6. Multiple Linear Regression

SLR: 1 predictor X, MLR: more than 1 predictor

Example data set:

$Y_{i}=$ \#points scored by UF football team in game i
$X_{i 1}=\#$ games won by opponent in their last 10 games
$X_{i 2}=\#$ healthy starters for UF (out of 22) in game i

i	points	$X_{i 1}$	$X_{i 2}$
1	47	6	18
2	24	9	16
3	60	3	19
\vdots	\vdots	\vdots	\vdots

Simplest Multiple Linear Regression (MLR) Model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\epsilon_{i}, \quad i=1,2, \ldots, n
$$

- $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$
- $\beta_{0}, \beta_{1}, \beta_{2}$, and σ^{2} are unknown parameters
- $X_{i j}$'s are known constants.

SLR: $\mathbf{E}(Y)=\beta_{0}+\beta_{1} X$
β_{1} is the change in $\mathrm{E}(Y)$ corresponding to a unit increase in X.
MLR: $\mathrm{E}(Y)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}$
When we have more than 1 predictor, we have to worry about how they affect each other.

Suppose we fix $X_{i 1}=5$ (games won by i th opponent):

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right) & =\beta_{0}+\beta_{1}(5)+\beta_{2} X_{i 2} \\
& =\left(\beta_{0}+\beta_{1}(5)\right)+\beta_{2} X_{i 2}
\end{aligned}
$$

Suppose we fix $X_{i 1}=7$:

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right) & =\beta_{0}+\beta_{1}(7)+\beta_{2} X_{i 2} \\
& =\left(\beta_{0}+\beta_{1}(7)\right)+\beta_{2} X_{i 2}
\end{aligned}
$$

We've got SLR models with different intercepts but equal slopes.
Plot of $\mathrm{E}(Y)$ vs X_{2} for fixed values of X_{1}

By this model, we assumed that, for any fixed value of $X_{i 1}$ (opponent wins), the change in $\mathrm{E}(Y)$ corresponding to the addition of 1 healthy starter is β_{2} for all games.
Is this reasonable?

Suppose AU is winless in their last 10 games. Our model says that if we add 1 healthy starter, we expect that UF scores β_{2} more points.

Suppose BU won their last 10 games. Again, if we add 1 healthy starter, we expect to score β_{2} more points.

Starters probably won't play against AU, so we expect to gain nothing if a starter becomes healthy.

Maybe the plot should look like:

Smaller slope since starters are less important against bad teams.

Q: How can we change our model to allow for this?

A: Add an interaction term

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1} X_{i 2}
$$

This function is not a simple plane any more!
When $X_{i 1}=5$:

$$
\mathrm{E}\left(Y_{i}\right)=\left(\beta_{0}+\beta_{1}(5)\right)+\left(\beta_{2}+\beta_{3}(5)\right) X_{i 2}
$$

When $X_{i 1}=7$:

$$
\mathbf{E}\left(Y_{i}\right)=\left(\beta_{0}+\beta_{1}(7)\right)+\left(\beta_{2}+\beta_{3}(7)\right) X_{i 2}
$$

Now the gain in expected points corresponding to the addition of 1 healthy starter depends on $X_{i 1}$ as it should.

$$
\begin{aligned}
& \beta_{1}<0 \\
& \beta_{2}>0, \beta_{3}>0
\end{aligned}
$$

General Linear Regression Model

Data $\left(X_{i 1}, X_{i 2}, \ldots, X_{i, p-1}, Y_{i}\right), i=1,2, \ldots, n$
Model Equation and Assumptions

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p-1} X_{i, p-1}+\epsilon_{i}
$$

- $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$
- $\beta_{0}, \beta_{1}, \beta_{2}, \ldots, \beta_{p-1}$ and σ^{2} are unknown param's
- $X_{i j}$'s are known constants.

Two cases:

1. $p-1$ different predictors
2. some of the predictors are functions of the others
(a) polynomial regression

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\epsilon_{i}
$$

Let $Z_{i 1}=X_{i}$ and $Z_{i 2}=X_{i}^{2}$ then

$$
Y_{i}=\beta_{0}+\beta_{1} Z_{i 1}+\beta_{2} Z_{i 2}+\epsilon_{i}
$$

(b) interaction effects

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1} X_{i 2}+\epsilon_{i}
$$

Let $X_{i 3}=X_{i 1} X_{i 2}$ and we're back to the general linear regression model
(c) both of (a) and (b)

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1}^{2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 1} X_{i 2}+\epsilon_{i}
$$

With $Z_{i 1}=X_{i 1}, Z_{i 2}=X_{i 2}, Z_{i 3}=X_{i 1}^{2}, Z_{i 4}=X_{i 2}^{2}, Z_{i 5}=X_{i 1} X_{i 2}$ this transforms to the general linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} Z_{i 1}+\beta_{2} Z_{i 2}+\beta_{3} Z_{i 3}+\beta_{4} Z_{i 4}+\beta_{5} Z_{i 5}+\epsilon_{i}
$$

General Linear Model in Matrix Terms

$$
\begin{gathered}
\mathbf{Y}_{n \times 1}=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right] \quad \mathbf{X}_{n \times p}=\left[\begin{array}{ccccc}
1 & X_{11} & X_{12} & \ldots & X_{1, p-1} \\
1 & X_{21} & X_{22} & \ldots & X_{2, p-1} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & X_{n 1} & X_{n 2} & \ldots & X_{n, p-1}
\end{array}\right] \\
\boldsymbol{\beta}_{p \times 1}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{p-1}
\end{array}\right] \quad \boldsymbol{\epsilon}_{n \times 1}=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]
\end{gathered}
$$

Model:

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

Assumptions:

- $\boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- $\boldsymbol{\beta}$ and σ^{2} are unknown parameters
- \mathbf{X} is a $(n \times p)$ matrix of fixed known constants

Least Squares Estimates:

$$
\mathbf{b}_{p \times 1}=\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{p-1}
\end{array}\right]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

Fitted Values:

$$
\begin{aligned}
\hat{\mathbf{Y}}_{n \times 1} & =\left[\begin{array}{c}
\hat{Y}_{1} \\
\hat{Y}_{2} \\
\vdots \\
\hat{Y}_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{0}+b_{1} X_{11}+\ldots+b_{p-1} X_{1, p-1} \\
b_{0}+b_{1} X_{21}+\ldots+b_{p-1} X_{2, p-1} \\
\vdots \\
b_{0}+b_{1} X_{n 1}+\ldots+b_{p-1} X_{n, p-1}
\end{array}\right] \\
& =\mathbf{X} \mathbf{b}
\end{aligned}
$$

Residuals:

$$
\begin{aligned}
\mathbf{e}_{n \times 1} & =\mathbf{Y}-\hat{\mathbf{Y}}=\mathbf{Y}-\mathbf{X} \mathbf{b}=\mathbf{Y}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{Y}
\end{aligned}
$$

with the $(n \times n)$ hat matrix $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$

ANalysis Of VAriance

Formulas are exactly the same. Remember

$$
\begin{array}{rlc}
\mathrm{SSTO} & = & \mathrm{SSR}+ \\
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} & =\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
\end{array}
$$

but their degrees of freedom $(d f)$ change:

- SSTO still has $n-1 d f$
- SSR now has $p-1$ because of the p param's in \hat{Y}_{i}
- SSE therefore has $n-p d f$

ANOVA Table for MLR:

Source variat.	Sum of Squares (SS)	df	mean SS
Regr.	$\mathrm{SSR}=\sum_{i}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$	$p-1$	$\frac{\mathrm{SSR}}{p-1}$
Error	$\mathrm{SSE}=\sum_{i}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$	$n-p$	$\frac{\mathrm{SSE}}{n-p}$
Total	$\mathrm{SSTO}=\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}$	$n-1$	

Overall F-Test for Regression Relation

$H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{p-1}=0$
H_{A} : not all $\beta_{j}(j=1, \ldots, p-1)$ equal zero.
H_{0} states that all predictors X_{1}, \ldots, X_{p-1} are useless (no relation between Y and the set of X variables), whereas H_{A} says that at least one is useful.

Test Statistic

$$
F^{*}=\frac{\mathrm{MSR}}{\mathrm{MSE}}
$$

Rejection Rule: reject H_{0}, if $F^{*}>F(1-\alpha ; p-1, n-p)$
Note: when $p-1=1$, this is the F-test for $H_{0}: \beta_{1}=0$ in the SLR.

Coefficient of Multiple Determination: it's the same as in SLR's,

$$
R^{2}=\frac{\mathrm{SSR}}{\mathrm{SSTO}}=1-\frac{\mathrm{SSE}}{\mathrm{SSTO}}
$$

It measures the relative reduction in the total variation (SSTO) due to the MLR.

Inferences about Regression Parameters

Since with $\mathbf{C}_{p \times n}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ we can write

$$
\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}=\left[\begin{array}{ccc}
c_{11} & \ldots & c_{1 n} \\
\vdots & \vdots & \vdots \\
c_{p 1} & \ldots & c_{p n}
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right]
$$

Thus, every element of \mathbf{b} is a linear combination of the Y^{\prime} 's and is therefore a normal r.v.

Again

$$
E(\mathbf{b})=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathrm{E}(\mathbf{Y})=\boldsymbol{\beta}
$$

Thus \mathbf{b} is an unbiased estimator for $\boldsymbol{\beta}$. Moreover

$$
\operatorname{Var}(\mathbf{b})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

This means that for any $k=0,1, \ldots, p-1$ we have

$$
b_{k} \sim N\left(\beta_{k}, \sigma^{2} \cdot\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{k+1, k+1}\right)
$$

where $[\cdot]_{j j}$ is the j th diagonal element of the matrix.

Thus

$$
\frac{b_{k}-\beta_{k}}{\sqrt{\sigma^{2} \cdot\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{k+1, k+1}}} \sim N(0,1)
$$

and because the MSE now has $d f=n-p$

$$
\frac{b_{k}-\beta_{k}}{\sqrt{\mathrm{MSE} \cdot\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{k+1, k+1}}} \sim t(n-p)
$$

Using this we can construct tests and Cl's for each individual β_{k} Test Statistic:

$$
t^{*}=\frac{b_{k}}{\sqrt{\mathrm{MSE} \cdot\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{k+1, k+1}}}
$$

Rejection Rule: reject H_{0} if $t^{*}>t(1-\alpha / 2 ; n-p)$

- $(1-\alpha) 100 \% \mathbf{C l}$ for the parameter β_{k}

$$
b_{k} \pm t(1-\alpha / 2 ; n-p) \sqrt{\mathrm{MSE} \cdot\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{k+1, k+1}}
$$

- $(1-\alpha) 100 \% \mathbf{C l}$ for the mean of Y at $\mathbf{X}_{h}=\left(1 X_{h 1} X_{h 2} \ldots X_{h, p-1}\right)^{\prime}$

Say we want a CI for the mean \#points scored by UF when the opponent win $90 \%\left(X_{h 1}=9\right)$ and there are 20 healthy starters $\left(X_{h 2}=20\right)$. So $\mathbf{X}_{h}=\left(\begin{array}{ll}1 & 9\end{array}\right)^{\prime}$

The point estimate of $\mathrm{E}\left(Y_{h}\right)=\mathbf{X}_{h}^{\prime} \boldsymbol{\beta}$ is

$$
\widehat{\mathrm{E}}\left(Y_{h}\right)=\hat{Y}_{h}=\mathbf{X}_{h}^{\prime} \mathbf{b}
$$

Because this equals $\mathbf{X}_{h}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{h}^{\prime} \mathbf{Y}$, it is a linear combination of normals and is thus normal with

$$
\mathrm{E}\left(\widehat{\mathrm{E}}\left(Y_{h}\right)\right)=\mathbf{X}_{h}^{\prime} \mathrm{E}(\mathbf{b})=\mathbf{X}_{h}^{\prime} \boldsymbol{\beta}
$$

(unbiased) and

$$
\operatorname{Var}\left(\widehat{\mathrm{E}}\left(Y_{h}\right)\right)=\mathbf{X}_{h}^{\prime} \operatorname{Var}(\mathbf{b}) \mathbf{X}_{h}=\sigma^{2} \mathbf{X}_{h}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{h}
$$

Thus

$$
\frac{\widehat{\mathrm{E}}\left(Y_{h}\right)-\mathbf{X}_{h}^{\prime} \boldsymbol{\beta}}{\sqrt{\sigma^{2} \cdot \mathbf{X}_{h}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{h}}} \sim N(0,1)
$$

and

$$
\frac{\widehat{\mathrm{E}}\left(Y_{h}\right)-\mathbf{X}_{h}^{\prime} \boldsymbol{\beta}}{\sqrt{\mathrm{MSE} \cdot \mathbf{X}_{h}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{h}}} \sim t(n-p)
$$

The Cl for $\mathbf{X}_{h}^{\prime} \boldsymbol{\beta}$ is constructed in the usual manner.

- $(1-\alpha) 100 \%$ Prediction Interval for a New Observation at $\mathbf{X}_{h}=$ $\left(1 X_{h 1} X_{h 2} \ldots X_{h, p-1}\right)^{\prime}$

Call the new observation $Y_{h(n e w)}$ and use

$$
\frac{Y_{h(\text { new })}-\widehat{\mathrm{E}}\left(Y_{h(\text { new })}\right)}{\sqrt{\operatorname{MSE} \cdot\left\{1+\mathbf{X}_{h}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{h}\right\}}} \sim t(n-p)
$$

with

$$
\widehat{\mathrm{E}}\left(Y_{h(n e w)}\right)=\mathbf{X}_{h}^{\prime} \mathbf{b}
$$

House Price Example using \mathbf{R}

```
> houses <- read.table("houses.dat", col.names =
+ c("price", "area", "bed", "bath", "new"))
> attach(houses)
> plot(area, price); plot(bed, price)
```



```
> model <- lm(price ~ area + bed)
> model
Coefficients:
(Intercept) area bed
    -22.393 76.742 -1.468
> model.i <- lm(price ~ area + bed + area*bed)
> summary(model.i, corr=T)
Coefficients:
    Estimate Std. Error t value Pr (>|t|)
(Intercept) 18.549 26.577 0.698 0.48704
\begin{tabular}{lllll} 
area & 47.595 & 18.037 & 2.639 & 0.00982
\end{tabular}
bed -13.416 8.379 -1.601 0.11292
area:bed 8.270 4.903 1.687 0.09515 .
Residual standard error: 19.37 on 89 df Multiple R-Squared: 0.814,
Adjusted R-squared: 0.8078 F-statistic: 129.9 on 3 and 89 df,
p-value: O
```



```
> anova(model.i)
Analysis of Variance Table
Response: price
        Df Sum Sq Mean Sq F value Pr(>F)
area 1 145097 145097 386.6340 < 2e-16 ***
bed 1 40 40 0.1076 0.74371
area:bed 1 1068 1068 2.8453 0.09515 .
Residuals 89 33400 375
```

Sig.codes: $0{ }^{(* * * '} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1

