
7. Extra Sums of Squares

Football Example:
Yi = #points scored by UF football team in game i
Xi1 = #games won by opponent in their last 10 games
Xi2 = #healthy starters for UF (out of 22) in game i

Suppose we fit the SLR
Yi = β0 + β1Xi1 + εi

and plot the residuals ei against Xi2:
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Q: What do we conclude from
this ?

A: The residuals appear to be
linearly related to Xi2, thus, Xi2

should be put into the model.
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Another Example:
Yi = height of a person
Xi1 = length of left foot
Xi2 = length of right foot

Suppose we fit the SLR
Yi = β0 + β1Xi1 + εi

and plot the residuals ei against Xi2:
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Q: Why no pattern?

A: Xi2 is providing the same
information about Y that Xi1

does. Thus, even though Xi2 is
a good predictor of height, it is
unnecessary if Xi1 is already in
the model.
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Extra sums of squares provide a means of formally testing whether one set of
predictors is necessary given that another set is already in the model.

Recall that

SSTO = SSR + SSE
n∑

i=1

(Yi − Ȳ )2 =
n∑

i=1

(Ŷi − Ȳ )2 +
n∑

i=1

(Yi − Ŷi)2

R2 =
SSR

SSTO

Important Fact: R2 will never decrease when a predictor is added to a regression
model.
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Consider the two different models:

E(Yi) = β0 + β1Xi1

E(Yi) = β∗0 + β∗1Xi1 + β∗2Xi2

Q: Is SSTO the same for both models?

A: Yes! Thus, SSR will never decrease when a predictor is added to a model.
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Since SSE and SSR are different depending upon which predictors are in the
model, we use the following notation:

SSR(X1): SSR for a model with only X1

SSR(X1, X2): SSR for a model with X1 and X2

SSE(X1) and SSE(X1, X2) have analogous def’s

Note

SSTO = SSR(X1) + SSE(X1)

SSTO = SSR(X1, X2) + SSE(X1, X2)

We also know SSR(X1, X2) ≥ SSR(X1).

Thus SSE(X1, X2) ≤ SSE(X1).

Conclusion: SSE never increases when a predictor is added to a model.

7



Reconsider the Example:
Yi = height of a person
Xi1 = length of left foot; Xi2 = length of right foot

Q: What do you think about the quantity

SSR(X1, X2)− SSR(X1)

A: Probably small because if we know the length of the left foot, knowing the
length of the right won’t help.

Notation: Extra Sum of Squares

SSR(X2|X1) = SSR(X1, X2)− SSR(X1)

SSR(X2|X1) tells us how much we gain by adding X2 to the model given that
X1 is already in the model.
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We define SSR(X1|X2) = SSR(X1, X2)− SSR(X2)

We can do this with as many predictors as we like, e.g.

SSR(X3, X5|X1, X2, X4) = SSR(X1, X2, X3, X4, X5)− SSR(X1, X2, X4)

= SSR(all predictors)− SSR(given predictors)
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Suppose our model is:

E(Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi3

Consider tests involving β1, β2, and β3.

One Beta: H0 : βk = 0, k = 1, 2, or 3
HA : not H0

In words, this test says “Do we need Xk given that the other two predictors are
in the model?”

Can do this with a t-test:

t∗ = bk/
√

MSE · [(X′X)−1]k+1,k+1
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Two Betas: (some of the Betas)

H0 :β1=β2=0 H0 :β1=β3=0 H0 :β2=β3=0
HA : not H0 HA : not H0 HA : not H0

For example, the first of these asks “Do we need X1 and X2 given that X3 is in
the model?”

All Betas: H0 : β1 = β2 = β3 = 0
HA : not H0

This is just the overall F-Test

We can do all of these tests using extra sum of squares.
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Here is the ANOVA table corresponding to the model

E(Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi3

ANOVA Table:

Source of
variation SS df

Regression SSR(X1, X2, X3) p− 1 = 3

Error SSE(X1, X2, X3) n− p = n− 4

Total SSTO n− 1
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Partition SSR(X1, X2, X3) into 3 one df extra sums of squares. One way to do it
is:

SSR(X1, X2, X3) = SSR(X1) + SSR(X2|X1) + SSR(X3|X1, X2)

Modified ANOVA Table:

Source of
variation SS df

Regression SSR(X1, X2, X3) 3

SSR(X1) 1
SSR(X2|X1) 1
SSR(X3|X1, X2) 1

Error SSE(X1, X2, X3) n− 4

Total SSTO n− 1

Note: there are 6 equivalent ways of partitioning SSR(X1, X2, X3).
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Three Tests: (p = 4 in this example)

• One Beta: H0 : β2 = 0 vs. HA : not H0

Test statistic: F ∗ = SSR(X2|X1, X3)/1
SSE(X1, X2, X3)/(n− p)

Rejection rule: Reject H0 if F ∗ > F (1− α; 1, n− p)

• Some Betas: H0 : β2 = β3 = 0 vs. HA : not H0

Test statistic: F ∗ = SSR(X2, X3|X1)/2
SSE(X1, X2, X3)/(n− p)

Rejection rule: Reject H0 if F ∗ > F (1− α; 2, n− p)

• All Betas: H0 : β1 = β2 = β3 = 0 vs. HA : not H0

Test statistic: F ∗ = SSR(X1, X2, X3)/3
SSE(X1, X2, X3)/(n− p)

Rejection rule: Reject H0 if F ∗ > F (1− α; p− 1, n− p)
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Let’s return to the model

E(Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi3

and think about testing

H0 : β2 = β3 = 0 vs. HA : not H0

Test statistic: F ∗ = SSR(X2, X3|X1)/2
MSE(X1, X2, X3)

How do we get SSR(X2, X3|X1) if we have SSR(X1), SSR(X2|X1), and
SSR(X3|X1, X2)?

SSR(X2, X3|X1) = SSR(X2|X1) + SSR(X3|X1, X2)

What if we would have SSR(X2), SSR(X1|X2), and SSR(X3|X1, X2)? Stuck!
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lm(Y ∼ X1+X2+X3) lm(Y ∼ X2+X1+X3)
SSR(X1) SSR(X2)
SSR(X2|X1) SSR(X1|X2)
SSR(X3|X1, X2) SSR(X3|X1, X2)
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Example: Patient Satisfaction

Yi = patient satisfaction (n = 23)
Xi1 = patient’s age in years
Xi2 = severity of illness (index)
Xi3 = anxiety level (index)

Model 1: Consider the model with all 3 pairwise interactions included (p = 7)

E(Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi1Xi2 + β5Xi1Xi3 + β6Xi2Xi3

and think about testing the 3 interaction terms:

H0 : β4 = β5 = β6 = 0 vs. HA : not H0

17



Denote the interaction XjXk by Ijk. Then

Test statistic: F ∗ = SSR(I12, I13, I23|X1, X2, X3)/3
MSE(X1, X2, X3, I12, I13, I23)

Rejection rule: Reject H0 if F ∗ > F (1− α; 3, n− p)

How do we get this extra sum of squares?
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Q: How many partitions of SSR(X1, X2, X3, I12, I13, I23) into 6 one df extra sums
of squares are there?
A: 6× 5× 4× 3× 2 = 6! = 720

Q: Which ones will allow us to compute F ∗?
A: The ones with I12, I13, and I23 last.

SSR(·) = SSR(X1) + SSR(X2|X1) + SSR(X3|X1, X2)

+SSR(I12|X1, X2, X3)

+SSR(I13|X1, X2, X3, I12)

+SSR(I23|X1, X2, X3, I12, I13)

Add the last 3 (the interaction terms) to get SSR(I12, I13, I23|X1, X2, X3)
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> summary(mod1 <- lm(sat ~ age + sev + anx + age:sev + age:anx + sev:anx))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 241.57104 169.91520 1.422 0.174
age 0.28112 4.65467 0.060 0.953
sev -6.32700 5.40579 -1.170 0.259
anx 24.02586 101.65309 0.236 0.816
age:sev 0.06969 0.10910 0.639 0.532
age:anx -2.20711 1.74936 -1.262 0.225
sev:anx 1.16347 1.98054 0.587 0.565
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> anova(mod1)
Analysis of Variance Table
Response: sat

Df Sum Sq Mean Sq F value Pr(>F)
age 1 3678.44 3678.44 32.20 3.45e-05 ***
sev 1 402.78 402.78 3.53 0.079 .
anx 1 52.41 52.41 0.46 0.508
sev:age 1 0.02 0.02 0.00 0.989
sev:anx 1 1.81 1.81 0.02 0.901
age:anx 1 181.85 181.85 1.59 0.225
Residuals 16 1827.90 114.24

F ∗ = (0.02+1.81+181.85)/3
114.24 = 0.54 is compared to F (0.95; 3, 16)

> qf(0.95, 3, 16)
[1] 3.238872

Because F ∗ < F (0.95; 3, 16) = 3.24 we fail to reject H0 (Interactions are not
needed).
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Model 2: Let’s get rid of the interactions and consider

E(Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi3

Do we need X2 (severity of illness) and X3 (anxiety level) if X1 (age) is already
in the model?

H0 : β2 = β3 = 0 vs. HA : not H0

Test statistic: F ∗ = SSR(X2, X3|X1)/2
MSE(X1, X2, X3)

Rejection rule: Reject H0 if F ∗ > F (1− α; 2, n− p)

How do we get this extra sum of squares?

SSR(X2, X3|X1) = SSR(X2|X1) + SSR(X3|X1, X2)
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> summary(mod2 <- lm(sat ~ age + sev + anx))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 162.8759 25.7757 6.319 4.59e-06 ***
age -1.2103 0.3015 -4.015 0.00074 ***
sev -0.6659 0.8210 -0.811 0.42736
anx -8.6130 12.2413 -0.704 0.49021

> anova(mod2)
Analysis of Variance Table
Response: sat

Df Sum Sq Mean Sq F value Pr(>F)
age 1 3678.4 3678.4 34.74 1.e-05 ***
sev 1 402.8 402.8 3.80 0.0660 .
anx 1 52.4 52.4 0.49 0.4902
Residuals 19 2011.6 105.9
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F ∗ = (402.8+52.4)/2
105.9 = 2.15 is compared to

> qf(0.95, 2, 19)
[1] 3.521893

Because F ∗ < F (0.95; 2, 19) = 3.52 we again fail to reject H0 (X2 and X3 are
not needed).
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Model 3: Let’s get rid of X2 (severity of illness) and X3 (anxiety level) and
consider the SLR with X1 (age)

E(Yi) = β0 + β1Xi1

> summary(mod3 <- lm(sat ~ age))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 121.8318 11.0422 11.033 3.37e-10 ***
age -1.5270 0.2729 -5.596 1.49e-05 ***

> anova(mod3)
Analysis of Variance Table
Response: sat

Df Sum Sq Mean Sq F value Pr(>F)
age 1 3678.4 3678.4 31.315 1.49e-05 ***
Residuals 21 2466.8 117.5
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Let’s construct 95% CI’s for β1 and for E(Yh) = X′
hβ, where X′

h = (1 40 50 2),
based on these 3 models.

> new <- data.frame(age=40, sev=50, anx=2)
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Model 3: (p = 2) b1 ± t(0.975; 21)
√

MSE/SXX = (−2.09,−0.96)

> predict(mod3,new,interval="confidence",level=0.95)
fit lwr upr

[1,] 60.75029 56.0453 65.45528

Model 2: (p = 4) b1 ± t(0.975; 19)
√

MSE[(X′X)−1]22 = (−1.84,−0.58)

> predict(mod2,new,interval="confidence",level=0.95)
fit lwr upr

[1,] 63.94183 55.85138 72.03228

Model 1: (p = 7) b1 ± t(0.975; 16)
√

MSE[(X′X)−1]22 = (−9.59, 10.15)

> predict(mod1,new,interval="confidence",level=0.95)
fit lwr upr

[1,] 63.67873 54.9398 72.41767
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Correlation of Predictors Multicollinearity

Recall the SLR situation: data (Xi, Yi), i = 1, . . . , n

r2 = SSR/SSTO

describes the amount of total variability in the Yi’s explained by the linear
relationship between X and Y .

Because of SSR = b2
1SXX, where b1 = SXY /SXX, and with SY Y = SSTO, the

sample coefficient of correlation between X and Y is

r = sign(b1)
√

r2 =
SXY√

SXXSY Y

and gives us information about the strength of the linear relationship between X
and Y , as well as the sign of the slope (−1 ≤ r ≤ 1).
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Patient Satisfaction:

Correlation between

Xi2 = severity of illness
Xi3 = anxiety level

r23 = 0.7945 (see below)
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For a multiple regression data set (Xi1, . . . , Xi,p−1, Yi)

rjY is the sample correlation coefficient between Xj and Y ,

rjk is the sample correlation coefficient between Xj and Xk.

• If rjk = 0 then Xj and Xk are uncorrelated.

When most of the rjk’s are close to 1 or −1, we say we have multicollinearity
among the predictors.

> cor(patsat)
sat age sev anx

sat 1.0000 -0.7737 -0.5874 -0.6023
age -0.7737 1.0000 0.4666 0.4977
sev -0.5874 0.4666 1.0000 0.7945
anx -0.6023 0.4977 0.7945 1.0000
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Uncorrelated vs. correlated predictors

Consider the 3 models:

(1) E(Yi) = β0 + β1Xi1

(2) E(Yi) = β0 + β2Xi2

(3) E(Yi) = β0 + β1Xi1 + β2Xi2

and the 2 cases:

• X1 and X2 are uncorrelated (r12 ≈ 0), then
b1 will be the same for models (1) and (3)
b2 will be the same for models (2) and (3)
SSR(X1|X2) = SSR(X1)
SSR(X2|X1) = SSR(X2)
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• X1 and X2 are correlated (|r12| ≈ 1), then
b1 will be different for models (1) and (3)
b2 will be different for models (2) and (3)
SSR(X1|X2) < SSR(X1)
SSR(X2|X1) < SSR(X2)

When r12 ≈ 0, X1 and X2 contain no redundant information about Y .

Thus, X1 explains the same amount of the SSTO when X2 is in the model as it
does when X2 is not.
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Overview of the Effect of Multicollinearity

The standard errors of the parameter estimates are inflated. Thus, CI’s for the
regression parameters may be to large to be useful.

Inferences about E(Yh) = X′
hβ, the mean of a response at X′

h, and Yh(new), a
new random variable observed at Xh, are unaffected for the most part.

The idea of increasing X1, when X2 is fixed, may not be reasonable.

E(Yi) = β0 + β1Xi1 + β2Xi2

Interpretation: β1 represents “the change in the mean of Y corresponding to a
unit increase in X1 holding X2 fixed”.
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Polynomial Regression

Suppose we have SLR type data (Xi, Yi), i = 1, . . . , n. If Yi = f(Xi) + εi, where
f(·) is unknown, it may be reasonable to approximate f(·) using a polynomial

E(Yi) = β0 + β1Xi + β2X
2
i + β3X

3
i + · · ·

Usually, you wouldn’t go beyond the 3rd power.

Standard Procedure:
• Start with a higher order model and try to simplify.
• If Xk is retained, so are the lower order terms Xk−1, Xk−2, . . . , X.

Warning:
• The model E(Yi) = β0 + β1Xi + · · ·+ βn−1X

n−1
i always fits perfectly (p = n).

• Polynomials in X are highly correlated.
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Polynomial Regression Example: Fish Data

Yi = log(species richness + 1) observed at lake i, i = 1, . . . , 80, in NY’s Adiron-
dack State Park.

We consider the 3rd order model:

E(Yi) = β0 + β1pHi + β2pH2
i + β3pH3

i

> lnsr <- log(rch+1)
> ph2 <- ph*ph; ph3 <- ph2*ph
> summary(m3 <- lm(lnsr ~ ph + ph2 + ph3))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -16.82986 7.44163 -2.262 0.0266 *
ph 7.07937 3.60045 1.966 0.0529 .
ph2 -0.87458 0.56759 -1.541 0.1275
ph3 0.03505 0.02930 1.196 0.2354
---
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Residual standard error: 0.4577 on 76 df
Multiple R-Squared: 0.447, Adjusted R-squared: 0.425
F-statistic: 20.45 on 3 and 76 df, p-value: 8.24e-10

> anova(m3)
Analysis of Variance Table
Response: lnsr

Df Sum Sq Mean Sq F value Pr(>F)
ph 1 7.9340 7.9340 37.8708 3.280e-08 ***
ph2 1 4.6180 4.6180 22.0428 1.158e-05 ***
ph3 1 0.2998 0.2998 1.4308 0.2354
Residuals 76 15.9221 0.2095

Looks like pH3 is not needed.
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Let’s see if we can get away with a SLR:

H0 : β2 = β3 = 0 vs. HA : not H0

Test statistic:

F ∗ =
SSR(pH2, pH3|pH)/2
MSE(pH, pH2, pH3)

=
(4.6180 + 0.2998)/2

0.2095
= 11.74

Rejection rule: Reject H0 if F ∗ > F (0.95; 2, 76) = 3.1

Thus, a higher order term is necessary.
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Let’s test

H0 : β3 = 0 vs. HA : β3 6= 0

Test statistic: F ∗ = SSR(pH3|pH, pH2)/1
MSE(pH, pH2, pH3)

= 1.43

Rejection rule: Reject H0 if F ∗ > F (0.95; 1, 76) = 4.0

Conclusion: Can’t throw away pH and pH2 so the model we use is

E(Yi) = β0 + β1pHi + β2pH2
i

> summary(m2 <- lm(lnsr ~ ph + ph2))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.1535 1.6675 -4.890 5.40e-06 ***
ph 2.8201 0.5345 5.276 1.18e-06 ***
ph2 -0.1975 0.0422 -4.682 1.20e-05 ***
---

38



Residual standard error: 0.459 on 77 df
Multiple R-Squared: 0.436, Adjusted R-squared: 0.422
F-statistic: 29.79 on 2 and 77 df, p-value: 2.6e-10

> anova(m2)
Analysis of Variance Table
Response: lnsr

Df Sum Sq Mean Sq F value Pr(>F)
ph 1 7.9340 7.9340 37.66 3.396e-08 ***
ph2 1 4.6180 4.6180 21.92 1.198e-05 ***
Residuals 77 16.2218 0.2107
---
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Q: What’s the big deal? All we did was get rid of the third order term, pH3
i .

A: Suppose we are interested in a 95% CI for β1:

Model b1 s.e. CI(β1)
3rd order 7.08 3.60 (−0.12, 14.28)
2nd order 2.82 0.53 (+1.75, 3.89)
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We can do all of this stuff with more than 1 predictor. Suppose we have
(Xi1, Xi2, Yi), i = 1, . . . , n.

2nd order model:

E(Yi) = β0 + β1Xi1 + β2Xi2 + β3X
2
i1 + β4X

2
i2 + β5Xi1Xi2

We could test H0 : β3 = β4 = β5 = 0. That is: “Is a 1st order model sufficient?”

Test statistic:

F ∗ =
SSR(X2

1 , X2
2 , X1X2|X1, X2)/3

MSE(X1, X2, X
2
1 , X2

2 , X1X2)

Rejection rule: Reject H0 if F ∗ > F (0.95; 3, n− 6).
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