5. Matrix Algebra
 A Prelude to Multiple Regression

Matrices are arrays of numbers and are denoted by boldface (capital) symbols.
Example: a 2×2 matrix (always \#rows \times \#columns)

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right]
$$

Example: a 4×2 matrix \mathbf{B}, and a 2×3 matrix \mathbf{C}

$$
\mathbf{B}=\left[\begin{array}{rr}
4 & 6 \\
1 & 10 \\
5 & 7 \\
12 & 2
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{lll}
1 & 1 & 4 \\
2 & 4 & 3
\end{array}\right]
$$

In general, an $r \times c$ matrix is given by

$$
\mathbf{A}_{r \times c}=\left[\begin{array}{cccccc}
a_{11} & a_{12} & \cdots & a_{1 j} & \cdots & a_{1 c} \\
a_{21} & a_{22} & \cdots & a_{2 j} & \cdots & a_{2 c} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{i 1} & a_{i 2} & \cdots & a_{i j} & \cdots & a_{i c} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{r 1} & a_{r 2} & \cdots & a_{r j} & \cdots & a_{r c}
\end{array}\right]
$$

or in abbreviated form

$$
\mathbf{A}_{r \times c}=\left[a_{i j}\right], \quad i=1,2, \ldots, r, j=1,2, \ldots, c
$$

1st subscript gives row\#, 2nd subscript gives column\#

Where is a_{79} or a_{44} ?

A matrix \mathbf{A} is called square, if it has the same $\#$ of rows and columns $(r=c)$. Example:

$$
\mathbf{A}_{2 \times 2}=\left[\begin{array}{ll}
2.7 & 7.0 \\
1.4 & 3.4
\end{array}\right]
$$

Matrices having either 1 row $(r=1)$ or 1 column $(c=1)$ are called vectors.
Example:
column vector $\mathbf{A}(c=1)$ and row vector $\mathbf{C}^{\prime}(r=1)$

$$
\mathbf{A}=\left[\begin{array}{r}
4 \\
7 \\
13
\end{array}\right], \quad \mathbf{C}^{\prime}=\left[\begin{array}{llll}
c_{1} & c_{2} & c_{3} & c_{4}
\end{array}\right]
$$

Row vectors always have the prime!

Transpose: \mathbf{A}^{\prime} is the transpose of \mathbf{A} where

$$
\mathbf{A}=\left[\begin{array}{rrrr}
3 & 1 & 5 & 6 \\
2 & 4 & 3 & 7 \\
10 & 0 & 1 & 2
\end{array}\right], \quad \mathbf{A}^{\prime}=\left[\begin{array}{rrr}
3 & 2 & 10 \\
1 & 4 & 0 \\
5 & 3 & 1 \\
6 & 7 & 2
\end{array}\right]
$$

\mathbf{A}^{\prime} is obtained by interchanging columns \& rows of \mathbf{A}
$a_{i j}$ is the typical element of \mathbf{A}
$a_{i j}^{\prime}$ is the typical element of \mathbf{A}^{\prime}

$$
a_{i j}=a_{j i}^{\prime} \quad\left(a_{12}=a_{21}^{\prime}\right)
$$

Equality of Matrices: Two matrices \mathbf{A} and \mathbf{B} are said to be equal if they are of the same dimension and all corresponding elements are equal.
$\mathbf{A}_{r \times c}=\mathbf{B}_{r \times c}$ means $a_{i j}=b_{i j}, i=1, \ldots, r, j=1, \ldots, c$.

Addition and Subtraction: To add or subtract matrices they must be of the same dimension. The result is another matrix of this dimension. If

$$
\mathbf{A}_{3 \times 2}=\left[\begin{array}{rr}
4 & 6 \\
1 & 10 \\
5 & 7
\end{array}\right], \quad \mathbf{B}_{3 \times 2}=\left[\begin{array}{ll}
2 & 3 \\
0 & 1 \\
7 & 5
\end{array}\right]
$$

then its sum and its difference is calculated elementwise

$$
\mathbf{C}=\mathbf{A}+\mathbf{B}=\left[\begin{array}{rr}
4+2 & 6+3 \\
1+0 & 10+1 \\
5+7 & 7+5
\end{array}\right]=\left[\begin{array}{rr}
6 & 9 \\
1 & 11 \\
12 & 12
\end{array}\right]
$$

$$
\mathbf{D}=\mathbf{A}-\mathbf{B}=\left[\begin{array}{rr}
4-2 & 6-3 \\
1-0 & 10-1 \\
5-7 & 7-5
\end{array}\right]=\left[\begin{array}{rr}
2 & 3 \\
1 & 9 \\
-2 & 2
\end{array}\right]
$$

Regression Analysis

Remember, we had $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$ and wrote the SLR as

$$
Y_{i}=\mathrm{E}\left(Y_{i}\right)+\epsilon_{i}, \quad i=1,2, \ldots, n .
$$

Now we are able to write the above model as

$$
\mathbf{Y}_{n \times 1}=\mathrm{E}\left(\mathbf{Y}_{n \times 1}\right)+\boldsymbol{\epsilon}_{n \times 1}
$$

with the $n \times 1$ column vectors

$$
\mathbf{Y}=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right], \quad \mathrm{E}(\mathbf{Y})=\left[\begin{array}{c}
\mathrm{E}\left(Y_{1}\right) \\
\mathrm{E}\left(Y_{2}\right) \\
\vdots \\
\mathrm{E}\left(Y_{n}\right)
\end{array}\right], \quad \boldsymbol{\epsilon}=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]
$$

Matrix Multiplication:

(1) by a scalar, which is a (1×1) matrix. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
5 & 2 \\
3 & 4 \\
1 & 7
\end{array}\right]
$$

If the scalar is 3 , then $3 * \mathbf{A}=\mathbf{A}+\mathbf{A}+\mathbf{A}$ or

$$
\begin{gathered}
3 * \mathbf{A}=\left[\begin{array}{cc}
3 * 5 & 3 * 2 \\
3 * 3 & 3 * 4 \\
3 * 1 & 3 * 7
\end{array}\right]=\left[\begin{array}{rr}
15 & 6 \\
9 & 12 \\
3 & 21
\end{array}\right] \\
8
\end{gathered}
$$

Generally, if λ denotes the scalar, we get

$$
\lambda * \mathbf{A}=\left[\begin{array}{cc}
5 \lambda & 2 \lambda \\
3 \lambda & 4 \lambda \\
\lambda & 7 \lambda
\end{array}\right]=\mathbf{A} * \lambda
$$

We can also factor out a common factor, e.g.

$$
\left[\begin{array}{ll}
15 & 5 \\
10 & 0
\end{array}\right]=5 *\left[\begin{array}{ll}
3 & 1 \\
2 & 0
\end{array}\right]
$$

(2) by a matrix: we write the product of two matrices \mathbf{A} and \mathbf{B} as $\mathbf{A B}$. For $\mathbf{A B}$ to exist, the \#col's of \mathbf{A} must be the same as the \#rows of \mathbf{B}.

$$
\mathbf{A}_{3 \times 2}=\left[\begin{array}{ll}
2 & 5 \\
4 & 1 \\
3 & 2
\end{array}\right], \quad \mathbf{B}_{2 \times 3}=\left[\begin{array}{rrr}
4 & 6 & -1 \\
0 & 5 & 8
\end{array}\right]
$$

Let $\mathbf{C}=\mathbf{A B}$. You get $c_{i j}$ by taking the inner product of the i th row of \mathbf{A} and the j th column of \mathbf{B}, that is

$$
c_{i j}=\sum_{k=1}^{\# \text { col's in A }} a_{i k} b_{k j}
$$

Since $i=1, \ldots, \#$ rows in $\mathbf{A}, j=1, \ldots, \#$ col's in \mathbf{B} the resulting matrix \mathbf{C} has dimension:

$$
(\# \text { rows in } \mathbf{A}) \times(\# \text { col's in } \mathbf{B}) .
$$

For \mathbf{C} to exist, (\#col's in $\mathbf{A})=(\#$ rows in $\mathbf{B})$.

Hence, for $\mathbf{A}_{3 \times 2} \mathbf{B}_{2 \times 3}$ we get the 3×3 matrix
$\mathbf{C}=\left[\begin{array}{lll}2 * 4+5 * 0 & 2 * 6+5 * 5 & 2 *(-1)+5 * 8 \\ 4 * 4+1 * 0 & 4 * 6+1 * 5 & 4 *(-1)+1 * 8 \\ 3 * 4+2 * 0 & 3 * 6+2 * 5 & 3 *(-1)+2 * 8\end{array}\right]=\left[\begin{array}{rcr}8 & 37 & 38 \\ 16 & 29 & 4 \\ 12 & 28 & 13\end{array}\right]$

Note, this is different to $\mathbf{D}_{2 \times 2}=\mathbf{B}_{2 \times 3} \mathbf{A}_{3 \times 2}$ which gives the 2×2 matrix

$$
\mathbf{D}=\left[\begin{array}{ll}
4 * 2+6 * 4-1 * 3 & 4 * 5+6 * 1-1 * 2 \\
0 * 2+5 * 4+8 * 3 & 0 * 5+5 * 1+8 * 2
\end{array}\right]=\left[\begin{array}{cc}
29 & 24 \\
44 & 21
\end{array}\right]
$$

For $\mathbf{A B}$ we say, \mathbf{B} is premultiplied by \mathbf{A} or \mathbf{A} is postmultiplied by \mathbf{B}.

Regression Analysis

Remember our SLR with all means on the straight line

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}, \quad i=1,2, \ldots, n
$$

With

$$
\mathbf{X}_{n \times 2}=\left[\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\vdots & \vdots \\
1 & X_{n}
\end{array}\right], \quad \boldsymbol{\beta}_{2 \times 1}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right]
$$

we get

$$
\mathrm{E}(\mathbf{Y})=\mathbf{X} \boldsymbol{\beta}=\left[\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\vdots & \vdots \\
1 & X_{n}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
\beta_{0}+\beta_{1} X_{1} \\
\beta_{0}+\beta_{1} X_{2} \\
\vdots \\
\beta_{0}+\beta_{1} X_{n}
\end{array}\right]
$$

Thus we rewrite the SLR as

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

Important Matrices in Regression:

$$
\begin{aligned}
& \mathbf{Y}^{\prime} \mathbf{Y}=\left[\begin{array}{llll}
Y_{1} & Y_{2} & \ldots & Y_{n}
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]=\sum_{i=1}^{n} Y_{i}^{2} \\
& \mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
X_{1} & X_{2} & \ldots & X_{n}
\end{array}\right]\left[\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\vdots & \vdots \\
1 & X_{n}
\end{array}\right]=\left[\begin{array}{cc}
n & \sum_{i} X_{i} \\
\sum_{i} X_{i} & \sum_{i} X_{i}^{2}
\end{array}\right] \\
& \mathbf{X}^{\prime} \mathbf{Y}=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
X_{1} & X_{2} & \ldots & X_{n}
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{l}
\sum_{i} Y_{i} \\
\sum_{i} X_{i} Y_{i}
\end{array}\right]
\end{aligned}
$$

Special Types of Matrices:

Symmetric Matrix, if $\mathbf{A}=\mathbf{A}^{\prime}, \mathbf{A}$ is said to be symmetric, e.g.

$$
\mathbf{A}=\left[\begin{array}{lll}
2 & 5 & 8 \\
5 & 1 & 3 \\
8 & 3 & 2
\end{array}\right], \quad \mathbf{A}^{\prime}=\left[\begin{array}{lll}
2 & 5 & 8 \\
5 & 1 & 3 \\
8 & 3 & 2
\end{array}\right]
$$

A symmetric matrix necessarily is square! Any product like $\mathbf{Z}^{\prime} \mathbf{Z}$ is symmetric.

Diagonal Matrix is a square matrix whose off-diagonal elements are all zeros

$$
\mathbf{A}=\left[\begin{array}{rrr}
7 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 2
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cccc}
b_{11} & 0 & 0 & 0 \\
0 & b_{22} & 0 & 0 \\
0 & 0 & b_{33} & 0 \\
0 & 0 & 0 & b_{44}
\end{array}\right]
$$

Identity Matrix I is a diagonal matrix whose elements are all 1s, e.g. B above with $b_{i i}=1, i=1,2,3,4$.

Pre- and postmultiplying by \mathbf{I} does not change a matrix, $\mathbf{A}=\mathbf{I A}=\mathbf{A I}$.

Vector and matrix with all elements Unity

A column vector with all elements 1 is denoted by $\mathbf{1}$, a square matrix with all elements 1 is denoted by \mathbf{J},

$$
\mathbf{1}=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right], \quad \mathbf{J}=\left[\begin{array}{ccc}
1 & \ldots & 1 \\
\vdots & & \vdots \\
1 & \ldots & 1
\end{array}\right]
$$

Note that for an $n \times 1$ vector 1 we obtain

$$
\mathbf{1}^{\prime} \mathbf{1}=\left[\begin{array}{lll}
1 & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]=n
$$

and

$$
\mathbf{1 1}^{\prime}=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & \ldots & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \ldots & 1 \\
\vdots & & \vdots \\
1 & \ldots & 1
\end{array}\right]=\mathbf{J}_{n \times n}
$$

Zero vector A column vector with all elements 0

$$
\mathbf{0}=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

Linear Dependence and Rank of Matrix

Consider the following matrix

$$
\mathbf{A}=\left[\begin{array}{rrrr}
1 & 2 & 5 & 1 \\
2 & 2 & 10 & 6 \\
3 & 4 & 15 & 1
\end{array}\right]
$$

Think of \mathbf{A} as being made up of 4 column vectors

$$
\mathbf{A}=\left[\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right]\left[\begin{array}{r}
5 \\
10 \\
15
\end{array}\right]\left[\begin{array}{l}
1 \\
6 \\
1
\end{array}\right]\right]
$$

Notice that the third column is 5 times the first

$$
\left[\begin{array}{r}
5 \\
10 \\
15
\end{array}\right]=5\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

We say the columns of \mathbf{A} are linearly dependent (or \mathbf{A} is singular). When no such relationships exist, A's columns are said to be linearly independent.

The rank of a matrix is the number of linearly independent columns (in the example, its rank is 3).

Inverse of a Matrix

Q: What's the inverse of a number (6)?
A: Its reciprocal ($1 / 6$)!
A number multiplied by its inverse always equals 1
Generally, for the inverse $1 / x$ of a scalar x

$$
x \frac{1}{x}=\frac{1}{x} x=x^{-1} x=x x^{-1}=1
$$

In matrix algebra, the inverse of \mathbf{A} is the matrix \mathbf{A}^{-1}, for which

$$
\mathbf{A}^{-1} \mathbf{A}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}
$$

In order for \mathbf{A} to have an inverse:

- A must be square,
- col's of A must be linearly independent.

Example: Inverse of a matrix

$$
\begin{aligned}
& \mathbf{A}_{2 \times 2}=\left[\begin{array}{ll}
2 & 4 \\
3 & 1
\end{array}\right], \quad \mathbf{A}_{2 \times 2}^{-1}=\left[\begin{array}{rr}
-0.1 & 0.4 \\
0.3 & -0.2
\end{array}\right] \\
& \mathbf{A A}^{-1}=\left[\begin{array}{ll}
2 & 4 \\
3 & 1
\end{array}\right]\left[\begin{array}{rr}
-0.1 & 0.4 \\
0.3 & -0.2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \mathbf{A}^{-1} \mathbf{A}=\left[\begin{array}{rr}
-0.1 & 0.4 \\
0.3 & -0.2
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Example: Inverse of a diagonal matrix

$$
\mathbf{D}=\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right], \quad \mathbf{D}^{-1}=\left[\begin{array}{ccc}
1 / d_{1} & 0 & 0 \\
0 & 1 / d_{2} & 0 \\
0 & 0 & 1 / d_{3}
\end{array}\right]
$$

e.g.,

$$
\begin{aligned}
\mathbf{D} & =\left[\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right], \quad \mathbf{D}^{-1}=\left[\begin{array}{cc}
1 / 3 & 0 \\
0 & 1 / 4
\end{array}\right] \\
\mathbf{D D}^{-1} & =\left[\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{cc}
1 / 3 & 0 \\
0 & 1 / 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Finding the Inverse: The 2×2 case

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad \mathbf{A}^{-1}=\frac{1}{D}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

where $D=a d-b c$ denotes the determinant of \mathbf{A}. If \mathbf{A} is singular then $D=0$ and no inverse would exist.

$$
\begin{aligned}
\mathbf{A A}^{-1} & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \frac{1}{D}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] \\
& =\frac{1}{D}\left[\begin{array}{ll}
a d-b c & -a b+b a \\
c d-d c & -c b+d a
\end{array}\right]=\frac{1}{D}\left[\begin{array}{ll}
D & 0 \\
0 & D
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathbf{I}
\end{aligned}
$$

Example:

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 4 \\
3 & 1
\end{array}\right]
$$

Determinant $D=a d-b c=2 * 1-4 * 3=-10$

$$
\mathbf{A}^{-1}=-\frac{1}{10}\left[\begin{array}{rr}
1 & -4 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{rr}
-0.1 & 0.4 \\
0.3 & -0.2
\end{array}\right]
$$

Regression Analysis

Principal inverse matrix in regression is the inverse of

$$
\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{cc}
n & \sum_{i} X_{i} \\
\sum_{i} X_{i} & \sum_{i} X_{i}^{2}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Its determinant is

$$
\begin{aligned}
D & =n \sum_{i} X_{i}^{2}-\left(\sum_{i} X_{i}\right)^{2}=n\left(\sum_{i} X_{i}^{2}-\frac{1}{n}(n \bar{X})^{2}\right) \\
& =n\left(\sum_{i} X_{i}^{2}-n \bar{X}^{2}\right)=n\left(\sum_{i}\left(X_{i}-\bar{X}\right)^{2}\right) \\
& =n S_{X X} \neq 0 .
\end{aligned}
$$

Thus

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{1}{n S_{X X}}\left[\begin{array}{cc}
\sum_{i} X_{i}^{2} & -\sum_{i} X_{i} \\
-\sum_{i} X_{i} & n
\end{array}\right]=\frac{1}{S_{X X}}\left[\begin{array}{cc}
\frac{1}{n} \sum_{i} X_{i}^{2} & -\bar{X} \\
-\bar{X} & 1
\end{array}\right]
$$

Uses of Inverse Matrix

- In ordinary algebra, we solve an equation of the type

$$
5 y=20
$$

by multiplying both sides by the inverse of 5

$$
\frac{1}{5}(5 y)=\frac{1}{5} 20
$$

and obtain $y=4$.

- System of equations:

$$
\begin{aligned}
& 2 y_{1}+4 y_{2}=20 \\
& 3 y_{1}+y_{2}=10
\end{aligned}
$$

With matrix algebra we rewrite this system as

$$
\left[\begin{array}{ll}
2 & 4 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
20 \\
10
\end{array}\right]
$$

Thus, we have to solve

$$
\mathbf{A Y}=\mathbf{C}
$$

Premultiplying with the inverse \mathbf{A}^{-1} gives

$$
\begin{aligned}
\mathbf{A}^{-1} \mathbf{A} \mathbf{Y} & =\mathbf{A}^{-1} \mathbf{C} \\
\mathbf{Y} & =\mathbf{A}^{-1} \mathbf{C}
\end{aligned}
$$

The solution of these equations then is

$$
\begin{aligned}
{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
2 & 4 \\
3 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
20 \\
10
\end{array}\right] \\
& =\left[\begin{array}{rr}
-0.1 & 0.4 \\
0.3 & -0.2
\end{array}\right]\left[\begin{array}{l}
20 \\
10
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
4
\end{array}\right]
\end{aligned}
$$

Some Basic Matrix Facts

1. $(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})$
2. $\mathbf{C}(\mathbf{A}+\mathbf{B})=\mathbf{C A}+\mathbf{C B}$
3. $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$
4. $(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}$
5. $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$
6. $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$
7. $\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$
8. $\left(\mathbf{A}^{\prime}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{\prime}$
9. $(\mathbf{A B C})^{\prime}=\mathbf{C}^{\prime} \mathbf{B}^{\prime} \mathbf{A}^{\prime}$

Random Vectors and Matrices

A random vector is a vector of random variables, e.g. $\mathbf{Y}=\left[Y_{1}, Y_{2}, \ldots, Y_{n}\right]^{\prime}$.
The expected value of \mathbf{Y} is the vector $\mathrm{E}(\mathbf{Y})=\left[\mathrm{E}\left(Y_{1}\right), \mathrm{E}\left(Y_{2}\right), \ldots, \mathrm{E}\left(Y_{n}\right)\right]^{\prime}$.
Regression Example:

$$
\boldsymbol{\epsilon}=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right] ; \quad \mathrm{E}(\boldsymbol{\epsilon})=\left[\begin{array}{c}
\mathrm{E}\left(\epsilon_{1}\right) \\
\mathrm{E}\left(\epsilon_{2}\right) \\
\vdots \\
\mathrm{E}\left(\epsilon_{n}\right)
\end{array}\right]=\mathbf{0}_{n \times 1}
$$

The usual rules for expectation still work:
Suppose \mathbf{V} and \mathbf{W} are random vectors and \mathbf{A}, \mathbf{B}, and \mathbf{C} are matrices of constants. Then

$$
\mathrm{E}(\mathbf{A V}+\mathbf{B W}+\mathbf{C})=\mathbf{A E}(\mathbf{V})+\mathbf{B E}(\mathbf{W})+\mathbf{C}
$$

Regression Example: Find $\mathrm{E}(\mathbf{Y})=\mathrm{E}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon})$

$$
\mathrm{E}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon})=\mathrm{E}(\mathbf{X} \boldsymbol{\beta})+\mathrm{E}(\boldsymbol{\epsilon})=\mathbf{X} \boldsymbol{\beta}+\mathbf{0}=\mathbf{X} \boldsymbol{\beta}
$$

Variance-Covariance Matrix of a Random Vector

For a random vector $\mathbf{Z}_{n \times 1}$ define $\operatorname{var}(\mathbf{Z})=$

$$
\left[\begin{array}{cccc}
\operatorname{var}\left(Z_{1}\right) & \operatorname{cov}\left(Z_{1}, Z_{2}\right) & \ldots & \operatorname{cov}\left(Z_{1}, Z_{n}\right) \\
\operatorname{cov}\left(Z_{2}, Z_{1}\right) & \operatorname{var}\left(Z_{2}\right) & \ldots & \operatorname{cov}\left(Z_{2}, Z_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{cov}\left(Z_{n}, Z_{1}\right) & \operatorname{cov}\left(Z_{n}, Z_{2}\right) & \ldots & \operatorname{var}\left(Z_{n}\right)
\end{array}\right]
$$

where $\operatorname{cov}\left(Z_{i}, Z_{j}\right)=\mathrm{E}\left[\left(Z_{i}-\mathrm{E}\left(Z_{i}\right)\right)\left(Z_{j}-\mathrm{E}\left(Z_{j}\right)\right)\right]=\operatorname{cov}\left(Z_{j}, Z_{i}\right)$. It is a symmetric ($n \times n$) matrix.

If Z_{i} and Z_{j} are independent, then $\operatorname{cov}\left(Z_{i}, Z_{j}\right)=0$.

Regression Example: because we assumed n independent random errors ϵ_{i}, each with the same variance σ^{2}, we have

$$
\operatorname{var}(\boldsymbol{\epsilon})=\left[\begin{array}{cccc}
\sigma^{2} & 0 & \ldots & 0 \\
0 & \sigma^{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \sigma^{2}
\end{array}\right]=\sigma^{2} \mathbf{I}_{n \times n}
$$

Rules for a Variance-Covariance Matrix

Remember: if V is a r.v. and a, b are constant terms, then

$$
\operatorname{var}(a V+b)=\operatorname{var}(a V)=a^{2} \operatorname{var}(V)
$$

Suppose now that \mathbf{V} is a random vector and \mathbf{A}, \mathbf{B} are matrices of constants. Then

$$
\operatorname{var}(\mathbf{A V}+\mathbf{B})=\operatorname{var}(\mathbf{A V})=\mathbf{A} \operatorname{var}(\mathbf{V}) \mathbf{A}^{\prime}
$$

Regression Analysis: Find $\operatorname{var}(\mathbf{Y})=\operatorname{var}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon})$

$$
\operatorname{var}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon})=\operatorname{var}(\boldsymbol{\epsilon})=\sigma^{2} \mathbf{I}_{n \times n}
$$

Off-diagonal elements are zero because the ϵ_{i} 's, and hence the Y_{i} 's, are independent.

SLR in Matrix Terms

Now we can write the SLR in matrix terms compactly as

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

and we assume that

- $\boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
- $\boldsymbol{\beta}$ and σ^{2} are unknown parameters
- \mathbf{X} is a constant matrix

Consequences: $\mathrm{E}(\mathbf{Y})=\mathbf{X} \boldsymbol{\beta}$ and $\operatorname{var}(\mathbf{Y})=\sigma^{2} \mathbf{I}$.
In the next step we define the Least Squares (LS) estimators $\left(b_{0}, b_{1}\right)$ using matrix notation.

Normal Equations: Remember the LS criterion

$$
Q=\sum_{i=1}^{n}\left(Y_{i}-\left(\beta_{0}+\beta_{1} X_{i}\right)\right)^{2}=(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})
$$

Recall that when we take derivatives of Q w.r.t. β_{0} and β_{1} and set the resulting equations equal to zero, we get the normal equations

$$
\begin{aligned}
n b_{0}+n \bar{X} b_{1} & =n \bar{Y} \\
n \bar{X} b_{0}+\sum_{i} X_{i}^{2} b_{1} & =\sum_{i} X_{i} Y_{i}
\end{aligned}
$$

Let's write these equations in matrix form

$$
\left[\begin{array}{cc}
n & n \bar{X} \\
n \bar{X} & \sum_{i} X_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
b_{0} \\
b_{1}
\end{array}\right]=\left[\begin{array}{c}
n \bar{Y} \\
\sum_{i} X_{i} Y_{i}
\end{array}\right]
$$

But with $\mathbf{b}_{2 \times 1}=\left(\begin{array}{ll}b_{0} & b_{1}\end{array}\right)^{\prime}$, this is exactly equivalent to

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{Y}\right)
$$

Premultiplying with the inverse $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ gives

$$
\begin{aligned}
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{b} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{Y}\right) \\
\mathbf{b} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
\end{aligned}
$$

Fitted Values and Residuals
Remember $\hat{Y}_{i}=b_{0}+b_{1} X_{i}$. Because

$$
\left[\begin{array}{c}
\hat{Y}_{1} \\
\vdots \\
\hat{Y}_{n}
\end{array}\right]=\left[\begin{array}{cc}
1 & X_{1} \\
\vdots & \vdots \\
1 & X_{n}
\end{array}\right]\left[\begin{array}{l}
b_{0} \\
b_{1}
\end{array}\right]=\left[\begin{array}{c}
b_{0}+b_{1} X_{1} \\
\vdots \\
b_{0}+b_{1} X_{n}
\end{array}\right]
$$

we write the vector of fitted values as

$$
\hat{\mathbf{Y}}=\mathbf{X} \mathbf{b}
$$

With $\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$ we get

$$
\hat{\mathbf{Y}}=\mathbf{X} \mathbf{b}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

We can express this by using the $(n \times n)$ Hat Matrix

$$
\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}
$$

(it puts the hat on \mathbf{Y}) as

$$
\hat{\mathbf{Y}}=\mathbf{H Y}
$$

\mathbf{H} is symmetric $\left(\mathbf{H}=\mathbf{H}^{\prime}\right)$ \& idempotent $(\mathbf{H H}=\mathbf{H})$
Symmetric:

$$
\begin{aligned}
\mathbf{H}^{\prime} & =\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)^{\prime} \stackrel{9 .}{=} \mathbf{X}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)^{\prime} \mathbf{X}^{\prime} \\
& \stackrel{8 .}{=} \mathbf{X}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{\prime}\right)^{-1} \mathbf{X}^{\prime} \stackrel{\text { 5. }}{=} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}=\mathbf{H}
\end{aligned}
$$

Idempotent: because $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}=\mathbf{I}$ we have

$$
\begin{aligned}
\mathbf{H H} & =\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \\
& =\mathbf{X I}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}=\mathbf{H}
\end{aligned}
$$

With these results we get $(\mathbf{H X}=\mathbf{X})(\mathbf{H I H}=\mathbf{H})$

$$
\begin{aligned}
\mathrm{E}(\hat{\mathbf{Y}}) & =\mathrm{E}(\mathbf{H Y})=\mathbf{H} \mathbf{X} \boldsymbol{\beta}=\mathbf{X} \boldsymbol{\beta} \\
\operatorname{var}(\hat{\mathbf{Y}}) & =\operatorname{var}(\mathbf{H Y})=\mathbf{H} \sigma^{2} \mathbf{I} \mathbf{H}=\sigma^{2} \mathbf{H}
\end{aligned}
$$

Residuals: $\mathbf{e}=\mathbf{Y}-\hat{\mathbf{Y}}=\mathbf{I} \mathbf{Y}-\mathbf{H Y}=(\mathbf{I}-\mathbf{H}) \mathbf{Y}$.
Like \mathbf{H}, also $\mathbf{I}-\mathbf{H}$ is symmetric and idempotent.

$$
\begin{aligned}
\mathrm{E}(\mathbf{e}) & =(\mathbf{I}-\mathbf{H}) \mathrm{E}(\mathbf{Y})=\mathbf{0} \\
\operatorname{var}(\mathbf{e}) & =\operatorname{var}((\mathbf{I}-\mathbf{H}) \mathbf{Y})=\sigma^{2}(\mathbf{I}-\mathbf{H})
\end{aligned}
$$

Inferences in Regression Analysis

Distribution of LS Estimates

$$
\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}=\mathbf{C Y}=\left[\begin{array}{lll}
c_{11} & \ldots & c_{1 n} \\
c_{21} & \ldots & c_{2 n}
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right]
$$

with $\mathbf{C}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ a $2 \times n$ matrix of constants. Thus, each element of \mathbf{b} is a linear combination of independent normals, Y_{i} 's, and therefore a normal r.v.

$$
\mathrm{E}(\mathbf{b})=\mathrm{E}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}\right)=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathrm{E}(\mathbf{Y})=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=\mathbf{I} \boldsymbol{\beta}=\boldsymbol{\beta}
$$

$$
\begin{aligned}
\operatorname{var}(\mathbf{b}) & =\operatorname{var}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}\right)=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \operatorname{var}(\mathbf{Y})\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)^{\prime} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \sigma^{2} \mathbf{I} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\sigma^{2} \mathbf{I}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

With the previous result we have

$$
\operatorname{var}(\mathbf{b})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{\sigma^{2}}{S_{X X}}\left[\begin{array}{cc}
\frac{1}{n} \sum_{i} X_{i}^{2} & -\bar{X} \\
-\bar{X} & 1
\end{array}\right]
$$

Its estimator is

$$
\widehat{\operatorname{var}}(\mathbf{b})=\frac{M S E}{S_{X X}}\left[\begin{array}{cc}
\frac{1}{n} \sum_{i} X_{i}^{2} & -\bar{X} \\
-\bar{X} & 1
\end{array}\right]
$$

As covariance/correlation between b_{0} and b_{1} we get

$$
\begin{aligned}
\operatorname{cov}\left(b_{0}, b_{1}\right) & =-\frac{\sigma^{2}}{S_{X X}} \bar{X} \\
\operatorname{cor}\left(b_{0}, b_{1}\right) & =\frac{\operatorname{cov}\left(b_{0}, b_{1}\right)}{\sqrt{\operatorname{var}\left(b_{0}\right) \operatorname{var}\left(b_{1}\right)}}=\frac{-\bar{X}}{\sqrt{\frac{1}{n} \sum_{i} X_{i}^{2}}}
\end{aligned}
$$

b_{0}, b_{1} are not independent! Together we have

$$
\mathbf{b} \sim N\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)
$$

This is used to construct Cl's and tests regarding $\boldsymbol{\beta}$ as before.

Estimate the Mean of the Response at X_{h}

Recall our estimate for $\mathrm{E}\left(Y_{h}\right)=\beta_{0}+\beta_{1} X_{h}$ is

$$
\hat{Y}_{h}=b_{0}+b_{1} X_{h}=\mathbf{X}_{h}^{\prime} \mathbf{b}
$$

where $\mathbf{X}_{h}^{\prime}=\left(1, X_{h}\right)$. The fitted value is a normal r.v. with mean and variance

$$
\begin{aligned}
\mathrm{E}\left(\hat{Y}_{h}\right) & =\mathrm{E}\left(\mathbf{X}_{h}^{\prime} \mathbf{b}\right)=\mathbf{X}_{h}^{\prime} \mathrm{E}(\mathbf{b})=\mathbf{X}_{h}^{\prime} \boldsymbol{\beta} \\
\operatorname{var}\left(\hat{Y}_{h}\right) & =\operatorname{var}\left(\mathbf{X}_{h}^{\prime} \mathbf{b}\right)=\mathbf{X}_{h}^{\prime} \operatorname{var}(\mathbf{b}) \mathbf{X}_{h}=\mathbf{X}_{h}^{\prime} \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{h}=\sigma^{2} \mathbf{X}_{h}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{h}
\end{aligned}
$$

Thus,
$\frac{\hat{Y}_{h}-\mathbf{X}_{h}^{\prime} \boldsymbol{\beta}}{\sqrt{\sigma^{2} \cdot \mathbf{X}_{h}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{h}}} \sim N(0,1) \quad \Rightarrow \quad \frac{\hat{Y}_{h}-\mathbf{X}_{h}^{\prime} \boldsymbol{\beta}}{\sqrt{M S E \cdot \mathbf{X}_{h}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{h}}} \sim t(n-2)$

What is $\mathbf{X}_{h}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{h}$?

$$
\begin{aligned}
& =\left[\begin{array}{ll}
1 & X_{h}
\end{array}\right] \frac{1}{S_{X X}}\left[\begin{array}{cc}
\frac{1}{n} \sum_{i} X_{i}^{2} & -\bar{X} \\
-\bar{X} & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
X_{h}
\end{array}\right] \\
& =\frac{1}{S_{X X}}\left[\frac{1}{n} \sum_{i} X_{i}^{2}-\bar{X} X_{h}\right. \\
& \left.=\bar{X}+X_{h}\right]\left[\begin{array}{c}
1 \\
X_{h}
\end{array}\right] \\
& =\frac{1}{S_{X X}}\left(\frac{1}{n} \sum_{i} X_{i}^{2}-\bar{X} X_{h}-\bar{X} X_{h}+X_{h}^{2}\right) \\
& =\frac{1}{S_{X X}}\left(\frac{1}{n}\left(S_{X X}+n \bar{X}^{2}\right)-2 \bar{X} X_{h}+X_{h}^{2}\right) \\
& =\frac{1}{n}+\frac{1}{S_{X X}}\left(X_{h}-\bar{X}\right)^{2}
\end{aligned}
$$

by applying $S_{X X}=\sum_{i} X_{i}^{2}-n \bar{X}^{2}$.

Matrix Algebra with R: Whiskey Example

```
> one <- rep(1,10); age <- c(0,.5,1,2,3,4,5,6,7,8)
> y <- c(104.6, 104.1, 104.4, 105.0, 106.0,
+ 106.8, 107.7, 108.7, 110.6, 112.1)
> X <- matrix(c(one, age), ncol=2)
> XtX <- t(X) %*% X; XtX
    [,1] [,2]
[1,] 10.0 36.50
[2,] 36.5 204.25
> solve(XtX)
    [,1] [,2]
[1,] 0.28757480 -0.05139036
[2,] -0.05139036 0.01407955
> b <- solve(XtX) %*% t(X)%*%y; b
    [,1]
[1,] 103.5131644
[2,] 0.9552974
> H <- X %*% solve(XtX) %*% t(X)
```

```
> e <- y - H %*% y; SSE <- t(e) %*% e; SSE
            [,1]
    [1,] 3.503069
    > as.numeric(SSE/8) * solve(XtX)
        [,1] [,2]
    [1,] 0.12592431 -0.022502997
[2,] -0.02250300 0.006165205
> summary(lm(y ~ age))
Coefficients:
    Estimate Std.Error t value Pr(>|t|)
(Intercept) 103.51316 0.35486 291.70 < 2e-16 ***
age 0.95530 0.07852 12.17 1.93e-06 ***
```

