7. Extra Sums of Squares

Football Example:

$Y_{i}=$ \#points scored by UF football team in game i
$X_{i 1}=\#$ games won by opponent in their last 10 games
$X_{i 2}=\#$ healthy starters for UF (out of 22) in game i
Suppose we fit the SLR

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\epsilon_{i}
$$

and plot the residuals e_{i} against $X_{i 2}$:

Q: What do we conclude from this ?

A: The residuals appear to be linearly related to $X_{i 2}$, thus, $X_{i 2}$ should be put into the model.

Another Example:

$Y_{i}=$ height of a person
$X_{i 1}=$ length of left foot
$X_{i 2}=$ length of right foot
Suppose we fit the SLR

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\epsilon_{i}
$$

and plot the residuals e_{i} against $X_{i 2}$:

Q: Why no pattern?
A: $X_{i 2}$ is providing the same information about Y that $X_{i 1}$ does. Thus, even though $X_{i 2}$ is a good predictor of height, it is unnecessary if $X_{i 1}$ is already in the model.

Extra sums of squares provide a means of formally testing whether one set of predictors is necessary given that another set is already in the model.

Recall that

$$
\begin{aligned}
\mathrm{SSTO} & =\mathrm{SSR}+\mathrm{SSE} \\
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} & =\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2} \\
R^{2} & =\frac{\mathrm{SSR}}{\mathrm{SSTO}}
\end{aligned}
$$

Important Fact: R^{2} will never decrease when a predictor is added to a regression model.

Consider the two different models:

$$
\begin{aligned}
& \mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1} \\
& \mathrm{E}\left(Y_{i}\right)=\beta_{0}^{*}+\beta_{1}^{*} X_{i 1}+\beta_{2}^{*} X_{i 2}
\end{aligned}
$$

Q: Is SSTO the same for both models?
A: Yes! Thus, SSR will never decrease when a predictor is added to a model.

Since SSE and SSR are different depending upon which predictors are in the model, we use the following notation:
$\operatorname{SSR}\left(X_{1}\right)$: SSR for a model with only X_{1}
$\operatorname{SSR}\left(X_{1}, X_{2}\right): \mathrm{SSR}$ for a model with X_{1} and X_{2}
$\operatorname{SSE}\left(X_{1}\right)$ and $\operatorname{SSE}\left(X_{1}, X_{2}\right)$ have analogous def's
Note

$$
\begin{aligned}
& \operatorname{SSTO}=\operatorname{SSR}\left(X_{1}\right)+\operatorname{SSE}\left(X_{1}\right) \\
& \operatorname{SSTO}=\operatorname{SSR}\left(X_{1}, X_{2}\right)+\operatorname{SSE}\left(X_{1}, X_{2}\right)
\end{aligned}
$$

We also know $\operatorname{SSR}\left(X_{1}, X_{2}\right) \geq \operatorname{SSR}\left(X_{1}\right)$.
Thus $\operatorname{SSE}\left(X_{1}, X_{2}\right) \leq \operatorname{SSE}\left(X_{1}\right)$.
Conclusion: SSE never increases when a predictor is added to a model.

Reconsider the Example:

$Y_{i}=$ height of a person
$X_{i 1}=$ length of left foot; $X_{i 2}=$ length of right foot
Q: What do you think about the quantity

$$
\operatorname{SSR}\left(X_{1}, X_{2}\right)-\operatorname{SSR}\left(X_{1}\right)
$$

A: Probably small because if we know the length of the left foot, knowing the length of the right won't help.

Notation: Extra Sum of Squares

$$
\operatorname{SSR}\left(X_{2} \mid X_{1}\right)=\operatorname{SSR}\left(X_{1}, X_{2}\right)-\operatorname{SSR}\left(X_{1}\right)
$$

$\operatorname{SSR}\left(X_{2} \mid X_{1}\right)$ tells us how much we gain by adding X_{2} to the model given that X_{1} is already in the model.

We define $\operatorname{SSR}\left(X_{1} \mid X_{2}\right)=\operatorname{SSR}\left(X_{1}, X_{2}\right)-\operatorname{SSR}\left(X_{2}\right)$
We can do this with as many predictors as we like, e.g.

$$
\begin{aligned}
\operatorname{SSR}\left(X_{3}, X_{5} \mid X_{1}, X_{2}, X_{4}\right) & =\operatorname{SSR}\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)-\operatorname{SSR}\left(X_{1}, X_{2}, X_{4}\right) \\
& =\operatorname{SSR}(\text { all predictors })-\operatorname{SSR} \text { (given predictors) }
\end{aligned}
$$

Suppose our model is:

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}
$$

Consider tests involving β_{1}, β_{2}, and β_{3}.
One Beta: $H_{0}: \beta_{k}=0, \quad k=1,2$, or 3

$$
H_{A}: \operatorname{not} H_{0}
$$

In words, this test says "Do we need X_{k} given that the other two predictors are in the model?"

Can do this with a t-test:

$$
t^{*}=b_{k} / \sqrt{\mathrm{MSE} \cdot\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{k+1, k+1}}
$$

Two Betas: (some of the Betas)

$$
\begin{array}{lll}
H_{0}: \beta_{1}=\beta_{2}=0 & H_{0}: \beta_{1}=\beta_{3}=0 & H_{0}: \beta_{2}=\beta_{3}=0 \\
H_{A}: \text { not } H_{0} & H_{A}: \operatorname{not} H_{0} & H_{A}: \text { not } H_{0}
\end{array}
$$

For example, the first of these asks "Do we need X_{1} and X_{2} given that X_{3} is in the model?"

All Betas: $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0$

$$
H_{A}: \operatorname{not} H_{0}
$$

This is just the overall F-Test
We can do all of these tests using extra sum of squares.

Here is the ANOVA table corresponding to the model

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}
$$

ANOVA Table:

Source of variation	$S S$	$d f$
Regression	$\operatorname{SSR}\left(X_{1}, X_{2}, X_{3}\right)$	$p-1=3$
Error	$\operatorname{SSE}\left(X_{1}, X_{2}, X_{3}\right)$	$n-p=n-4$
Total	SSTO	$n-1$

Partition $\operatorname{SSR}\left(X_{1}, X_{2}, X_{3}\right)$ into 3 one $d f$ extra sums of squares. One way to do it is:

$$
\operatorname{SSR}\left(X_{1}, X_{2}, X_{3}\right)=\operatorname{SSR}\left(X_{1}\right)+\operatorname{SSR}\left(X_{2} \mid X_{1}\right)+\operatorname{SSR}\left(X_{3} \mid X_{1}, X_{2}\right)
$$

Modified ANOVA Table:

Source of variation	$S S$	$d f$
Regression	$\operatorname{SSR}\left(X_{1}, X_{2}, X_{3}\right)$	3
	$\operatorname{SSR}\left(X_{1}\right)$	1
	$\operatorname{SSR}\left(X_{2} \mid X_{1}\right)$	1
	$\operatorname{SSR}\left(X_{3} \mid X_{1}, X_{2}\right)$	1
Error	$\operatorname{SSE}\left(X_{1}, X_{2}, X_{3}\right)$	$n-4$
Total	SSTO	$n-1$

Note: there are 6 equivalent ways of partitioning $\operatorname{SSR}\left(X_{1}, X_{2}, X_{3}\right)$.

Three Tests: ($p=4$ in this example)

- One Beta: $H_{0}: \beta_{2}=0$ vs. H_{A} : not H_{0}

Test statistic: $F^{*}=\frac{\operatorname{SSR}\left(X_{2} \mid X_{1}, X_{3}\right) / 1}{\operatorname{SSE}\left(X_{1}, X_{2}, X_{3}\right) /(n-p)}$
Rejection rule: Reject H_{0} if $F^{*}>F(1-\alpha ; 1, n-p)$

- Some Betas: $H_{0}: \beta_{2}=\beta_{3}=0$ vs. $H_{A}:$ not H_{0}

Test statistic: $F^{*}=\frac{\operatorname{SSR}\left(X_{2}, X_{3} \mid X_{1}\right) / 2}{\operatorname{SSE}\left(X_{1}, X_{2}, X_{3}\right) /(n-p)}$
Rejection rule: Reject H_{0} if $F^{*}>F(1-\alpha ; 2, n-p)$

- All Betas: $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0$ vs. $H_{A}: \operatorname{not} H_{0}$

Test statistic: $F^{*}=\frac{\operatorname{SSR}\left(X_{1}, X_{2}, X_{3}\right) / 3}{\operatorname{SSE}\left(X_{1}, X_{2}, X_{3}\right) /(n-p)}$
Rejection rule: Reject H_{0} if $F^{*}>F(1-\alpha ; p-1, n-p)$

Let's return to the model

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}
$$

and think about testing

$$
H_{0}: \beta_{2}=\beta_{3}=0 \quad \text { vs. } \quad H_{A}: \text { not } H_{0}
$$

Test statistic: $F^{*}=\frac{\operatorname{SSR}\left(X_{2}, X_{3} \mid X_{1}\right) / 2}{\operatorname{MSE}\left(X_{1}, X_{2}, X_{3}\right)}$
How do we get $\operatorname{SSR}\left(X_{2}, X_{3} \mid X_{1}\right)$ if we have $\operatorname{SSR}\left(X_{1}\right), \operatorname{SSR}\left(X_{2} \mid X_{1}\right)$, and $\operatorname{SSR}\left(X_{3} \mid X_{1}, X_{2}\right) ?$

$$
\operatorname{SSR}\left(X_{2}, X_{3} \mid X_{1}\right)=\operatorname{SSR}\left(X_{2} \mid X_{1}\right)+\operatorname{SSR}\left(X_{3} \mid X_{1}, X_{2}\right)
$$

What if we would have $\operatorname{SSR}\left(X_{2}\right), \operatorname{SSR}\left(X_{1} \mid X_{2}\right)$, and $\operatorname{SSR}\left(X_{3} \mid X_{1}, X_{2}\right)$? Stuck!

$$
\begin{array}{l|l}
\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3) & \operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 2+\mathrm{X} 1+\mathrm{X} 3) \\
\hline \operatorname{SSR}\left(X_{1}\right) & \operatorname{SSR}\left(X_{2}\right) \\
\operatorname{SSR}\left(X_{2} \mid X_{1}\right) & \operatorname{SSR}\left(X_{1} \mid X_{2}\right) \\
\operatorname{SSR}\left(X_{3} \mid X_{1}, X_{2}\right) & \operatorname{SSR}\left(X_{3} \mid X_{1}, X_{2}\right)
\end{array}
$$

Example: Patient Satisfaction

$Y_{i}=$ patient satisfaction $(n=23)$
$X_{i 1}=$ patient's age in years
$X_{i 2}=$ severity of illness (index)
$X_{i 3}=$ anxiety level (index)
Model 1: Consider the model with all 3 pairwise interactions included ($p=7$)

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}+\beta_{4} X_{i 1} X_{i 2}+\beta_{5} X_{i 1} X_{i 3}+\beta_{6} X_{i 2} X_{i 3}
$$

and think about testing the 3 interaction terms:

$$
H_{0}: \beta_{4}=\beta_{5}=\beta_{6}=0 \quad \text { vs. } \quad H_{A}: \text { not } H_{0}
$$

Denote the interaction $X_{j} X_{k}$ by $I_{j k}$. Then
Test statistic: $F^{*}=\frac{\operatorname{SSR}\left(I_{12}, I_{13}, I_{23} \mid X_{1}, X_{2}, X_{3}\right) / 3}{\operatorname{MSE}\left(X_{1}, X_{2}, X_{3}, I_{12}, I_{13}, I_{23}\right)}$
Rejection rule: Reject H_{0} if $F^{*}>F(1-\alpha ; 3, n-p)$
How do we get this extra sum of squares?

Q: How many partitions of $\operatorname{SSR}\left(X_{1}, X_{2}, X_{3}, I_{12}, I_{13}, I_{23}\right)$ into 6 one $d f$ extra sums of squares are there?
A: $6 \times 5 \times 4 \times 3 \times 2=6!=720$
Q: Which ones will allow us to compute F^{*} ?
A: The ones with I_{12}, I_{13}, and I_{23} last.

$$
\begin{aligned}
\operatorname{SSR}(\cdot)= & \operatorname{SSR}\left(X_{1}\right)+\operatorname{SSR}\left(X_{2} \mid X_{1}\right)+\operatorname{SSR}\left(X_{3} \mid X_{1}, X_{2}\right) \\
& +\operatorname{SSR}\left(I_{12} \mid X_{1}, X_{2}, X_{3}\right) \\
& +\operatorname{SSR}\left(I_{13} \mid X_{1}, X_{2}, X_{3}, I_{12}\right) \\
& +\operatorname{SSR}\left(I_{23} \mid X_{1}, X_{2}, X_{3}, I_{12}, I_{13}\right)
\end{aligned}
$$

Add the last 3 (the interaction terms) to get $\operatorname{SSR}\left(I_{12}, I_{13}, I_{23} \mid X_{1}, X_{2}, X_{3}\right)$

```
> summary(mod1 <- lm(sat ~ age + sev + anx + age:sev + age:anx + sev:anx))
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $241.57104169 .91520 \quad 1.422 \quad 0.174$
$\begin{array}{lllll}\text { age } & 0.28112 & 4.65467 & 0.060 & 0.953\end{array}$
$\begin{array}{lllll}\text { sev } & -6.32700 & 5.40579 & -1.170 & 0.259\end{array}$
$\begin{array}{lllll}\text { anx } & 24.02586 & 101.65309 & 0.236 & 0.816\end{array}$
$\begin{array}{lllll}\text { age:sev } & 0.06969 & 0.10910 & 0.639 & 0.532\end{array}$
$\begin{array}{lllll}\text { age:anx } & -2.20711 & 1.74936 & -1.262 & 0.225\end{array}$
$\begin{array}{lllll}\text { sev:anx } & 1.16347 & 1.98054 & 0.587 & 0.565\end{array}$

```
> anova(mod1)
    Analysis of Variance Table
    Response: sat
        Df Sum Sq Mean Sq F value Pr(>F)
    age 1 3678.44 3678.44 32.20 3.45e-05 ***
    sev 1 402.78 402.78}30.53 0.079 . 
    anx 1 1 52.41 52.41 0.46 0.508
    sev:age 1
    sev:anx 1 1 1.81 1.81 0.02 0.901
    age:anx 1 1 181.85 181.85 1.59 0.225
    Residuals 16 1827.90 114.24
```

$F^{*}=\frac{(0.02+1.81+181.85) / 3}{114.24}=0.54$ is compared to $F(0.95 ; 3,16)$
$>\mathrm{qf}(0.95,3,16)$
[1] 3.238872

Because $F^{*}<F(0.95 ; 3,16)=3.24$ we fail to reject H_{0} (Interactions are not needed).

Model 2: Let's get rid of the interactions and consider

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}
$$

Do we need X_{2} (severity of illness) and X_{3} (anxiety level) if X_{1} (age) is already in the model?

$$
H_{0}: \beta_{2}=\beta_{3}=0 \quad \text { vs. } \quad H_{A}: \text { not } H_{0}
$$

Test statistic: $F^{*}=\frac{\operatorname{SSR}\left(X_{2}, X_{3} \mid X_{1}\right) / 2}{\operatorname{MSE}\left(X_{1}, X_{2}, X_{3}\right)}$
Rejection rule: Reject H_{0} if $F^{*}>F(1-\alpha ; 2, n-p)$
How do we get this extra sum of squares?

$$
\operatorname{SSR}\left(X_{2}, X_{3} \mid X_{1}\right)=\operatorname{SSR}\left(X_{2} \mid X_{1}\right)+\operatorname{SSR}\left(X_{3} \mid X_{1}, X_{2}\right)
$$

```
> summary(mod2 <- lm(sat ~ age + sev + anx))
    Coefficients:
                                    Estimate Std. Error t value Pr(>|t|)
    (Intercept) 162.8759 25.7757 6.319 4.59e-06 ***
    age -1.2103 0.3015 -4.015 0.00074
    sev -0.6659 0.8210 -0.811 0.42736
    anx -8.6130 12.2413 -0.704 0.49021
> anova(mod2)
    Analysis of Variance Table
    Response: sat
                            Df Sum Sq Mean Sq F value Pr(>F)
    age 1 3678.4 3678.4 34.74 1.e-05 ***
    sev 1 402.8 402.8 3.80 0.0660.
    anx 
    Residuals 19 2011.6 105.9
```

```
F*}=\frac{(402.8+52.4)/2}{105.9}=2.15 is compared to
> qf(0.95, 2, 19)
[1] 3.521893
```

Because $F^{*}<F(0.95 ; 2,19)=3.52$ we again fail to reject $H_{0}\left(X_{2}\right.$ and X_{3} are not needed).

Model 3: Let's get rid of X_{2} (severity of illness) and X_{3} (anxiety level) and consider the SLR with X_{1} (age)

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}
$$

```
> summary(mod3 <- lm(sat ~ age))
    Coefficients:
        Estimate Std. Error t value Pr(>|t|)
    (Intercept) 121.8318 11.0422 11.033 3.37e-10 ***
    age -1.5270 0.2729 -5.596 1.49e-05 ***
> anova(mod3)
    Analysis of Variance Table
    Response: sat
        Df Sum Sq Mean Sq F value Pr(>F)
    age 1 3678.4 3678.4 31.315 1.49e-05 ***
    Residuals 21 2466.8 117.5
```

Let's construct $95 \% \mathrm{Cl}$'s for β_{1} and for $\mathrm{E}\left(Y_{h}\right)=\mathbf{X}_{h}^{\prime} \boldsymbol{\beta}$, where $\mathbf{X}_{h}^{\prime}=\left(\begin{array}{ll}1 & 40 \\ 50 & 2\end{array}\right)$, based on these 3 models.
> new <- data.frame (age=40, sev=50, anx=2)

Model 3: $(p=2) \quad b_{1} \pm t(0.975 ; 21) \sqrt{\mathrm{MSE} / S_{X X}}=(-2.09,-0.96)$
> predict(mod3, new, interval="confidence",level=0.95)
$\begin{array}{rrrr} & \text { fit } & \text { lwr } & \text { upr } \\ {[1,]} & 60.75029 & 56.0453 & 65.45528\end{array}$
Model 2: $(p=4) \quad b_{1} \pm t(0.975 ; 19) \sqrt{\operatorname{MSE}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{22}}=(-1.84,-0.58)$
> predict(mod2, new, interval="confidence",level=0.95)
fit lwr upr
[1,] 63.9418355 .8513872 .03228
Model 1: $(p=7) \quad b_{1} \pm t(0.975 ; 16) \sqrt{\mathrm{MSE}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{22}}=(-9.59,10.15)$
> predict(mod1,new,interval="confidence",level=0.95)
fit lwr upr
[1,] 63.6787354 .939872 .41767

Correlation of Predictors Multicollinearity

Recall the SLR situation: data $\left(X_{i}, Y_{i}\right), i=1, \ldots, n$

$$
r^{2}=\mathrm{SSR} / \mathrm{SSTO}
$$

describes the amount of total variability in the Y_{i} 's explained by the linear relationship between X and Y.

Because of SSR $=b_{1}^{2} S_{X X}$, where $b_{1}=S_{X Y} / S_{X X}$, and with $S_{Y Y}=$ SSTO, the sample coefficient of correlation between X and Y is

$$
r=\operatorname{sign}\left(b_{1}\right) \sqrt{r^{2}}=\frac{S_{X Y}}{\sqrt{S_{X X} S_{Y Y}}}
$$

and gives us information about the strength of the linear relationship between X and Y, as well as the sign of the slope $(-1 \leq r \leq 1)$.

Patient Satisfaction:

> Correlation between
> $X_{i 2}=$ severity of illness
> $X_{i 3}=$ anxiety level
> $r_{23}=0.7945$ (see below)

For a multiple regression data set $\left(X_{i 1}, \ldots, X_{i, p-1}, Y_{i}\right)$
$r_{j Y}$ is the sample correlation coefficient between X_{j} and Y,
$r_{j k}$ is the sample correlation coefficient between X_{j} and X_{k}.

- If $r_{j k}=0$ then X_{j} and X_{k} are uncorrelated.

When most of the $r_{j k}$'s are close to 1 or -1 , we say we have multicollinearity among the predictors.

```
> cor(patsat)
    sat rat age rev ser anx
age -0.7737 1.0000 0.4666 0.4977
sev -0.5874 0.4666 1.0000 0.7945
anx -0.6023 0.4977 0.7945 1.0000
```


Uncorrelated vs. correlated predictors

Consider the 3 models:
(1) $\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}$
(2) $\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\quad \beta_{2} X_{i 2}$
(3) $\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}$
and the 2 cases:

- X_{1} and X_{2} are uncorrelated ($r_{12} \approx 0$), then
b_{1} will be the same for models (1) and (3)
b_{2} will be the same for models (2) and (3)
$\operatorname{SSR}\left(X_{1} \mid X_{2}\right)=\operatorname{SSR}\left(X_{1}\right)$
$\operatorname{SSR}\left(X_{2} \mid X_{1}\right)=\operatorname{SSR}\left(X_{2}\right)$
- X_{1} and X_{2} are correlated $\left(\left|r_{12}\right| \approx 1\right)$, then b_{1} will be different for models (1) and (3)
b_{2} will be different for models (2) and (3)

$$
\begin{aligned}
& \operatorname{SSR}\left(X_{1} \mid X_{2}\right)<\operatorname{SSR}\left(X_{1}\right) \\
& \operatorname{SSR}\left(X_{2} \mid X_{1}\right)<\operatorname{SSR}\left(X_{2}\right)
\end{aligned}
$$

When $r_{12} \approx 0, X_{1}$ and X_{2} contain no redundant information about Y.
Thus, X_{1} explains the same amount of the SSTO when X_{2} is in the model as it does when X_{2} is not.

Overview of the Effect of Multicollinearity

The standard errors of the parameter estimates are inflated. Thus, Cl's for the regression parameters may be to large to be useful.

Inferences about $\mathrm{E}\left(Y_{h}\right)=\mathbf{X}_{h}^{\prime} \boldsymbol{\beta}$, the mean of a response at \mathbf{X}_{h}^{\prime}, and $Y_{h(n e w)}$, a new random variable observed at \mathbf{X}_{h}, are unaffected for the most part.

The idea of increasing X_{1}, when X_{2} is fixed, may not be reasonable.

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}
$$

Interpretation: β_{1} represents "the change in the mean of Y corresponding to a unit increase in X_{1} holding X_{2} fixed".

Polynomial Regression

Suppose we have SLR type data $\left(X_{i}, Y_{i}\right), i=1, \ldots, n$. If $Y_{i}=f\left(X_{i}\right)+\epsilon_{i}$, where $f(\cdot)$ is unknown, it may be reasonable to approximate $f(\cdot)$ using a polynomial

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\beta_{3} X_{i}^{3}+\cdots
$$

Usually, you wouldn't go beyond the 3rd power.

Standard Procedure:

- Start with a higher order model and try to simplify.
- If X^{k} is retained, so are the lower order terms $X^{k-1}, X^{k-2}, \ldots, X$.

Warning:

- The model $\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}+\cdots+\beta_{n-1} X_{i}^{n-1}$ always fits perfectly $(p=n)$.
- Polynomials in X are highly correlated.

Polynomial Regression Example: Fish Data

$Y_{i}=\log ($ species richness +1$)$ observed at lake $i, i=1, \ldots, 80$, in NY's Adirondack State Park.

We consider the 3rd order model:

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} p H_{i}+\beta_{2} p H_{i}^{2}+\beta_{3} p H_{i}^{3}
$$

```
> lnsr <- log(rch+1)
> ph2 <- ph*ph; ph3 <- ph2*ph
> summary(m3 <- lm(lnsr ~ ph + ph2 + ph3))
    Coefficients:
    Estimate Std. Error t value Pr(>|t|)
    (Intercept) -16.82986 7.44163 -2.262 0.0266 *
    ph 7.07937 3.60045 1.966 0.0529 .
    ph2 -0.87458 0.56759 -1.541 0.1275
    ph3 0.03505 0.02930 1.196 0.2354
```

Residual standard error: 0.4577 on 76 df
Multiple R-Squared: 0.447, Adjusted R-squared: 0.425
F-statistic: 20.45 on 3 and 76 df, p-value: $8.24 \mathrm{e}-10$
> anova(m3)
Analysis of Variance Table
Response: lnsr
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\mathrm{ph} \quad 1 \quad 7.9340 \quad 7.9340 \quad 37.8708 \quad 3.280 \mathrm{e}-08 * * *$
ph2 $14.6180 \quad 4.6180 \quad 22.0428 \quad 1.158 \mathrm{e}-05 * * *$
$\begin{array}{llllll}\text { ph3 } & 1 & 0.2998 & 0.2998 & 1.4308 & 0.2354\end{array}$
Residuals 7615.92210 .2095
Looks like $p H^{3}$ is not needed.

Let's see if we can get away with a SLR:

$$
H_{0}: \beta_{2}=\beta_{3}=0 \quad \text { vs. } \quad H_{A}: \text { not } H_{0}
$$

Test statistic:

$$
\begin{aligned}
F^{*} & =\frac{\operatorname{SSR}\left(p H^{2}, p H^{3} \mid p H\right) / 2}{\operatorname{MSE}\left(p H, p H^{2}, p H^{3}\right)} \\
& =\frac{(4.6180+0.2998) / 2}{0.2095}=11.74
\end{aligned}
$$

Rejection rule: Reject H_{0} if $F^{*}>F(0.95 ; 2,76)=3.1$
Thus, a higher order term is necessary.

Let's test

$$
H_{0}: \beta_{3}=0 \quad \text { vs. } \quad H_{A}: \beta_{3} \neq 0
$$

Test statistic: $F^{*}=\frac{\operatorname{SSR}\left(p H^{3} \mid p H, p H^{2}\right) / 1}{\operatorname{MSE}\left(p H, p H^{2}, p H^{3}\right)}=1.43$
Rejection rule: Reject H_{0} if $F^{*}>F(0.95 ; 1,76)=4.0$
Conclusion: Can't throw away $p H$ and $p H^{2}$ so the model we use is

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} p H_{i}+\beta_{2} p H_{i}^{2}
$$

```
> summary(m2 <- lm(lnsr ~ ph + ph2))
    Coefficients:
        Estimate Std. Error t value Pr(>|t|)
    (Intercept) -8.1535 1.6675 -4.890 5.40e-06 ***
    ph 2.8201 0.5345 5.276 1.18e-06 ***
    ph2 -0.1975 0.0422 -4.682 1.20e-05 ***
```

Residual standard error: 0.459 on 77 df
Multiple R-Squared: 0.436, Adjusted R-squared: 0.422
F-statistic: 29.79 on 2 and $77 \mathrm{df}, \mathrm{p}$-value: $2.6 \mathrm{e}-10$
> anova(m2)
Analysis of Variance Table
Response: lnsr
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
ph $\quad 1 \quad 7.9340 \quad 7.9340 \quad 37.66 \quad 3.396 e^{-08} * * *$
ph2 $1 \quad 4.6180 \quad 4.6180 \quad 21.92 \quad 1.198 \mathrm{e}-05 * * *$
Residuals 7716.22180 .2107

Q: What's the big deal? All we did was get rid of the third order term, $p H_{i}^{3}$.
A: Suppose we are interested in a $95 \% \mathrm{Cl}$ for β_{1} :

Model	b_{1}	s.e.	$\mathrm{Cl}\left(\beta_{1}\right)$
3rd order	7.08	3.60	$(-0.12,14.28)$
2nd order	2.82	0.53	$(+1.75,3.89)$

We can do all of this stuff with more than 1 predictor. Suppose we have $\left(X_{i 1}, X_{i 2}, Y_{i}\right), i=1, \ldots, n$.

2nd order model:

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1}^{2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 1} X_{i 2}
$$

We could test $H_{0}: \beta_{3}=\beta_{4}=\beta_{5}=0$. That is: "Is a 1 st order model sufficient?" Test statistic:

$$
F^{*}=\frac{\operatorname{SSR}\left(X_{1}^{2}, X_{2}^{2}, X_{1} X_{2} \mid X_{1}, X_{2}\right) / 3}{\operatorname{MSE}\left(X_{1}, X_{2}, X_{1}^{2}, X_{2}^{2}, X_{1} X_{2}\right)}
$$

Rejection rule: Reject H_{0} if $F^{*}>F(0.95 ; 3, n-6)$.

