
be interpreted as an offset in these models. Thus, for given pairs of change
points, model (2.75) can be written as











g(µ1)
g(µ2)

...
g(µn)











=











Z1 0 . . . 0
0 Z2 . . . 0
...

...
. . .

...
0 0 . . . Zn

















β∗
1
...

β∗
n






+ δ











T ∗
1

T ∗
2
...

T ∗
n











, (2.83)

and for unknown change points model (2.77) can be written as











g(µ1)
g(µ2)

...
g(µn)











=











X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . Xn

















β1
...

βn






+ δ











T1

T2
...

Tn











. (2.84)

The consequence is that the remaining design matrices are block diagonal.
Therefore, each panel can be analyzed separately. Regardless which method is
used to estimate the change points and the parameters of interest, the model
for panel j is either

g(µj) = Zjβ
∗
j + δT ∗

j (2.85)

using a grid search, or
g(µj) = Xjβj + δTj (2.86)

using the exact method. Moreover, the model for the jth panel is autonomous
of the remaining j − 1 panels. Thus, the parameter βj of each panel can be
estimated separately.

Therefore, the two tasks of this algorithm are:

1. Estimate a common slope δ for the last (right most) segments for all
panels.

2. Given an estimate of δ, we can estimate a GLM with continuous change
points for each panel separately using (2.85) and (2.86), respectively.

For the first task it is necessary to know which observations belong to the
last segment of each panel. This is determined by the location of the last
change points usually unknown at the beginning of the algorithm. Hence, an
appropriate method has to be developed to obtain a common slope, though no
information about the rightmost change points are available. There are three
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different methods considered here. As usually these methods provides only a
first approximation of the last change points and a common slope, respectively,
these two tasks are iterated.

The first method is to fit a GLM to the entire panel data. This GLM takes
into account panel specific intercepts αj and one common slope δ for the last
segment of each panel. Hence, for the estimation of δ only the observations of
the last segment of each panel should be used. Usually at the beginning of the
algorithm, that is, the first iteration, no information about which observations
belong to the last segment is available. Thus, at the beginning a GLM based
only on the last nj − p observations of each panel is considered. Of course this
is not a satisfactory situation. The idea is to augment these observations step
by step with one additional observation until the right most change point of
each panel is reached. As no information about the right most change point
is available, we used the method of Brown to detect the rightmost continuous
change point for each panel. In contrast to the description of this method in
Subsection 2.1.4, we start the analysis on the right side of the data. That
is, we first consider the last nj − p observations of each panel. Let us denote
the index of the left most observation of the last segment as aj . Then, at the
beginning of this method aj = nj − p and the GLM is stated as
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αn

δ















.

After fitting this model, recursive residuals are calculated for the aj − 1 ob-
servation of each panel. The method of Brown is applied to decide whether a
change point between the (aj − 1)th and ajth observation is detected or not.
If a change point is detected, then for the remaining iterations of this method
the number of observations stays constant for this panel. Denote the index
before a change point is detected as ãj . Then for the remaining iterations
only the observations ãj , . . . , nj are considered. For all panels, with no change
point detected, aj = aj − 1 for the next iteration of this method. Thus these
segments are augmented with the (aj −1)th observation for the next iteration.
This is repeated until a change point is detected for all panels. Consequently,
the indices of observations which belong to the last segments are ãj , . . . , nj,
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j = 1, . . . , n, and we further concentrate on
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.

Fitting this model yields an estimate δ̂ of the common slope for the last seg-
ments. In what follows, this method is denoted as glm method.

Consider the following example to illustrate this glm method in detail.
Panel data with three panels are used. These panels are colored green, ma-
genta, and blue in Figure 2.25. In the first step, a GLM based on the last three
observations of each panel is considered, i.e. aj = nj − 2. These observations
are shown as ×, and the corresponding GLM is plotted as three parallel lines
in Figure 2.25 (a). Next, the recursive residuals for the aj − 1 observations are
calculated in order to decide whether a change point between the (aj − 1)th
and ajth observation is detected or not. We assume that this is the case for the
green model which is illustrated as a vertical red line in Figure 2.25 (b). Thus,
in the remaining iterations only the last three observations of the green model
are used. In contrast, the last segment of the magenta and blue model is aug-
mented with the (aj −1)th observation (see Figure 2.25 (c)). At this iteration,
it is assumed that a change point in the blue model is detected. Consequently,
for the remaining iterations, only the last four observations of the blue model
are used. Finally, the last segment of the magenta model is augmented step
by step with one observation until a change point between the (n3 − 6)th and
(n3 − 5)th observation is detected. Therefore, the last segment consists of the
last three observations of the green model, the last six observations of the ma-
genta model, and the last four observations of the blue model. The result is a
common slope for the last segment of these three models.

The second and third method to estimate a common slope is based on an
individual change point model for each panel. This involves first estimating
a continuous change point model without any restriction for the slope of the
last segment to each panel separately using (2.74) or (2.76). Then, a rather
informal estimate of the common slope is given by an appropriate statistic of
the estimated slopes β̂j31. In this work, the mean and the median of these
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(d)

Figure 2.25: Illustration of the glm method to estimate a common slope for
the last segments.

estimated slopes are considered, i.e.

δ̂ =
1

n

n
∑

j=1

β̂j31 and

δ̂ = median
(

β̂131, . . . , β̂n31

)

.

In the remainder of this section, these two methods are denoted as the mean
and median method, respectively.

Given an estimate δ̂ of the common slope, the second task of the algorithm
can be applied. This involves fitting a GLM with continuous change points
to each panel separately but with the slope in the last segment as a given
quantity δ̂. This can be done by applying either a grid search or the exact
method (see Subsection 2.3.2) on model (2.85) and (2.86), respectively. If δ̂ is
close to the true value we stop. However, these two tasks should be iterated
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until the algorithm has converged. Three different criteria to decide whether
the algorithm is converged or nor converged are described later.

For the second iteration of this algorithm, again the first task is utilized but
now estimates of the last change points exist. These determine which observa-
tions belong to the last segments and the common slope for these last segments
can be easily estimated. The three methods from above are considered. The
first one again uses a GLM with panel specific intercepts but a common slope
for all panels. In contrast to the beginning of the algorithm, estimates of the
last change points are available. Thus, the estimated slope of this special GLM
provides an estimate of δ̂. For the second and third method we fit a GLM with
continuous change points to each panel separately, but with a given last change
point and unrestricted slope for the last segment. The estimate for the com-
mon slope is then an appropriate statistic of the n estimates β̂j31. Given this

new δ̂, the second task is applied.
As we are interested in maximizing the log likelihood, an obvious stopping

rule might be the difference between the values of the maximized log likelihoods
of the fitted model of two consecutive iterations. If this difference is smaller
than a given quantity ξ, the algorithm is said to be converged. The other
two stopping rules are based on the parameter estimates. Thus, the algorithm
can be ruled as converged if either the relative difference between the common
slope of two consecutive iterations, t and t + 1, is less than a given constant ξ,
i.e.

∣

∣

∣

∣

∣

δ̂(t) − δ̂(t+1)

δ̂(t+1)

∣

∣

∣

∣

∣

< ξ

or the maximum of the relative difference of the last change points is less than
a given constant ξ, i.e.

max
j

∣

∣

∣

∣

∣

γ̂
(t)
j2 − γ̂

(t+1)
j2

γ̂
(t+1)
j2

∣

∣

∣

∣

∣

< ξ . (2.87)

Briefly, this new algorithm consists of the following steps.

1. Calculate a starting value δ̂(0) for the common slope of the last segments
using either the glm, mean, or median method.

2. Given an estimate of the common slope δ, fit a GLM with continuous
change points and fixed slope for the last segment for each panel sepa-
rately.

3. Given the estimated last change point of each panel from step 2, estimate
the common slope δ̂ again using either the glm, mean, or median method.

4. Given δ̂ form step 3, fit a GLM with continuous change points and fixed
slope for the last segment for each panel separately.

5. If the algorithm has converged then stop, otherwise, repeat from step 3
above.
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We investigate the performance of this new algorithm in the following MC
Simulation.

2.4.4 Simulation Study

The following MC simulation is performed to answer two questions about the
performance of this new algorithm.

• Does this new algorithm provide appropriate estimates of the change
points as well as the common slope of the rightmost segments?

• Which method for estimating the common slope in the first task should
be preferred, i.e. the glm, mean, or median method?

The considered panel data consists of three different panels with a common
slope δ = −0.1 for the last segment of all three panels. For each panel, a GLM
with one continuous change point is considered. The response variable of all
six segments follows a Poisson distribution with the canonical link function,
g(µ) = log(µ), for its mean µ. Furthermore, the parameters of the left segments
are different as well as the domain of the explanatory variable. Moreover, the
location of the continuous change points are different for each panel as well.

To account for such a setup let the explanatory variable of the first model
xi = i/2, i = 0, . . . , 40, with change point γ1 = 7.75, i.e.

g(µi) =

{

6.55 − 0.3xi 0 ≤ xi ≤ 7.75
5 − 0.1xi 7.75 < xi ≤ 20 .

The explanatory variable of the second model is xi = 2i/5, i = 0, . . . , 30, with
change point γ2 = 8.2 such that

g(µi) =

{

6.23 − 0.25xi 0 ≤ xi ≤ 8.2
5 − 0.1xi 8.2 < xi ≤ 12 .

Finally, for the third model the explanatory variable is xi = i/2, i = 0, . . . , 44,
with change point γ3 = 5.75,

g(µi) =

{

6.4375 − 0.35xi 0 ≤ xi ≤ 5.75
5 − 0.1xi 5.75 < xi ≤ 22 .

Here, without loss of generality, the intercept of the last segment is the same
for all panels.

For the following MC simulation, 1000 panel data sets were generated and
the new algorithm was applied to all these replications to estimate the common
slope of the last segments and the continuous change points of all three panels.
To compare the performance of the three different methods, glm, mean, or
median, of course the same 1000 replications were used. As stopping rule, the
difference of the maximized log likelihood of two consecutive iterations with
ξ = 10−5 is used.
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The main result of this MC simulation is that this new algorithm worked
well. The common slope as well as the continuous change point, both were
estimated with negligible biases. The performance of all three methods are
nearly the same, whereas the mean method yields the smallest bias and the
estimates based on the glm have the smallest variance.

In particular, all three methods estimate the common slope δ with a neg-
ligible bias and small standard deviation (Table 2.3). Frequency histogram of
the 1000 δ̂ estimates are plotted in Figure 2.26, where the smallest variability
of these estimates can be observed for the glm method and the largest one for
the mean method.

parameter method mean median std.dev. true.value

δ̂ mean −0.101 −0.100 0.009 -0.10

δ̂ median −0.100 −0.100 0.006 -0.10

δ̂ glm −0.100 −0.100 0.005 -0.10
γ̂1 mean 7.749 7.757 0.363 7.75
γ̂1 median 7.731 7.734 0.319 7.75
γ̂1 glm 7.726 7.730 0.293 7.75
γ̂2 mean 8.200 8.186 0.445 8.20
γ̂2 median 8.217 8.193 0.435 8.20
γ̂2 glm 8.220 8.192 0.429 8.20
γ̂3 mean 5.741 5.711 0.329 5.75
γ̂3 median 5.723 5.703 0.273 5.75
γ̂3 glm 5.710 5.710 0.250 5.75

Table 2.3: Comparison of the mean, median and standard deviation of the
last slope estimates and last change point estimates, with respect to the three
different methods.

Comparing the estimates of the change points, γ̂1, γ̂2, γ̂3 establish that the
mean method yields the smallest bias, whereas the largest bias can be observed
when applying the glm method (Table 2.3). In contrast, for the variance of the
estimates it is the other way around. The smallest variance of the estimates
is obtained through the glm method, and the largest variance is observed for
the mean method. The frequency histograms of the change point estimates
with respect to the three different methods are plotted in Figure 2.27 for the
first panel, in Figure 2.28 for the second panel, and in Figure 2.29 for the third
panel.

Furthermore, we compare the number of iterations until the algorithm con-
verged. The glm method converges very quickly and needs, at most, seven
iterations, where in more than 55% the algorithm converges after four itera-
tion (Figure 2.30). The mean method and the median method needs up to 25
and 28 iterations until convergence, respectively. To compare these two meth-
ods, it seems that the mean performs slightly better than the median method.
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Figure 2.26: Comparison of the MC frequencies of the common last slope
estimates with respect to the three different methods.
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Figure 2.27: Comparison of the MC frequencies of the change point estimates
of the first model, with respect to the three different methods.
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Figure 2.28: Comparison of the MC frequencies of the change point estimates
of the second model, with respect to the three different methods.
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Figure 2.29: Comparison of the MC frequencies of the change point estimates
of the third model, with respect to the three different methods.
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The cost for this speed of convergence of the glm method is the larger bias
compared with the other two methods.
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Figure 2.30: Frequencies of the number of iterations until the algorithm con-
verged, with respect to the three considered methods.

Summing up these results, this new method can be applied to estimate
the parameters of such kind of models for panel data. In the case where the
accuracy of the estimates is important, the mean method should be preferred
to the other ones. For large data sets and when computational time plays an
important role the glm method should be used.

Example 2.6 Panel data Set
We use one of the simulated data generated in the MC simulation before. This
panel data is plotted in Figure 2.31 where the first and third panel is shifted
on the x-axis such that the true change points of all panels are the same, i.e.
x = 8.2.

To fit such a model to panel data, the function ccpComSlope is used. The
call of this function is very similar to the call of the well known glm func-
tion. The first argument is a formula describing the relationship between the
response and the explanatory variable. The arguments data and family have
the same meaning as those in the function glm. In addition, there are some
more arguments, i.e. iPanel gives the index of the column which determines
the panel, comSlopeMethod determines which method should be used to esti-
mate the common slope, and nOfCp fixes the number of change points for the
model in each panel. There are some more arguments, mainly to control the
algorithm. These are described in detail in the help of the package CpInGLM

(see Appendix B).
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Figure 2.31: Simulated panel data, where the explanatory variables of each
panel are centered at x = 8.2, the change point of the second panel.

The data set has to be loaded into the workspace. As this data set is al-
ready included in the package CpInGLM, this can be done using the function
data. Next, the function ccpComSlope is applied to this panel data set where
the median method is used to estimate the common slope for the last segment,
i.e. comSlopeMethod=''median''. The output of this function is stored in the
object m1 which is of the new class ccpComSlope. For this class, the generic
functions print and plot exist. The print function gives a short overview
about the fitted model, summarizing the call of the function, the estimated com-
mon slope and last change points of each panel, and indicating if the algorithm
has converged or not.

> data(panel.dat)

>

> m1 <- ccpComSlope(y~x, data=panel.dat, iPanel=3,

+ family=poisson(link=log), nOfCp=1,

+ comSlopeMethod="median", verbose=FALSE)

> m1

Call:

ccpComSlope(formula = y ~ x, data = panel.dat, iPanel = 3,

family = poisson(link = log), nOfCp = 1,

comSlopeMethod = "median", verbose = FALSE)

Common slope for the last segment: -0.1036
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Last change point for each panel at:

7.655 8.000 5.777

Algorithm converged after: 7 iterations

The algorithm converged after the 7th iteration. The evolution of the estimated
common slope, the last change points and the index of the explanatory variable
after which the last change point was detected can be generated using the plot
function and are plotted in Figure 2.32.

> plot(m1)

The estimated common slope is δ̂ = −0.1036, which is very close to the true
value of −0.1. The estimated change points for the three panels are γ̂1 = 7.655,
γ̂2 = 8 and γ̂3 = 5.777. The fitted model for all three panels is plotted in Figure
2.33 and shows clearly, that a common slope for this model is appropriate. To
enable some diagnostic tools for the fitted model of each panel, one element of
m1 is a list of these fitted models, named ccpList. Each element of this list
has class ccp, thus the generic function for this class, mentioned above, can
be applied. For instance, to take a closer look at the model of the first panel,
one can use

> plot(m1$ccpList[[1]])

to obtain some diagnostic plots for the fitted continuous change point model of
the first panel (Figure 2.34).



CHAPTER 2. THEORY 89

1 2 3 4 5 6 7

−
0.

15
−

0.
14

−
0.

13
−

0.
12

−
0.

11

Iteration

Last Slope

1 2 3 4 5 6 7

4
5

6
7

8
9

10

Iteration

la
st

 c
ha

ng
e 

po
in

t

Evolution

1 2 3 4 5 6 7

10
12

14
16

18
20

22

Iteration

In
de

x 
of

 la
st

 c
ha

ng
e 

po
in

t

Evolution

Figure 2.32: Evolution of the estimated last slope, last change points and index
of the last change points.
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Figure 2.33: Fitted model for the panel data set, with a common slope for the
last segment.
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Figure 2.34: Some diagnostic plots for the fitted model of the first panel.



Chapter 3

Application

In this chapter the methods discussed in Chapter 2 to estimate multiple change
points are applied to hydrological data. These hydrological data describes the
discharge of a creek or a river. The main interest is to detect change points in
the hydrograph of the discharge under certain circumstances and to estimate
the parameters of the model of the obtained segments. This is done to get
some important hydrological information about the creek. In particular, the
groundwater storage of the catchment of this creek is one information, which
is an important quantity for water resources management.

3.1 Hydrological Runoff Model

As mentioned above, one way to obtain information about the groundwater
storage of a catchment is to analyze a model of the discharge of the creek
of this catchment. The catchment of a creek is defined as the area of the
landscape, where all rain falling on the area recharges into this creek. The
plot of the discharge is called hydrograph. Usually the discharge is measured
by an automatic gauging station, recording the discharge in m3/sec at its
time t. At modern gauging stations the recording interval is about 5 to 15
minutes. A central interest in the analysis of the discharge is the recession
curve. The recession curve is defined as the discharge after a rainstorm. It
starts at the peak of the hydrograph and ends at the next marked increase of
the hydrograph. Thus, the recession curve decreases between the starting and
end point, provided that there is no marked precipitation in between. In other
words, the recession curve starts at the end of a rainstorm and ends at the
following marked precipitation.

The discharge of a recession curve has three types of sources, the direct
flow, the surface flow, and the base flow (see Figure 3.1). To observe all these
three types of flows, the recession curve has to hold on for several days. The
number of these days depends mainly on the properties of the catchment. The
direct flow and the surface flow are composed by the water falling directly into
the creek or recharging the creek through the hill slope. The base flow is the
outflow of the groundwater storage. Thus when the recharge ceases, the re-

91
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Figure 3.1: Direct, surface and base flow of the theoretical runoff model

cession curve reflects only the base flow. Moreover, it reflects the relationship
between the groundwater storage and the base flow of the catchment, provided
that outer influences like surface storage, groundwater abstraction or evapo-
transpiration are negligible. The time points, when the direct flow and then
the surface flow ends can be recognized at two, more or less marked, changes in
the recession curves. Thus to get information about the groundwater storage
from the knowledge of the base flow, the base flow has to be separated from
the total flow. This separation consists of two tasks. First, the time when
the recharge ceases have to be determined. This is equivalent with determin-
ing the second change in the recession curve. Second, a theoretical model for
the relationship between the groundwater storage and the base flow has to
be supposed. For this relationship several theoretical models were considered
in the last century. A very popular model is the model from Maillet (1905),
which considered a linear relationship. Though it is very old it is still widely
used nowadays. But a number of numerical analyses of flow recession curves
in the last decade reveals a nonlinear relationship between base flow Q and
groundwater storage S for which the equation

S = aQb with 0 < b ≤ 1 and 0 < a (3.1)

was adopted (Wittenberg, 1999). The coefficient a is related to catchment
properties, mainly the area and the shape of the basin, pore volume and trans-
missivity. The exponent b describes the relationship between base flow and
groundwater storage. The relationship is linear for b = 1 and quadratic if
b = 1/2, which are two particular cases with theoretical hydrological back-
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ground. Empirical studies (Wittenberg, 1999) showed that b is around 1/2.
Therefore in this thesis a nonlinear relationship (3.1) with b = 1/2 will be
considered. Moreover, it is assumed that there is no inflow in the hydrological
system. Then the continuity equation of a groundwater reservoir is given by

dS

dt
= −Q. (3.2)

Applying the chain rule, i.e.

dS

dt
=

dS

dQ

dQ

dt
= −Q

and combining this with equation (3.1) yields

abQb−1 dQ

dt
= −Q ,

respectively
dQ

dt
= − 1

abQb−2
,

which can be written as
abQ(b−2)dQ = −dt.

Now the base flow Qt at some time t can be derived by solving this differential
equation as follows. First integrate the terms on both sides,

∫ Qt

Q0

abQ(b−2)dQ = −
∫ t

0

dt ,

where Q0 is the discharge at time t = 0. Solving these two integrals yields

ab

b − 1
Q(b−1)

∣

∣

∣

∣

Qt

Q0

= −t|t0

Q
(b−1)
t − Q

(b−1)
0 = −b − 1

ab
t

Q
(b−1)
t = Q

(b−1)
0 − b − 1

ab
t .

This leads to the recession curve function

Qt =

[

Qb−1
0 +

1 − b

ab
t

]
1

b−1

(3.3)

for the base flow Qt at time t, where Q0 is any initial discharge at time t =
0. In the special case of b = 1/2, i.e. a quadratic relationship between the
groundwater storage and the base flow, (3.3) simplifies to

Qt =
(

Q
− 1

2

0 + a−1t
)

1

2

. (3.4)
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With the function g(u) = ub−1 and a reparametrization α = Qb−1
0 and β =

(1 − b)/ab, (3.3) can be written as

g(Qt) = α + βt. (3.5)

This model is similar to the mean structure used in a GLM. Thus, assuming
that at least the first and second moments of the observed discharge Qt are
known, or that Qt follows a distribution included in the exponential family,
this model can be analyzed within the GLM framework. Therefore, finding
the two time points, where consecutively the direct flow and the surface flow
ends, corresponds to finding two change points in a GLM. Hence, to separate
the base flow from the total flow, the second change point has to be estimated.

In general not only one recession curve is analyzed to obtain some infor-
mation about the groundwater storage, but usually several recession curves
observed at one gauging station are investigated. As it is assumed, that outer
influence to the hydrological system is negligible, it is still present in reality.
Thus the base flow of one recession curve does not exactly reflect the rela-
tionship between the groundwater storage and the base flow. But it varies
depending on some unobserved outer influences. Therefore, all observed reces-
sion curves should be analyzed simultaneously in order to determine a common
function of the base flow. This makes sense, because the properties of the catch-
ment are usually constant over time. Therefore, the parameters a and b in (3.1)
are the same for all recession curves. In contrast, the initial discharge Q0 may
differ, that is the parameter β in (3.5) is the same for all recession curves and
the parameter α may differ for each recession curve. Moreover, the parameters
of the first and second model differ between each recession curve, due to the
fact, that the parameter of these two segments depends on the amount of rain
falling during the rainstorm. Thus the corresponding statistical model is a
model for a panel data set, where each panel corresponds to an observed reces-
sion curve after different rainstorms. Each panel can be described by a GLM
with two continuous change points, but a common slope for the last segment
for all panels. As a consequence, the new algorithm introduced in Section 2.4
is applied to estimate the common slope, which describes the common decrease
of the base flow and hence the relationship between the groundwater storage
and the base flow.

3.2 Data Description

The discharge of the river Sulm at Leibnitz is analyzed in this thesis. The Sulm
is a river in the south of Styria (Austria). The discharge was measured at an
automatic gauging station recording the discharge every 15 minutes. Here,
hourly data are the basis of the investigations. The available time period of
measurements starts at 01/01/1999 00:00 and continues until 01/01/2000 00:00
(Figure 3.2). In this time period several rainstorms have been observed. These
rainstorm are prerequisites for analyzing recession curves. But not all recession
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curves after a rainstorm are suitable for a recession curve analysis. They have
to last for a minimal time period to enable the observation of all three types
of flow. This minimal time period was determined to be at least three days.
For analyzing all suitable recession curves the data has to be separated in the
individual recession curves.
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Figure 3.2: Discharge of Sulm at Leibnitz from 01/01/1999 until 01/01/2000.

3.2.1 Extracting of Recession Curves

To extract suitable recession curves out of the whole data set, several restric-
tions were specified, which describe a recession curve. First, the discharge after
a rainstorm has to exceed a predetermined level of 25 m3/sec. Second, the de-
crease of the discharge has to hold up for more than three days. Third, a short
and small increase of the discharge was accepted. This insignificant increase
may be the result of a measurement error or of a short rainfall and should
be included in the analysis. Finally, the endpoint of the recession curve was
determined at a significant increase of the discharge. An increase was ruled
as significant, if the relative increase was larger than 10% and/or hold up for
more than twelve hours.

These restrictions result in 13 suitable recession curves. The dates of the
start and end points and the duration of each recession curve are listed in
Table 3.1.

To illustrate these restrictions the discharge from 02/06/1999 to 01/07/1999
is considered (Figure 3.3). This figure shows five recession curves from consec-
utive rainstorm. The recession curves after the first and fifth rainstorm satisfy
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number start point end point duration in days
1 29/03/99 09:00 07/04/99 04:00 8.79
2 18/04/99 12:00 23/04/99 10:00 4.92
3 21/05/99 09:00 26/05/99 00:00 4.62
4 04/06/99 22:00 11/06/99 09:00 6.46
5 22/06/99 01:00 30/06/99 20:00 8.79
6 14/07/99 21:00 21/07/99 16:00 6.79
7 23/07/99 08:00 02/08/99 15:00 10.29
8 08/08/99 00:00 12/08/99 22:00 4.92
9 17/08/99 07:00 20/08/99 07:00 3.00
10 21/08/99 02:00 28/08/99 21:00 7.79
11 08/09/99 04:00 18/09/99 20:00 10.67
12 04/10/99 18:00 12/10/99 21:00 8.12
13 10/11/99 09:00 15/11/99 07:00 4.92

Table 3.1: Start- and endpoints and duration of each of the 13 recessions.

the restrictions defined above. The vertical lines represents the starting and
end points of each of the two recession curves. The recession curves after the
second and third rainstorm do not last for at least three days. The recession
curve after the fourth rainstorm does hold up for more than three days, but
there is a significant increase of about more than 10% in between. Therefore,
the discharges after the second, third, and fourth rainstorm were not included
in the analysis.

3.2.2 Data Reduction

The average duration of a recession curve is about seven days, giving almost
170 observations per recession curve. This is a lot of data for a change point
analysis, especially when analyzing several recession curves together. Therefore
it would be useful to reduce the data if possible.

To illustrate the utilized method of data reduction, a closer look at the re-
cession curve five is taken (Figure 3.4). This recession curve starts at 22/06/99
01:00 and ends at 30/06/99 20:00. Thus the duration is 8 days and 19 hours,
which yields n = 211 observations. One way to reduce the amount of data is
to use only every say fourth data point. But this strategy would result in only
a few data at the beginning of the recession curve, where most information
about the curvature of the model is included, and where also the first change
point is probably located. As it can be seen in Figure 3.4, the decrease of the
discharge at the end of the recession curve is very small. So, there is huge
amount of data, which could be reduced without loosing to much information
about the functional form of this part of the data. Accordingly to that, the
data has to be reduced such, that at the beginning of the recession curve nearly
all data are available and at the end only a few data points are used.

Let i be the index of an observation in the entire data set, then the indices
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Figure 3.3: Discharge of the Sulm at Leibnitz from 02/06/1999 until
01/07/1999, showing five recession curves, where only the first and the fifth
recession curve satisfy the restrictions for the subsequent analysis.
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Figure 3.4: Hourly recorded discharge of the fifth recession curve of Sulm at
Leibnitz.
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of the reduced observations are determined by

j(k) =
k

∑

i=1

∣

∣

∣

∣

∣

log

[

(

i

5

)4
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∣
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∣

,

where k is increased by step one (k = 1, 2, . . . ) until j(k) > n. Using this
function to calculate the remaining indices j(k) reduces the data as mentioned
above. At the beginning every data point is taken, but after a few data points
only every second data point is selected, and so on. Thus, the step length
between the selected data points increases. The step length in dependence of
the index for the fifth recession curve is plotted in Figure 3.5. It can be seen
that for the fifth recession curve at the beginning every data point is selected
and at the end only every eighth. Therefore, the number of observations is
reduced to n = 41, which is about 20% of the original size. The reduced data
of the fifth recession curve is plotted in Figure 3.6. The amount of data of all
recession curves were reduced by applying this method.
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Figure 3.5: Step length depending on the index for the fifth recession curve.

3.2.3 Hydrological Assumptions

Several hydrological assumptions have to be made to analyze the recession
curve in the considered way. Because recession curves of one river recorded
at the same gauging station are considered, it is assumed that the hydrogeo-
logical conditions are the same for all curves. This especially means that the
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Figure 3.6: Reduced data of the fifth recession curve of the Sulm.

slope for the base flow for all curves should be the same. In addition, a nonlin-
ear relationship (3.1) between base flow and groundwater storage is assumed.
Moreover, it is assumed that this model also holds for the period where a di-
rect and/or surface flow exists. Thus, the mean model for all segments has the
same structure, i.e.

g(Qt) = α + βt ,

but of course with different parameters for each segment. In addition it is
assumed that for each recession curve all three kinds of flow are observed. In
Figure 3.7 the discharges of all 13 recession curves are plotted. The discharge
at the starting points of each recession curve varies a lot, but after the third
or fourth day the slopes are all very similar. This supports the assumption of
a common slope for the base flow of all curves.

A first investigation of the recession curves indicates that there is a constant
variance of all the observations around their means. Thus, for the remaining
analysis we assume a normal distribution for the responses.

3.2.4 Methods for Recession curve analysis

Five different methods are applied to analyze the data of the 13 recession
curves. For the first two methods, no continuity constraints at the change
points are assumed. The parameters of a GLM with two discontinuous change
points are estimated in each panel separately. This is done by using the HS
algorithm as well as the DP approach. For the third and fourth method addi-
tional continuity constraints at the change points are considered. Thus, a GLM
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Figure 3.7: 13 recessions of Sulm at Leibnitz after various rainfall events.

with two continuous change points is fitted to each panel separately, where a
grid search and the exact method are used to estimate the change points. For
all four methods, the common slope for the last segment is obtained by an
appropriate summary statistic, i.e. the mean and the median. Finally in the
fifth method, all panels are analyzed simultaneously. This is done using the
new algorithm introduced in Section 2.4.

The analyses are done by utilizing the functions dcp, ccp, and ccpComSlop

of the R- package CpInGLM. The results of these analysis are summarized in the
next Section.

3.3 Results

As mentioned above, five different methods were used to analyze the 13 re-
cession curves. For the first four methods each recession curve was analyzed
separately under two different assumptions each with two different algorithms.
The results are of course different estimates for the slope of the last segment.
These estimated slopes are listed in Table 3.2. The means and the medians as
well as the standard deviations of these slopes are also listed in this table. A
comparison of the different algorithms, i.e. HS with DP and grid search with
exact method, indicates, that the differences in the estimated slopes between
HS and DP are negligible. The difference between the grid search and the ex-
act method for continuous change points is larger. This indicates that in most
cases the ML estimates of the change points lies between two observations.
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Moreover, from this table it can be seen that only in a few cases an additional
continuity constraint for the model at the change points leads to different es-
timates for the last slope (recession curves number 2, 7, and 10). This results
in a slightly larger estimate of a common slope, i.e. the mean as well as the
median of these estimated slopes are larger in the case of continuous change
points. The empirical standard deviations of these slopes are nearly the same
for all methods.

discontinuous continuous
recession DP HS grid search exact

1 0.0084 0.0084 0.0086 0.0085
2 0.0154 0.0154 0.0117 0.0114
3 0.0239 0.0239 0.0259 0.0247
4 0.0137 0.0137 0.0138 0.0137
5 0.0134 0.0137 0.0135 0.0134
6 0.0075 0.0075 0.0089 0.0088
7 0.0108 0.0101 0.0123 0.0126
8 0.0096 0.0106 0.0108 0.0080
9 0.0232 0.0232 0.0233 0.0257

10 0.0080 0.0080 0.0157 0.0165
11 0.0084 0.0084 0.0074 0.0074
12 0.0063 0.0074 0.0066 0.0063
13 0.0111 0.0111 0.0127 0.0137

mean 0.0123 0.0124 0.0132 0.0131
median 0.0108 0.0106 0.0123 0.0126
std.dev 0.0057 0.0056 0.0057 0.0061

Table 3.2: Estimated slopes of the third segments using four different methods.

The fifth considered method is a common analysis of the recession curves,
i.e. analyzing the whole panel data set with the assumption of a common slope
for the last segment. This is done utilizing the algorithm described in Section
2.4 by using the median method for estimating the common slope. This esti-
mated common slope of the last segments for all panels is δ̂ = 0.0126, which
equals the median of the estimated slopes using the exact method for esti-
mating continuous change points for each recession curve separately. As the
fitting algorithm is an iterative one, the number of iterations until the algo-
rithm converged as well as the evolution of the estimated common slope and
the estimated last change points are of interest. For this data, the algorithm
was ruled to converge after the fourth iteration, where the stopping rule (2.87),
the maximum of the difference between the change points of two consecutive
iterations, was applied. The evolution of the estimated common slope and the
last change points are plotted in Figure 3.8 and Figure 3.9, respectively.

To illustrate the fact that the difference of the fitted models either analyzing
the whole panel data set or utilize a separate analysis using the exact method
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Figure 3.8: Evolution of the common slope δ̂(t) for all recession curves.
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Figure 3.9: Evolution of the second change points for all recession curves.
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is not that much, the fitted models for the eighth recession curve are compared
(see Figure 3.10). The estimates of the first change point are nearly the same,
whereas the estimates of the second change point differ slightly. Of course
this is due to the fact, that the estimated slopes for the last segments are
different. But overall, such a difference between these two models can be
hardly recognized in the figure.
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Figure 3.10: Comparison between the fitted models of a single analysis of the
eighth recession (red) and an analysis within the panel data set assuming a
common slope for the last segment (black).

Summing up, the new method applied on hydrological data leads to an
appropriate fitted model for each recession curve with a common slope for the
last segment. The advantage of this analysis is, that the number of parame-
ters which have to be estimated reduces by n − 1, where n is the number of
investigated recession curves.
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Generalized Linear Models

The generalized linear model (GLM) is a generalization of an OLM. A com-
prehensive introduction in GLMs is given in McCullagh and Nelder (1989).
First, the distribution of the response y is no longer restricted to the normal
distribution. In GLMs y follows a distribution within the exponential family
with probability density function

f(y|θ, φ) = exp

[

yθ − b(θ)

φ
+ c(y, φ)

]

.

The two unknown parameters are the canonical parameter θ and the dispersion
φ.

Second, a link function g(·) connects the mean E(y) = µ to the linear
predictor η = xTβ. Therefore, the GLM can be written as

g(µ) = η = Xβ ,

where X is again the n×p design matrix and β a p- dimensional column vector
of unknown parameters. The link function can be any monotonic differentiable
function. A special link function is g(·) = θ, the so called canonical link.

Standard results of the exponential family are

E(y) = µ = b′(θ)

and
V ar(y) = a(φ)b′′(θ) = a(φ)V (µ),

where V (·) is called the variance function. Thus, V ar(y) is proportional to
a function in µ. The assumed distribution of y determines the relationship
between the mean and the variance. In particular, V (µ) = 1 for the normal
distribution or V (µ) = µ for Poisson variates.

Consider a sample of independent responses y = (y1, . . . , yn)
T , then the log

likelihood function is given by

ℓ(θ, φ|y) =
n

∑

i=1

log f(yi|θi, φ) =
n

∑

i=1

[

yiθi − b(θi)

φ
+ c(yi, φ)

]

. (A.1)

104



APPENDIX A. GENERALIZED LINEAR MODELS 105

Since β is the parameter of interest, usually the log likelihood is written as

ℓ(β, φ|y) =
n

∑

i=1

log f(yi|β, φ).

To estimate β with the ML method, the score function

∂ℓ(β, φ|y)

∂β
= 0

has to be solved. The chain rule yields to

∂ℓ(β, φ|y)

∂β
=

∂ℓ

∂θ

∂θ

∂µ

∂µ

∂η

∂η

∂β
, (A.2)

where ∂µ/∂η depends on the specification of the link function. Thus

∂ℓ(β, φ|y)

∂β
=

n
∑

i=1

[

yi − µi)

φV (µi)

∂µ

∂η
xi

]

.

This function has no analytical solution, therefore it is solved by applying the
Iterative Weighted Least Square (IWLS) method. This method provides a ML
estimate for β with large sample distribution given by

√
n

(

β − β̂
)

∼ Np

(

0, n
(

XT WX
)−1

)

,

where Np denotes the p-dimensional Normal distribution and W is a diagonal
matrix with diagonal elements wi defined as

1/wi = φV (µi)[g
′(µi)]

2.

Note, that W depends on the dispersion parameter φ, which may be unknown
and thus has to be estimated. For this case we will use the mean Pearson
statistic

φ̂ =
1

n − p

n
∑

i=1

(yi − µ̂i)
2

V (µ̂i)
=

1

n − p
X2 (A.3)

as estimate of φ
A common goodness-of-fit statistic is the deviance

D(y, µ̂, φ) = 2φ{ℓ(y, φ|y)− ℓ(µ̂, φ|y)},

where ℓ(y, φ|y) is the log likelihood function of the saturated model. In this
case the fitted data are represented by the observed data, i.e. µ̂i = yi. There-
fore, for given responses y and dispersion φ, ℓ(y, φ|y) is constant and the
maximization of ℓ(µ̂, φ|y) implies a minimization of the deviance. For a nor-
mal model the deviance is

D(y, µ̂, φ) = (y − µ̂)T (y − µ̂)



APPENDIX A. GENERALIZED LINEAR MODELS 106

and thus equals the residual sum of squares and follows a χ2-distribution. One
property of the deviance is additivity for nested models. Therefore, it can
be used similar to the analysis of variance table for nested models. As for
nested models the deviance is −2 times the log likelihood ratio test statistic,
it follows asymptotically a χ2-distribution with q degrees of freedom, where q
is the difference in the number of parameters between these two models.

Common residuals in GLMs are the standardized Pearson residuals

rPi =
yi − µ̂i

√

φV (µ̂i)
√

1 − hi

,

where hi is the ith diagonal element of the generalized hat matrix

H = W 1/2X(XT WX)−1XT W 1/2.

A well known property of rPi is that they inherit the skewness of the response
variable. Thus, for a skewed distribution a normal approximation for the rPi

is insufficient. Another type of residuals is based on the contribution of each
observation to the deviance. This contribution di is given by

di = 2(ℓ(yi, φ|yi) − ℓ(µ̂i, φ|yi))

and yields the definition of the standardized deviance residuals

rDi =
sign(yi − µ̂i)

√

|di|√
1 − hi

.

These standardized deviance residuals are closer to the standard normal distri-
bution than the standardized Pearson residuals (Davison & Snell, 1991). For
a more detailed discussion of GLMs see McCullagh and Nelder (1989).
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Help R-Package CpInGLM

Package ‘CpInGLM’
January 2007

Version 0.9-28

Date 2007-01-04

Title Change Point Detection in GLMs

Author Johannes Hofrichter

Maintainer Johannes Hofrichter <johannes.hofrichter@joanneum.at>

Description Fitting GLMs with one or multiple change points. These
change points can be continuous or discontinuous change points. In the
case of continuous change points only one explanatory variable is
allowed.

Depends boot, akima, R (>= 2.3.1)

License GPL

R topics documented:

CpInGLM.internal Internal CpInGLM objects

Description

These are not to be called by the user.
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HSvsDP Artificial Data with three Discontinuous Change
Points

Description

Artificial data based on a simple linear regression with three discontinuous
change points

Usage

data(HSvsDP)

Format

The data was generated based on a simple linear regression with three
discontinuous change points. The explanatory variable x is given by xi =
i/10, with i = 1, . . . , 60. The change points are located at the indices
τ1 = 15, τ2 = 30 and τ3 = 45. Then, the linear model is given by

yi = xi + ǫi 0 < i ≤ 15

yi = 5 + xi + ǫi 15 < i ≤ 30

yi = 18 − 0.8xi + ǫi 30 < i ≤ 45

yi = 1 + 2xi + ǫi 45 < i ≤ 60,

with ǫi ∼ N(0, 1).

HSvsDP is a matrix of dimension (60 x 2):

[,1] y numeric response
[,2] x numeric explanatory variable

ccp Continuous Change Points in GLMs

Description

ccp is used to estimate multiple change points in GLMs, where a continuity
constraint at the change points is assumed.
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Usage

## Default S3 method:

ccp(object, ...)

## S3 method for class 'glm':

ccp(object, nOfCp, dps, method=c("grid","exact"),

nameCp, lastCp, lastSlope, gr, ...)

Arguments

object an object of class "glm", usually the result of a call to glm

nOfCp integer, specifying the number of change points

dps integer, specifying the minimum number of observations in
each segment

method method for estimating the change points (see detail)

nameCp character: column name of the explanatory variable which
describes the change point

lastCp an optional vector (or single value), determining all possible
x-values of the rightmost change point

lastSlope an optional value, determining the value of a fixed slope for
the rightmost segment

gr definition of the grid for the grid search, if method =”grid”

... further arguments passed to or from other methods.

Details

ccp is used to estimate continuous change point in GLMs. The considered
GLM with k − 1 change points is given by

g(µi) = β10 + β11xi, a ≤ xi ≤ γ1

g(µi) = β20 + β21xi, γ1 ≤ xi ≤ γ2

...

g(µi) = βk0 + βk1xi, γk−1 ≤ xi ≤ b,

Here it is assumed, that the link function g(·) and the variance function V (·)
is the same for all segments. Moreover, it is assumed that the dispersion
parameter φ is constant for all observations. To ensure continuity of g(·)
at γi, the continuity constraint

βr0 + βr1γr = βs0 + βs1γr,

at each change point is assumed, where s = r + 1.
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The estimation of the change points is either done by an ordinary grid
search (method="grid"), or by an exact method (method="exact"). In
the case of a grid search and missing argument gr, the grid is determined
by the observed values of the explanatory variable.

The optional argument lastCp can be a vector or a single value of a guess
of the last (rightmost) change point. In that case, the estimated rightmost
change point is restricted to an element of lastCp.

The optional argument lastSlope can be used to fix the slope of the last
(rightmost) segment to a certain value.

Value

ccp returns an object of class "ccp". The general generic accessor functions
coefficients, fitted.values, residuals, and logLik can be used to
extract various useful features of the value returned by ccp.

An object of class "ccp" is a list containing at least the following compo-
nents:

coefficients

a named vector of coefficients

residuals the working residuals, that is the residuals in the final iter-
ation of the IWLS fit of each segment.

fitted.values

the fitted mean values, obtained by transforming the linear
predictors by the inverse of the link function.

weights the working weights, that is the weights in the final iteration
of the IWLS fit.

change.points

values of the estimated continuous change points

CpIndex indices of the explanatory variable after which the estimated
continuous change points are detected.

logLikelihood

maximized log likelihood

deviance the deviance of the fitted model, see glm

null.deviance

the deviance of the null model, which corresponds to a GLM
with an intercept but without any change point.

aic Akaike’s Information Criterion, minus twice the maximized
log-likelihood plus twice the number of the estimated pa-
rameters (coefficients and change points).

bic Bayesian Information Criterion, minus twice the maximized
log-likelihood plus the number of the estimated parameters
(coefficients and change points) times the logarithm of the
number of observations.
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df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

y vector of the response variable.

orgDesign design matrix of the original GLM

possibleCp matrix of all possible combination of change points

pLL Profile log-likelihood for possibleCp

family the family object used.

model the model frame used.

na.action the na.action initially supplied.

prior.weights

the case weights initially supplied.

call the matched call.

Note

It is assumed that there is only one explanatory variable and this variable
is given in ascending order!!

Author(s)

Johannes Hofrichter

See Also

For a change point model with a discontinuous change at the change point
see dcp

Examples

data(exmpl1)

plot(exmpl1$x,exmpl1$y)

m1 <- glm(y~x, data=exmpl1, family=poisson(link=log))

m1.ccp <- ccp(m1,nOfCp=2, dps=5)

summary(m1.ccp)

# plot(m1.ccp)

plot(m1.ccp, which=1)

lines(exmpl1$x, fitted(m1), col=2)
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ccpComSlope Change Point Model for Panel Data

Description

ccpComSlope is used to fit a change point model for panel data with a
common slope for the last (rightmost) segment in all panels.

Usage

ccpComSlope(formula, data, iPanel,

family=gaussian(link=identity),

nOfCp=2, dps=5,

comSlopeMethod = c("mean", "median", "glm"),

control = ccpComSlope.control(...),

verbose=FALSE, ...)

Arguments

formula a symbolic description of the model to be fit. (See glm for
details of formula specifications.)

data a data.frame of the panel data

iPanel integer, specifying the column of the factor determining the
panels

family a description of the error distribution and link function to
be used in the model. (See family for details of family
functions.)

nOfCp integer, specifying the number of change points

dps integer, specifying the minimum number of observations in
each segment

comSlopeMethod

method for calculating the common slope for the last seg-
ment

control list of control properties of the algorithm

verbose an optional logical value. If TRUE information on the evolu-
tion of the iterative algorithm is printed. Default is FALSE.

... further arguments passed to or from other methods.
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Details

ccpComSlope is used to fit a change point model for panel data sets, as-
suming that the slope of the model in the last segment is the same for
all panels. The fitting procedure is a iterative algorithm, which consists
of two steps. The first step is to estimate the common slope for the last
segment given the rightmost change point of each panel. The second step
is to estimate the change points given the new coefficient of the slope of
the last segment from the first step. These two steps are iterated until the
maximum number of iterations are reached or the algorithm is ruled to ber
converged (see ccpComSlope.control).

Value

ccpComSlope returns an object of class "ccpComSlope".

An object of class "ccpComSlope" is a list containing at least the following
components:

lastSlope the vector of the evolution of the common last slope esti-
mate.

lastCp the vector or matrix of the evolution of the estimates of the
last change points.

lastCpIndex the vector or matrix of the evolution of the indices after
which the the last change point is detected.

mll the vector of the evolution of the maximized log likelihood.

model the model frame used.

iterations the number of iterations

converged logical. Was the algorithm judged to have converged.

call the matched call

ccpList a list of the estimated continuous change point model for
each panel. Each element has class "ccp".

Author(s)

Johannes Hofrichter

See Also

For a continuous change point model for one data set see ccp.
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Examples

data(panel.dat) #included in CpInGLM

contr <- ccpComSlope.control(epsilon = 1e-02, maxit = 40,

method = "MLL")

m1 <- ccpComSlope(y~x, data=panel.dat,

iPanel=3, family=poisson(link=log), nOfCp=1,

comSlopeMethod="mean", control=contr)

m1

# plot of the evolution of the common slope and

# the indices of the change points

plot(m1)

# summary and plot of the continuous change point model

# of the first panel

m1$ccpList[[1]]

plot(m1$ccpList[[1]])

ccpComSlope.control

Control the Iterations in ccpComSlope

Description

Various parameters to control aspects of the ccpComSlope fit.

Usage

ccpComSlope.control(epsilon = 1e-05, maxit = 40,

method = c("MLL", "slope", "cp"))

Arguments

epsilon A positive numeric value specifying the tolerance of the con-
vergence criterion.

maxit A positive integer specifying the maximum number of iter-
ations allowed.

method Method that determines which convergence criterion is used.
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Details

method="MLL" The algorithm is ruled to be converged, if the difference between
the maximized log likelihood of two consecutive iterations is smaller than
epsilon.

method="slope" The algorithm is ruled to be converged, if the relative difference
between the estimate of the common slope of two consecutive iterations is
smaller than epsilon.

method="cp" The algorithm is ruled to be converged, if the maximum of the
relative differences between the estimates of the last change points of two
consecutive iterations is smaller than epsilon.

Value

A list with exactly three components: epsilon, maxit, and method with
meanings as explained under Arguments.

Author(s)

Johannes Hofrichter

See Also

ccpComSlope

dcp Discontinuous Change Points in GLMs

Description

dcp is used to estimate multiple discontinuous change points in GLMs.

Usage

## Default S3 method:

dcp(object, ...)

## S3 method for class 'glm':

dcp(object, nOfCp=NULL, dps=NULL, method=c("dp","hs"), ...)
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Arguments

object an object of class "glm", usually the result of a call to glm.

nOfCp integer, specifying the number of change points

dps integer, specifying the minimum number of observations in
each segment

method string, specifying the method for change point estimation,
see below

... further arguments passed to or from other methods.

Details

dcp is used to estimate discontinuous change points in GLMs. The consid-
ered GLM with k − 1 change points is given by

g(µi) = xiβ1, 0 < i ≤ τ1

g(µi) = xiβ2, τ1 < i ≤ τ2

...

g(µi) = xiβk, τk−1 < i ≤ n

It is assumed, that the link function g(·) and the variance function V (·) is
the same for all segments. In contrast, the dispersion parameter changes at
the change points, as well. As there are not any constraints at the change
points, the GLMs across the segments are autonomous and therefore the
parameters can be estimated separately. Thus, once the change points are
determined the model of each segment can be estimates with the usual
IWLS algorithm. There are two different methods implemented for esti-
mating the change points, the hierarchic binary splitting and a dynamic
programming algorithm. The method used in dcp can be selected via the
argument method.

The hierarchic binary splitting algorithm is chosen by method="hs" and
splits the model in the same way as regression trees do. It is fast, but can
lead to a suboptimal solution. For details see dcpBinarySplit.

The dynamic programming algorithm is chosen by method="dp". The com-
putational complexity is greater than that one of the hierarchic binary split-
ting, but leads to an optimal solution. For details see dcpDynamicProg

Value

dcp returns an object of class "dcp". The general generic accessor functions
coefficients, fitted.values, residuals, and logLik can be used to
extract various useful features of the value returned by dcp.

An object of class "dcp" is a list containing at least the following compo-
nents:
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coefficients

a named vector of coefficients

residuals the working residuals, that is the residuals in the final iter-
ation of the IWLS fit of each segment.

fitted.values

the fitted mean values, obtained by transforming the linear
predictors by the inverse of the link function.

change.points

values of the estimated discontinuous change points

CpIndex indices of the observations after which the discontinuous
change points are detected.

logLikelihood

maximized log likelihood

y vector of the response variable.

deviance the deviance of the fitted model, see glm

null.deviance

the deviance of the null model, which corresponds to a GLM
with an intercept but without any change point.

aic Akaike’s Information Criterion, minus twice the maximized
log-likelihood plus twice the number of the estimated pa-
rameters (coefficients and change points).

bic Bayesian Information Criterion, minus twice the maximized
log-likelihood plus the number of the estimated parameters
(coefficients and change points) times the logarithm of the
number of observations.

df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

family the family object used.

model the model frame used.

na.action the na.action initially supplied.
prior.weights

the case weights initially supplied.

call the matched call.

method the name of the method used for detecting the change points.

Author(s)

Johannes Hofrichter

See Also

For a change point model with a continuous change see ccp.



dcpBinarySplit 118

Examples

data(HSvsDP)

plot(HSvsDP$x,HSvsDP$y)

m1 <- glm(y~x, data=HSvsDP)

# via dynamic programming algorithm

m1.dcp1 <- dcp(m1, nOfCp=3, dps=5)

plot(m1.dcp1)

# via hierarchic splitting

m1.dcp2 <- dcp(m1, nOfCp=3, dps=5, method="hs")

plot(m1.dcp2)

dcpBinarySplit Discontinuous Change Points via Hierarchic Split-
ting

Description

Estimation of a discontinuous change points in GLMs via a hierarchic bi-
nary splitting algorithm

Usage

dcpBinarySplit(x, nOfCp, dps)

Arguments

x an object of class "glm", usually the result of a call to glm.

nOfCp integer, specifying the number of change points

dps integer, specifying the minimum number of observations in
each segment

Details

dcpBinarySplit splits the data in a hierarchical way. The first step is to
split the data into two segments. These two segments are partitioned by
that change point which maximizes the sum of the log likelihood of both
segments. The second step is to find a potential change point in each of
these two segments. From these new potential change points, choose that
one which increases the sum of the log likelihood of all three segments the
most. Thus, one step of the HS algorithm consists of two tasks,
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1. find a potential change point in each segment,

2. given these potential change points in each segment, choose that one which
increases the log likelihood the most.

This procedure is repeated until the final number of change points, given
by the argument nOfCp, is achieved. For more details see Hawkins (2001).

Note that the change points of a model with r change points is always a
subset of the change points of a model with s > r change points.

Value

Returns the indices of the estimated change points

Author(s)

Johannes Hofrichter

References

Hawkins D.M. (2001), Fitting multiple change-point models to data, Com-
putational Statistics & Data Analysis, 37, 323–341.

See Also

For estimating discontinuous change point models based on GLMs use dcp.
A second method for estimating discontinuous change points is dcpDynamicProg,
which yields to an optimal solution, but with greater computational com-
plexity.

Examples

data(HSvsDP)

plot(HSvsDP$x,HSvsDP$y)

m1 <- glm(y~x, data=HSvsDP)

# assuming at least 5 observations in each segments

cp1 <- dcpBinarySplit(m1, nOfCp=3, dps=5)
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dcpDynamicProg Discontinuous Change Points via Dynamic Pro-
gramming

Description

dcpDynamicProg is used to estimate discontinuous change points in GLMs
via a dynamic programming algorithm

Usage

dcpDynamicProg(x, nOfCp, dps)

Arguments

x an object of class "glm", usually the result of a call to glm.

nOfCp integer, specifying the number of change points

dps integer, specifying the minimum number of observations in
each segment

Details

dcpDynamicProg is used to estimate discontinuous change point in GLMs.
The algorithm is based on Bellman’s principal of optimality. Consider a
GLM and a data set of size n with k − 1 change points (k segments).
Then knowing the rightmost change point, the problem can be reduced to
split the remaining data on the left hand side of this change point into
k − 1 segments. This is repeated until all k segments are obtained. For
more details see Hawkins (2001). This algorithm is based on the values
of the maximized log likelihood of the models of all possible connected
subsets. Thus the computational complexity is greater, than that one of the
hierarchic binary splitting, but the algorithm leads to an optimal solution.

Value

Returns the indices of the estimated change points

Author(s)

Johannes Hofrichter

References

Hawkins D.M. (2001), Fitting multiple change-point models to data, Com-
putational Statistics & Data Analysis, 37, 323–341.
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See Also

For estimating discontinuous change point models based on GLMs use dcp.
A second method for estimating discontinuous change points in GLMs is
dcpBinarySplit, which is faster, but may lead only to a suboptimal solu-
tion.

Examples

data(HSvsDP)

plot(HSvsDP$x,HSvsDP$y)

m1 <- glm(y~x, data=HSvsDP)

cp1 <- dcpDynamicProg(m1, nOfCp=3, dps=3)

# assuming at least 10 observations in each segments

cp2 <- dcpDynamicProg(m1, nOfCp=3, dps=10)

exmpl1 Artificial Data with two Continuous Change Points

Description

Artificial data based on a GLM with two continuous change points

Usage

data(exmpl1)

Format

This data is based on a GLM with one continuous change point. The ex-
planatory variable x is given by xi = 1/50, i = 1, . . . , 50. The response
variable follows a Poisson distribution and the mean value satisfies a GLM
with two continuous change points at xi = 0.36 and xi = 0.7. The consid-
ered model is given by

g(µi) = 2 + 1xi 0 ≤ xi ≤ 0.36

g(µi) = 0.92 + 4xi 0.36 < xi ≤ 0.7

g(µi) = 2.67 + 1.5xi 0.7 < xi ≤ 1

with canonical link function g(µ) = log(µ) for all segments. Based on this
model 50 Poisson distributed variates yi were generated.

exmpl1 is a matrix of dimension (50 x 2):
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[,1] y numeric response
[,2] x numeric explanatory variable

exmpl2 Artificial Data with one Continuous Change Point

Description

Artificial data based on a GLM with one continuous change point

Usage

data(exmpl2)

Format

This data is based on a GLM with one continuous change point. The
explanatory variable x is given by xi = 1/4, i = 1, . . . , 40. The response
variable follows a Poisson distribution and the mean value satisfies a GLM
with one continuous change point at xi = 5. The considered model is given
by

g(µi) = 2 + 0.2xi 0 ≤ xi ≤ 5

g(µi) = 0.5 + 0.5xi 5 < xi ≤ 10

with canonical link function g(µ) = log(µ). Based on this model 40 Poisson
distributed variates yi were generated.

exmpl2 is a matrix of dimension (40 x 2):

[,1] y numeric response
[,2] x numeric explanatory variable

panel.dat Panel data

Description

Panel data with three panels. For each panel a GLM with one continuous
change point is assumed, where the slope of the rightmost segment is the
same for all panels.



plot.ccpComSlope 123

Usage

data(panel.dat)

Format

panel.dat is a data.frame with 117 observations of three variables

[,2] y numeric response
[,3] x numeric explanatory variable
[,1] panel factor number of the panel

plot.ccpComSlope Plot a ccpComSlope object

Description

Several usefull plots for an object of class ccpComSlope

Usage

plot.ccpComSlope(x, which = 1:3,

caption = c("Last Slope", "Evolution", "Evolution"),

ask = prod(par("mfcol")) < length(which) && dev.interactive(),

...)

Arguments

x an object of class "ccpComSlope", usually the result of a
call to ccpComSlope.

which If a subset of the plots is required, specify a subset of the
numbers 1:3

caption Captions to appear above the plots

ask logical; if TRUE, the user is asked before each plot, see
par(ask=).

... other parameters to be passed through to plotting functions.

Details

The first plot illustrates the evolution of the estimated common slope.

The second plot illustrates the evolution of the estimates of the last change
points.

The third plot illustrates the evolution of the indices after which the of the
last change points are detected.



plot.ccp 124

Author(s)

Johannes Hofrichter

See Also

ccpComSlope

Examples

data(panel.dat)

m1 <- ccpComSlope(y~x, data=panel.dat, iPanel=3,

family=poisson(link=log), nOfCp=1,

comSlopeMethod="mean")

# evolution of the estimate of the common slope

plot(m1, which=1)

# evolution of the estimates of the last change points

plot(m1, which=2)

# evolution of the indices

plot(m1, which=3)

plot.ccp Plot a ccp Object

Description

Several usefull plots for an object of class ccp

Usage

plot.ccp(x, which=1:4,

caption=c("Fitted Model","Normal Plot of Residuals",

"Residuals vs Fitted"),

ask = prod(par("mfcol")) < length(which) && dev.interactive(),

...)

Arguments

x an object of class "ccp", usually the result of a call to ccp.

which If a subset of the plots is required, specify a subset of the
numbers 1:4



plot.ccp 125

caption captions to appear above the plots

ask logical; if TRUE, the user is asked before each plot, see
par(ask=).

... other parameters to be passed through to plotting functions.

Details

The first plot illustrates the data and the fitted model. Additional the
location of the change points are plotted.

The second plot illustrates a normal plot of the deviance residuals.

The third plot illustrates the deviance residuals vs the fitted values.

The fourth plot illustrates the profile log-likelihood with respect to the
change points. If the number of change points is one, than the profile log-
likelihood is plotted as a single line. If the number of change points is two,
than the profile log-likelihood is plotted as a contour plot. At a number of
change points greater than two, the third plot will be neglected.

Author(s)

Johannes Hofrichter

See Also

ccp

Examples

data(exmpl1)

plot(exmpl1$x,exmpl1$y)

m1 <- glm(y~x, data=exmpl1, family=poisson(link=log))

m1.ccp <- ccp(m1,nOfCp=2, dps=5)

#plot(m1.ccp)

plot(m1.ccp, which=1)

lines(exmpl1$x, fitted(m1), col=2)
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plot.dcp Plot a dcp Object

Description

Several usefull plots for an object of class dcp

Usage

plot.dcp(x, which=1:3,

caption=c("Fitted Model", "Normal Plot of Residuals",

"Residuals vs Fitted"),

ask = prod(par("mfcol")) < length(which) && dev.interactive(),

...)

Arguments

x an object of class "dcp", usually the result of a call to dcp.

which If a subset of the plots is required, specify a subset of the
numbers 1:3

caption captions to appear above the plots

ask logical; if TRUE, the user is asked before each plot, see
par(ask=).

... other parameters to be passed through to plotting functions.

Details

The first plot illustrates the data and the fitted model and the location of
the change points are plotted. In the case of more than one explanatory
variable this plot is neglected.

The second plot illustrates a normal plot of the deviance residuals.

The third plot illustrates the deviance residuals vs the fitted values.

Author(s)

Johannes Hofrichter

See Also

dcp
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Examples

data(HSvsDP)

m1 <- glm(y~x, data=HSvsDP)

m1.dcp <- dcp(m1, nOfCp=3, dps=5)

# plot of the fitted model

plot.dcp(m1.dcp, which = 1)

# Normal Q-Q plot of the deviance residuals

plot.dcp(m1.dcp, which = 2)

# plot of the deviance residuals vs fitted values

plot.dcp(m1.dcp, which = 3)

quandt Quandt’s Data

Description

Quandt’s Data:

Usage

data(quandt)

Format

This data was first introduced by Quandt (1959). A simple linear regression
model with one discontinuous change point is considered. The artificial
data was generated in the following way. For the explanatory variable x,
a single independent variable was generated by a random permutation of
the first 20 integers. The errors εi were generated as 20 iid normal variates
with zero mean and variance equal to one. These errors were added to a
mean model that changed after the first 12 observations, giving

yi = 2.5 + 0.7xi + εi i = 1, . . . , 12

yi = 5.0 + 0.5xi + εi i = 13, . . . , 20 .

quandt is a matrix with two columns:

[,1] x numeric explanatory variable
[,2] y numeric response
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Source

Quandt, (1958)

References

Quandt R. E. (1958), The estimation of the Parameters of a Linear Re-
gression system Obeying Two Separate Regimes. JASA, 53, 873–880

recres Recursive Residuals for GLMs

Description

recres is used to calculate standardized recursive residuals for GLMs.

Usage

## Default S3 method:

recres(object, ...)

## S3 method for class 'glm':

recres(object, method=c("response","delta", "deletion"),

forward=TRUE, ...)

Arguments

object an object of class "glm", usually the result of a call to glm

method string, specifying the method for calculating recursive resid-
uals, for more information see Details

forward logical, if TRUE, the recursive residuals are based on the
fitted model on the left hand side, for more information see
Details.

... further arguments passed to or from other methods.

Details

recres is used to calculate standardized recursive residuals for GLMs.

The argument forward specifies the direction for calculating the recursive
residuals. If forward=TRUE, then the first r − 1 observations are used the
fit the model and based on this model the recursive residual for the r th
observation is derived. In the case of forward=FALSE its the other way
around.
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The argument method specifies the method for calculating the standard-
ized recursive residuals. If method="delta", then the variance of the
recursive residuals is calculated with the Delta Method. In the case of
method="deletion", the standardized recursive residuals are based on the
one step approximation of the deletion residuals (Pregibon, 1979).

Value

recres returns a vector of standardized recursive residuals.

Author(s)

Johannes Hofrichter

References

Pregibon D. (1979), Data Analytic Methods for Generalized Linear Models,
Unpublished Ph.D Thesis: Univ. of Toronto.

See Also

residuals

residuals.ccp Residuals for Continuous Change Point Model

Description

Residuals for Continuous Change Point Model

Usage

## S3 method for class 'ccp':

residuals(object,

type = c("deviance", "pearson", "working", "response"),

...)

Arguments

object an object of class "ccp, usually the result of a call to ccp.

type the type of residuals which should be returned. The alter-
natives are: "deviance" (default), "pearson", "working"
and "response"

... further arguments passed to or from other methods.
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Details

The references define the types of residuals: Davison & Snell is a good
reference for the usages of each.

Value

Named vector of residuals

Author(s)

Johannes Hofrichter

References

Davison, A. C. and Snell, E. J. (1991) Residuals and diagnostics. In: Statis-
tical Theory and Modelling. In Honor of Sir David Cox, FRS, eds. Hinkley,
D. V., Reid, N. and Snell, E. J., Chapman & Hall.

See Also

ccp, residuals

residuals.dcp Residuals for Discontinuous Change Point Model

Description

Residuals for Discontinuous Change Point Model

Usage

## S3 method for class 'dcp':

residuals(object,

type = c("deviance", "pearson", "working", "response"),

...)

Arguments

object an object of class "dcp", usually the result of a call to dcp.

type the type of residuals which should be returned. The alter-
natives are: "deviance" (default), "pearson", "working"
and "response"

... further arguments passed to or from other methods.
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Details

The references define the types of residuals: Davison & Snell is a good
reference for the usages of each.

Value

Named vector of residuals

Author(s)

Johannes Hofrichter

References

Davison, A. C. and Snell, E. J. (1991) Residuals and diagnostics. In: Statis-
tical Theory and Modelling. In Honor of Sir David Cox, FRS, eds. Hinkley,
D. V., Reid, N. and Snell, E. J., Chapman & Hall.

See Also

dcp, residuals

uniqueMatrix Extract unique rows of a matrix

Description

uniqueMatrix extracts unique rows of a matrix as unique does, but returns
additional information

Usage

uniqueMatrix(x, ...)

Arguments

x a matrix

... not used yet
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Value

Returns a list with four elements

x original x of the function call

x.unique matrix of unique rows of x

index vector of row indices of x.unique, where x.unique[index,]
results x

index.unique

vector of indices of that rows which are unique in x

Author(s)

Johannes Hofrichter

See Also

unique

Examples

set.seed(1234)

x <- matrix(sample(2,18,replace=TRUE), ncol=3)

x.u <- uniqueMatrix(x)

y <- x.u$x.unique[x.u$index,]

all.equal(x,y)
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Chow, G. (1960). Test of equality between sets of coefficients in two linear
regressions. Econometrica, 28, 591–605.

Davison, A. and Snell, E. (1991). Residuals and diagnostics. In D. Hinkley,
N. Ried, and E. Snell (Eds.), Statistical Theory and Modelling: In Honor
of Sir David Cox (pp. 81–106). London: Chapman and Hall.

Durbin, J. (1971). Boundary-crossing probabilities for the Brownian mo-
tion and Poisson process and techniques for computing the power of the
Kolmogorov-Smirnov test. Journal of Applied Probability, 8, 431–453.

Esterby, S. and El-Shaarawi, A. (1981). Inference about the point of change
in a regression model. Applied Statistics, 30 (3), 227–285.

Fahrmeir, L. and Kaufmann, H. (1985). Consistency and asymptotic normality
of the maximum likelihood estimator in generalized linear models. Annals
of Statistics, 13, 342–368.

Fank, J., Harum, T., and Stadler, H. (1993). Erfassung von Abflußvorgängen in
kleinen Einzugsgebieten; Speicherverhalten kleiner Einzugsgebiete (Tech.
Rep.). Institut f. Geothermie und Hydrologie; Joanneum Research, Graz,
Austria.

Farley, J. and Hinich, M. (1970). A test for a shifting slope coefficient in a
linear model. Journal of the American Statistical Association, 65 (331),
1320–1329.

Farley, J., Hinich, M., and McGuire, T. (1975). Some comparisons of tests for
a shift in the slope of multivariate linear time series models. Journal of
Econometrics, 3, 297–318.



References 136

Friedl, H. (1998). Computer statistics. Lecture Notes, Graz University of
Technology.

Hawkins, D. (1980). A note on continuous and discontinuous segmented re-
gressions. Technometrics, 22, 443–444.

Hawkins, D. (2001). Fitting multiple change-point models to data. Computa-
tional Statistics & Data Analysis, 37, 323–341.

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics, 5 (3), 299–
314.
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