11. Qualitative Predictor Variables

Example: For the last 100 UF football games we have:
$Y_{i}=$ \#points scored by UF football team in game i
$X_{i 1}=\#$ games won by opponent in their last 10 games
Distinguish between home (\triangle) and away (○) games.

Q: How can we incorporate "home" and "away" into the SLR ?
A : An indicator variable:

$$
X_{i 2}= \begin{cases}1 & \text { home game } \\ 0 & \text { otherwise }\end{cases}
$$

New model

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}
$$

For home games:

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2}(1)=\left(\beta_{0}+\beta_{2}\right)+\beta_{1} X_{i 1}
$$

For away games:

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2}(0)=\beta_{0}+\beta_{1} X_{i 1}
$$

same slope β_{1} but
different intercepts
$\beta_{0}+\beta_{2}$ and β_{0}
How would you decide if a different intercept is necessary?
Test: $H_{0}: \beta_{2}=0$ vs. $H_{A}:$ not H_{0} t-test:
$t^{*}=b_{2} / \sqrt{\text { MSE } \cdot\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{3,3}}$
F-test:
$F^{*}=\operatorname{SSR}\left(X_{2} \mid X_{1}\right) / \operatorname{MSE}\left(X_{1}, X_{2}\right)$

Why not using two indicators ?

$$
X_{i 2}^{*}=\left\{\begin{array}{ll}
1 & \text { home game } \\
0 & \text { otherwise }
\end{array} \quad X_{i 3}^{*}= \begin{cases}1 & \text { away game } \\
0 & \text { otherwise }\end{cases}\right.
$$

and considering the model

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2}^{*} X_{i 2}^{*}+\beta_{3}^{*} X_{i 3}^{*}
$$

Note, $X_{i 2}^{*}+X_{i 3}^{*}=1$, the respective intercept in the i th row of \mathbf{X}. Hence, the columns of \mathbf{X} are no longer linearly independent.

General Rule: A qualitative variable with c classes will be represented by $c-1$ indicator variables, each taking on the values 0 and 1 .

Question: How realistic are parallel lines ?

That is, how realistic is it to assume that "UF will score β_{2} more points at home than away, regardless of the strength of the opponent"?

How can we make the model more flexible?

Answer: Add the interaction term

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1} X_{i 2}
$$

For home games: $\mathrm{E}\left(Y_{i}\right)=\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) X_{i 1}$
For away games: $\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}$
Q: How would you answer the question "Is a single line sufficient" ?
A: Test: $H_{0}: \beta_{2}=\beta_{3}=0$ vs. $H_{A}:$ not H_{0}
Test Statistic:

$$
F^{*}=\frac{\operatorname{SSR}\left(X_{1} X_{2}, X_{2} \mid X_{1}\right) / 2}{\operatorname{MSE}\left(X_{1}, X_{2}, X_{1} X_{2}\right)}
$$

Rejection rule: reject H_{0}, if $F^{*}>F(1-\alpha ; 2, n-p)$.
\mathbf{Q} : How would you make sure this extra sum of squares is available in R ?
A: Fit the model with the interaction term last!

More Complex Models

More than two classes

Example: $Y_{i}=$ gas mileage
$X_{i 1}=$ age of vehicle
we further have domestic, foreign, and trucks
Remember General Rule: The number of indicators that you need is one fewer than the number of levels.

Here we need two such indicators:

$$
X_{i 2}=\left\{\begin{array}{ll}
1 & \text { domestic } \\
0 & \text { otherwise }
\end{array} \quad X_{i 3}= \begin{cases}1 & \text { foreign } \\
0 & \text { otherwise }\end{cases}\right.
$$

Model:

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}
$$

$$
X_{i 2}=\left\{\begin{array}{ll}
1 & \text { domestic } \\
0 & \text { otherwise }
\end{array} \quad X_{i 3}= \begin{cases}1 & \text { foreign } \\
0 & \text { otherwise }\end{cases}\right.
$$

Model: $\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}$
domestic: $\quad \mathrm{E}\left(Y_{i}\right)=\left(\beta_{0}+\beta_{2}\right)+\beta_{1} X_{i 1}$
foreign: $\quad \mathrm{E}\left(Y_{i}\right)=\left(\beta_{0}+\beta_{3}\right)+\beta_{1} X_{i 1}$
trucks: $\quad \mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}$
> attach(car); car
milage age type
13882.1 domestic
:
$90 \quad 277 \quad 5.7$ truck
> x2 <- rep (0, 90) + (type=="domestic")
> x3 <- rep (0, 90) + (type=="foreign")
> lm(milage ~ age + x2 + x3, data=car)
$\begin{array}{rrrr}\text { (Intercept) } & \text { age } & \text { x2 } & \text { x3 } \\ 287.638 & -8.088 & 85.986 & 133.384\end{array}$

10

FAQ: Why couldn't we use 1 indicator with 3 values:

$$
X_{i 2}^{*}= \begin{cases}0 & \text { trucks } \\ 1 & \text { domestic } \\ 2 & \text { foreign }\end{cases}
$$

Model: $\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2}^{*} X_{i 2}^{*}$
> x2star <- x2 + 2*x3
> lm(milage ~ age + x2star, data=car)
(Intercept) age x2star

Q: How would we allow each type of vehicle to have its own intercept and slope?
A: Add Interactions!

```
    E}(\mp@subsup{Y}{i}{})=\mp@subsup{\beta}{0}{}+\mp@subsup{\beta}{1}{}\mp@subsup{X}{i1}{}+\mp@subsup{\beta}{2}{}\mp@subsup{X}{i2}{}+\mp@subsup{\beta}{3}{}\mp@subsup{X}{i3}{}+\mp@subsup{\beta}{4}{}\mp@subsup{X}{i1}{}\mp@subsup{X}{i2}{}+\mp@subsup{\beta}{5}{}\mp@subsup{X}{i1}{}\mp@subsup{X}{i3}{
> lm(milage ~ age + x2 + x3 + x2:age + x3:age)
Coefficients:
(Intercept) age x2 x3 age:x2 age:x3
    302.58 -10.75 88.99 83.60 
```


foreign:
$\mathrm{E}\left(Y_{i}\right)=\left(\beta_{0}+\beta_{3}\right)+\left(\beta_{1}+\beta_{5}\right) X_{1}$
domestic:
$\mathrm{E}\left(Y_{i}\right)=\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{4}\right) X_{1}$
truck:
$\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{1}$

More than 1 Qualitative Predictor Variable:

Example: 100 UF football games
$Y_{i}=$ \#points scored by UF football team in game i
$X_{i 1}=\#$ games won by opponent in their last 10 games
Distinguish between home/away and day/night games.

$$
X_{i 2}=\left\{\begin{array}{ll}
1 & \text { home } \\
0 & \text { away }
\end{array} \quad X_{i 3}= \begin{cases}1 & \text { day } \\
0 & \text { night }\end{cases}\right.
$$

Model: $\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}$
away/day: $\quad \mathrm{E}\left(Y_{i}\right)=\left(\beta_{0}+\beta_{3}\right)+\beta_{1} X_{i 1}$
away/night: $\quad \mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}$

We score β_{3} more points during the day than at night for away games.
home/day: $\quad \mathrm{E}\left(Y_{i}\right)=\left(\beta_{0}+\beta_{2}+\beta_{3}\right)+\beta_{1} X_{i 1}$
home/night: $\mathrm{E}\left(Y_{i}\right)=\left(\beta_{0}+\beta_{2}\right)+\beta_{1} X_{i 1}$
We also score β_{3} more points during the day than at night for home games.
Additional interactions are also possible!

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}+\beta_{4} X_{i 1} X_{i 2}+\beta_{5} X_{i 1} X_{i 3}+\beta_{6} X_{i 2} X_{i 3}
$$

Example - House Data:

$Y_{i}=$ price $/ 1000$
$X_{i 1}=$ square feet/ 1000
$X_{i 2}= \begin{cases}1 & \text { new } \\ 0 & \text { used }\end{cases}$
A model that allows new and used houses to have their own slope and intercept is

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1} X_{i 2}
$$

Submodels:
New: $\mathbf{E}\left(Y_{i}\right)=\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) X_{i 1}$
Used: $\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}$
How would you test that the regression lines have the same slope?
$H_{0}: \beta_{3}=0$ vs. $H_{A}: \beta_{3} \neq 0$

$$
\begin{aligned}
F^{*} & =\frac{\operatorname{SSR}\left(\text { area*new }{ }^{*} \text { area, new }\right) / 1}{\operatorname{MSE}(\text { area, new, area*new })} \\
t^{*} & =\frac{b_{3}}{\sqrt{\mathrm{MSE} \cdot\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{4,4}}}
\end{aligned}
$$

> attach(houses)
> hm <- lm(price ~ area+new+area:new) ; summary (hm)
Coefficients:
Estimate Std.Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -16.600 6.210 -2.673 0.008944 **
area $66.604 \quad 3.694 \quad 18.033<2 \mathrm{e}-16 * * *$
new -31.826 14.818 -2.148 0.034446 *
area:new $\quad 29.392 \quad 8.195 \quad 3.5870 .000547 * * *$

Sig.codes: $0{ }^{\prime} * * * ' 0.001$ ' $* *$ ' 0.01 '*' 0.05 '.' 0.1

Residual std. error: 16.35 on 89 degrees of freedom Mult.R-Squared: 0.8675, Adjusted R-squared: 0.8631 F-stat: 194.3 on 3 and $89 \mathrm{df}, \mathrm{p}$-value: 0

```
> anova(hm)
Analysis of Variance Table
Response: price
    Df Sum Sq Mean Sq F value Pr(>F)
area 1 145097 145097 542.722< 2.2e-16 ***
new 1 7275 7275 27.210 1.178e-06 ***
area:new 1 3439 3439 12.865 0.0005467 ***
Residuals 89 23794 267
Sig.codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
```


Let's compare two models:
Model 1: $\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1} X_{i 2}$
where $X_{i 2}= \begin{cases}1 & \text { new } \\ 0 & \text { used }\end{cases}$

Model 2: $\mathrm{E}\left(Y_{i}\right)=\beta_{0}^{*}+\beta_{1}^{*} X_{i 1}+\beta_{2}^{*} X_{i 2}^{*}+\beta_{3}^{*} X_{i 1} X_{i 2}^{*}$
where $X_{i 2}^{*}= \begin{cases}1 & \text { used } \\ 0 & \text { new }\end{cases}$

parameter	model 1	model 2
intercept for new	$\beta_{0}+\beta_{2}$	β_{0}^{*}
intercept for used	β_{0}	$\beta_{0}^{*}+\beta_{2}^{*}$
slope for new	$\beta_{1}+\beta_{3}$	β_{1}^{*}
slope for used	β_{1}	$\beta_{1}^{*}+\beta_{3}^{*}$

Thus, we should have

$$
\begin{aligned}
b_{0}^{*} & =b_{0}+b_{2} \\
b_{1}^{*} & =b_{1}+b_{3} \\
b_{2}^{*} & =-b_{2} \\
b_{3}^{*} & =-b_{3}
\end{aligned}
$$

Let's show that this is indeed the case:
$\mathbf{X}_{n \times 4}=$ design matrix for model 1
$\mathbf{X}_{n \times 4}^{*}=$ design matrix for model 2

We want to find $\mathbf{M}_{4 \times 4}$, such that $\mathbf{X}^{*}=\mathbf{X M}$

$$
\left[\begin{array}{cccc}
1 & X_{11} & 0 & 0 \\
1 & X_{21} & 1 & X_{21} \\
1 & X_{31} & 1 & X_{31} \\
\vdots & \vdots & \vdots & \vdots \\
1 & X_{n 1} & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
1 & X_{11} & 1 & X_{11} \\
1 & X_{21} & 0 & 0 \\
1 & X_{31} & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
1 & X_{n 1} & 1 & X_{n 1}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

$$
\begin{aligned}
\mathbf{b}^{*} & =\left(\mathbf{X}^{*^{\prime}} \mathbf{X}^{*}\right)^{-1} \mathbf{X}^{*^{\prime}} \mathbf{Y} \\
& =\left((\mathbf{X M})^{\prime}(\mathbf{X M})\right)^{-1}(\mathbf{X M})^{\prime} \mathbf{Y} \\
& =\left(\mathbf{M}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \mathbf{M}\right)^{-1} \mathbf{M}^{\prime} \mathbf{X}^{\prime} \mathbf{Y} \\
& =\left(\mathbf{M}^{-1}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{M}^{\prime}\right)^{-1}\right) \mathbf{M}^{\prime} \mathbf{X}^{\prime} \mathbf{Y} \\
& =\mathbf{M}^{-1}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} \\
& =\mathbf{M}^{-1} \mathbf{b}
\end{aligned}
$$

It's easy to show that $\mathbf{M}=\mathbf{M}^{-1}$, so

$$
\left[\begin{array}{c}
b_{0}^{*} \\
b_{1}^{*} \\
b_{2}^{*} \\
b_{3}^{*}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
b_{0}+b_{2} \\
b_{1}+b_{3} \\
-b_{2} \\
-b_{3}
\end{array}\right]
$$

Piecewise Linear Regressions

Example:

$Y_{i}=$ weight of a dog
$X_{i 1}=$ age in months
We expect a different weight gain when the dog is a puppy and when it's fully grown. A scatter plot would look like

How would we model this type of data ?

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right)= & \beta_{0}+\beta_{1} X_{i 1} \\
& +\beta_{2}\left(X_{i 1}-12\right) X_{i 2}
\end{aligned}
$$

where

$$
X_{i 2}= \begin{cases}1 & X_{i 1}>12 \\ 0 & X_{i 1}<12\end{cases}
$$

The age of 12 months is called changepoint.

Derivation: We want

$$
\begin{aligned}
& X_{i 1}<12: \\
& \mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1} \\
& X_{i 1} \geq 12 \\
& \mathrm{E}\left(Y_{i}\right)=\tilde{\beta}_{0}+\left(\beta_{1}+\beta_{2}\right) X_{i 1}
\end{aligned}
$$

But, has to be the same at the changepoint:

$$
\begin{aligned}
\beta_{0}+\beta_{1}(12) & =\tilde{\beta}_{0}+\left(\beta_{1}+\beta_{2}\right)(12) \\
\tilde{\beta}_{0} & =\beta_{0}-12 \beta_{2}
\end{aligned}
$$

Thus we want:
For $X_{i 1}<12: \mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}$
For $X_{i 1} \geq 12: \mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}-12 \beta_{2}$

