11. Qualitative Predictor Variables

Example: For the last 100 UF football games we have: $Y_i = \#$ points scored by UF football team in game i $X_{i1} = \#$ games won by opponent in their last 10 games

Distinguish between home (\triangle) and away (\circ) games.

Q: How can we incorporate "home" and "away" into the SLR ?

A: An indicator variable:

 $X_{i2} = \begin{cases} 1 & \text{home game} \\ 0 & \text{otherwise} \end{cases}$

2

New model

$$\mathsf{E}(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2}$$

For home games:

$$\mathsf{E}(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2(1) = (\beta_0 + \beta_2) + \beta_1 X_{i1}$$

For away games:

$$\mathsf{E}(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2(0) = \beta_0 + \beta_1 X_{i1}$$

same slope β_1 but

different intercepts $\beta_0 + \beta_2$ and β_0

How would you decide if a different intercept is necessary? Test: $H_0: \beta_2 = 0$ vs. $H_A:$ not H_0 t-test: $t^* = b_2/\sqrt{\text{MSE} \cdot [(\mathbf{X}'\mathbf{X})^{-1}]_{3,3}}$ F-test: $F^* = \text{SSR}(X_2|X_1)/\text{MSE}(X_1, X_2)$

Why not using two indicators ?

$$X_{i2}^* = \begin{cases} 1 & \text{home game} \\ 0 & \text{otherwise} \end{cases} \quad X_{i3}^* = \begin{cases} 1 & \text{away game} \\ 0 & \text{otherwise} \end{cases}$$

and considering the model

$$\mathsf{E}(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2^* X_{i2}^* + \beta_3^* X_{i3}^*$$

Note, $X_{i2}^* + X_{i3}^* = 1$, the respective intercept in the *i*th row of **X**. Hence, the columns of **X** are no longer linearly independent.

General Rule: A qualitative variable with c classes will be represented by c-1 indicator variables, each taking on the values 0 and 1.

Question: How realistic are parallel lines ?

That is, how realistic is it to assume that "UF will score β_2 more points at home than away, regardless of the strength of the opponent"?

How can we make the model more flexible ?

Answer: Add the interaction term

$$\mathsf{E}(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2}$$

For home games: $E(Y_i) = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)X_{i1}$ For away games: $E(Y_i) = \beta_0 + \beta_1 X_{i1}$

Q: How would you answer the question "Is a single line sufficient"?

A: Test:
$$H_0: \beta_2 = \beta_3 = 0$$
 vs. $H_A:$ not H_0

Test Statistic:

$$F^* = \frac{\mathsf{SSR}(X_1 X_2, X_2 | X_1)/2}{\mathsf{MSE}(X_1, X_2, X_1 X_2)}$$

Rejection rule: reject H_0 , if $F^* > F(1 - \alpha; 2, n - p)$.

Q: How would you make sure this extra sum of squares is available in R?

A: Fit the model with the interaction term last !

More Complex Models

More than two classes

Example: Y_i = gas mileage X_{i1} = age of vehicle we further have domestic, foreign, and trucks

Remember General Rule: The number of indicators that you need is one fewer than the number of levels.

Here we need two such indicators:

$$X_{i2} = \begin{cases} 1 & \text{domestic} \\ 0 & \text{otherwise} \end{cases} \quad X_{i3} = \begin{cases} 1 & \text{foreign} \\ 0 & \text{otherwise} \end{cases}$$

Model:

$$\mathsf{E}(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3}$$

$$X_{i2} = \begin{cases} 1 & \text{domestic} \\ 0 & \text{otherwise} \end{cases} X_{i3} = \begin{cases} 1 & \text{foreign} \\ 0 & \text{otherwise} \end{cases}$$

Model: $E(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3}$
domestic: $E(Y_i) = (\beta_0 + \beta_2) + \beta_1 X_{i1}$
foreign: $E(Y_i) = (\beta_0 + \beta_3) + \beta_1 X_{i1}$
trucks: $E(Y_i) = \beta_0 + \beta_1 X_{i1}$
> attach(car); car
milage age type
1 388 2.1 domestic
:
90 277 5.7 truck
> x2 <- rep(0, 90) + (type=="domestic")
> x3 <- rep(0, 90) + (type=="foreign")
> lm(milage ~ age + x2 + x3, data=car)
(Intercept) age x2 x3
287.638 -8.088 85.986 133.384

FAQ: Why couldn't we use 1 indicator with 3 values:

$$X_{i2}^* = \begin{cases} 0 & \text{trucks} \\ 1 & \text{domestic} \\ 2 & \text{foreign} \end{cases}$$

Model:
$$E(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2^* X_{i2}^*$$

>	x2star <-	xź	2 + 2	2*3	кЗ	
>	lm(milage	~	age	+	x2star,	data=car)
(Intercept)					age	x2star
	295.737			-8	3.394	66.653

Q: How would we allow each type of vehicle to have its own intercept and slope? **A:** Add Interactions!

 $\mathsf{E}(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i1} X_{i2} + \beta_5 X_{i1} X_{i3}$

foreign: $\mathsf{E}(Y_i) = (\beta_0 + \beta_3) + (\beta_1 + \beta_5)X_1$

domestic: $\mathsf{E}(Y_i) = (\beta_0 + \beta_2) + (\beta_1 + \beta_4)X_1$

truck: $\mathsf{E}(Y_i) = \beta_0 + \beta_1 X_1$

More than 1 Qualitative Predictor Variable:

Example: 100 UF football games

 $Y_i = \#$ points scored by UF football team in game i $X_{i1} = \#$ games won by opponent in their last 10 games

Distinguish between home/away and day/night games.

$$X_{i2} = \begin{cases} 1 & \text{home} \\ 0 & \text{away} \end{cases} \quad X_{i3} = \begin{cases} 1 & \text{day} \\ 0 & \text{night} \end{cases}$$

Model: $E(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3}$ away/day: $E(Y_i) = (\beta_0 + \beta_3) + \beta_1 X_{i1}$ away/night: $E(Y_i) = \beta_0 + \beta_1 X_{i1}$

We score β_3 more points during the day than at night for away games.

home/day: $E(Y_i) = (\beta_0 + \beta_2 + \beta_3) + \beta_1 X_{i1}$ home/night: $E(Y_i) = (\beta_0 + \beta_2) + \beta_1 X_{i1}$

We also score β_3 more points during the day than at night for home games. Additional interactions are also possible!

 $\mathsf{E}(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i1} X_{i2} + \beta_5 X_{i1} X_{i3} + \beta_6 X_{i2} X_{i3}$

Example – House Data:

$$\begin{split} Y_i &= \mathsf{price}/1000\\ X_{i1} &= \mathsf{square feet}/1000\\ X_{i2} &= \left\{ \begin{array}{cc} 1 & \mathsf{new}\\ 0 & \mathsf{used} \end{array} \right. \end{split}$$

A model that allows new and used houses to have their own slope and intercept is

$$\mathsf{E}(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2}$$

Submodels:

New:
$$E(Y_i) = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)X_{i1}$$

Used: $E(Y_i) = \beta_0 + \beta_1 X_{i1}$

How would you test that the regression lines have the same slope?

$$H_0: \beta_3 = 0$$
 vs. $H_A: \beta_3 \neq 0$

$$F^* = \frac{\text{SSR}(\text{area*new}|\text{area, new})/1}{\text{MSE}(\text{area, new, area*new})}$$
$$t^* = \frac{b_3}{\sqrt{\text{MSE} \cdot [(\mathbf{X}'\mathbf{X})^{-1}]_{4,4}}}$$

```
> attach(houses)
> hm <- lm(price ~ area+new+area:new); summary(hm)
Coefficients:</pre>
```

Estimate Std.Error t value Pr(>|t|) (Intercept) -16.600 6.210 -2.673 0.008944 ** area 66.604 3.694 18.033 < 2e-16 *** new -31.826 14.818 -2.148 0.034446 * area:new 29.392 8.195 3.587 0.000547 *** ----Sig.codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

Residual std. error: 16.35 on 89 degrees of freedom Mult.R-Squared: 0.8675, Adjusted R-squared: 0.8631 F-stat: 194.3 on 3 and 89 df, p-value: 0 > anova(hm)
Analysis of Variance Table

Response: price Df Sum Sq Mean Sq F value Pr(>F) area 1 145097 145097 542.722 < 2.2e-16 *** new 1 7275 7275 27.210 1.178e-06 *** area:new 1 3439 3439 12.865 0.0005467 *** Residuals 89 23794 267 ----Sig.codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

Let's compare two models:

Model 2:
$$E(Y_i) = \beta_0^* + \beta_1^* X_{i1} + \beta_2^* X_{i2}^* + \beta_3^* X_{i1} X_{i2}^*$$

where $X_{i2}^* = \begin{cases} 1 & \text{used} \\ 0 & \text{new} \end{cases}$

parameter	model 1	model 2
intercept for new	$\beta_0 + \beta_2$	β_0^*
intercept for used	eta_0	$eta_0^*+eta_2^*$
slope for new	$\beta_1 + \beta_3$	eta_1^*
slope for used	eta_1	$eta_1^*+eta_3^*$

Thus, we should have

$$b_0^* = b_0 + b_2$$

 $b_1^* = b_1 + b_3$
 $b_2^* = -b_2$
 $b_3^* = -b_3$

Let's show that this is indeed the case:

 $\mathbf{X}_{n imes 4} = ext{design matrix for model 1}$ $\mathbf{X}_{n imes 4}^* = ext{design matrix for model 2}$ We want to find $\mathbf{M}_{4\times 4}$, such that $\mathbf{X}^* = \mathbf{X}\mathbf{M}$

$$\begin{bmatrix} 1 X_{11} & 0 & 0 \\ 1 X_{21} & 1 X_{21} \\ 1 X_{31} & 1 X_{31} \\ \vdots & \vdots & \vdots & \vdots \\ 1 X_{n1} & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 X_{11} & 1 X_{11} \\ 1 X_{21} & 0 & 0 \\ 1 X_{31} & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 X_{n1} & 1 X_{n1} \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$\mathbf{b}^* = (\mathbf{X}^{*'}\mathbf{X}^*)^{-1}\mathbf{X}^{*'}\mathbf{Y}$$

$$= ((\mathbf{X}\mathbf{M})'(\mathbf{X}\mathbf{M}))^{-1}(\mathbf{X}\mathbf{M})'\mathbf{Y}$$

$$= (\mathbf{M}'\mathbf{X}'\mathbf{X}\mathbf{M})^{-1}\mathbf{M}'\mathbf{X}'\mathbf{Y}$$

$$= (\mathbf{M}^{-1}(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{M}')^{-1})\mathbf{M}'\mathbf{X}'\mathbf{Y}$$

$$= \mathbf{M}^{-1}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

$$= \mathbf{M}^{-1}\mathbf{b}$$

It's easy to show that $\mathbf{M} = \mathbf{M}^{-1}$, so

$$\begin{bmatrix} b_0^* \\ b_1^* \\ b_2^* \\ b_3^* \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} b_0 + b_2 \\ b_1 + b_3 \\ -b_2 \\ -b_3 \end{bmatrix}$$

Piecewise Linear Regressions

Example:

 Y_i = weight of a dog X_{i1} = age in months

We expect a different weight gain when the dog is a puppy and when it's fully grown. A scatter plot would look like

How would we model this type of data ?

$$\mathsf{E}(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 (X_{i1} - 12) X_{i2}$$

where

$$X_{i2} = \begin{cases} 1 & X_{i1} > 12\\ 0 & X_{i1} < 12 \end{cases}$$

The age of 12 months is called **change**-**point**.

 $X_{i1} < 12:$ $\mathsf{E}(Y_i) = \beta_0 + \beta_1 X_{i1}$ $X_{i1} \ge 12:$

$$\mathsf{E}(Y_i) = \tilde{\beta}_0 + (\beta_1 + \beta_2) X_{i1}$$

But, has to be the same at the changepoint:

$$\beta_0 + \beta_1(12) = \tilde{\beta}_0 + (\beta_1 + \beta_2)(12)$$
$$\tilde{\beta}_0 = \beta_0 - 12\beta_2$$

Thus we want:

For $X_{i1} < 12$: $E(Y_i) = \beta_0 + \beta_1 X_{i1}$ For $X_{i1} \ge 12$: $E(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i1} - 12\beta_2$