4. Simultaneous Inferences

Data: $X_{i}=$ Age of Whiskey, $Y_{i}=$ Proof

X	Y
0	104.6
0.5	104.1
1	104.4
2	105
3	106
4	106.8
5	107.7
6	108.7
7	110.6
8	112.1

Assumption of a SLR results in

$$
\widehat{\mathrm{E}}(Y)=103.5+0.955 X
$$

$r^{2}=0.9487, \sqrt{\mathrm{MSE}}=0.6617, \bar{X}=3.65, S_{X X}=71.025$
We plan on selling 2 types of Whiskey:

- 2 years old
- 5 years old

Government requires Cl 's for the proof that hold jointly at 95%.

- Proof after 2 years: $\mathrm{E}\left(Y_{2}\right)=\beta_{0}+\beta_{1}(2)$
- Proof after 5 years: $\mathrm{E}\left(Y_{5}\right)=\beta_{0}+\beta_{1}(5)$
- $95 \% \mathrm{Cl}$ for $\mathrm{E}\left(Y_{2}\right)$ is

$$
b_{0}+b_{1}(2) \pm t(0.975 ; 8) \sqrt{\operatorname{MSE}\left(\frac{1}{10}+\frac{(2-\bar{X})^{2}}{S_{X X}}\right)}=(104.86,105.99)
$$

- $95 \% \mathrm{Cl}$ for $\mathrm{E}\left(Y_{5}\right)$ is

$$
b_{0}+b_{1}(5) \pm t(0.975 ; 8) \sqrt{\operatorname{MSE}\left(\frac{1}{10}+\frac{(5-\bar{X})^{2}}{S_{X X}}\right)}=(107.75,108.83)
$$

We say that a Cl covers, if it contains the true parameter.
Define A_{2} to be the event that the Cl for $\mathrm{E}\left(Y_{2}\right)$ covers. Define A_{5} to be the event that the Cl for $\mathrm{E}\left(Y_{5}\right)$ covers.

Then

$$
P\left(A_{2}\right)=0.95, \quad P\left(A_{5}\right)=0.95, \quad P\left(A_{2} \cap A_{5}\right) \stackrel{?}{=} 0.95
$$

NO! Let's do some experiments:

exp't $\#$	A_{2}	A_{5}	$A_{2} \cap A_{5}$
1	yes	yes	yes
2	yes	no	no
3	yes	yes	yes
4	no	yes	no
5	yes	yes	yes
6	yes	yes	yes
\vdots	\vdots	\vdots	\vdots

There will be 5\% no's in the A_{2} column and 5% no's in the A_{5} column. But there are more than 5% (but less than 10%) no's in the $A_{2} \cap A_{5}$ column.

$$
\begin{aligned}
P\left(A_{2} \cap A_{5}\right) & =P\left(A_{2}\right)+P\left(A_{5}\right)-P\left(A_{2} \cup A_{5}\right) \\
& =1-P\left(\overline{A_{2}}\right)+1-P\left(\overline{A_{5}}\right)-P\left(A_{2} \cup A_{5}\right) \\
& =1-P\left(\overline{A_{2}}\right)-P\left(\overline{A_{5}}\right)+P\left(\overline{A_{2} \cup A_{5}}\right) \\
& \geq 1-\left(P\left(\overline{A_{2}}\right)+P\left(\overline{A_{5}}\right)\right)
\end{aligned}
$$

$\overline{A_{2}}$ is the event that the Cl for $\mathrm{E}\left(Y_{2}\right)$ does not cover, with $P\left(\overline{A_{2}}\right)=\alpha$.
Conclusion: To get $P\left(A_{2} \cap A_{5}\right) \geq 0.95$ we need $P\left(\overline{A_{2}}\right)+P\left(\overline{A_{5}}\right) \leq 0.05$.
General Bonferroni Inequality: for g such events A_{i}

$$
P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{g}\right) \geq 1-\sum_{i=1}^{g} P\left(\overline{A_{i}}\right)
$$

Thus, if $P\left(\overline{A_{i}}\right)=\alpha / g$ we get

$$
\begin{gathered}
P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{g}\right) \geq 1-\sum_{i=1}^{g} \frac{\alpha}{g}=1-\alpha \\
\hat{Y}_{1} \pm t\left(1-\frac{\alpha}{2 g} ; n-2\right) \sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{\left(X_{1}-\bar{X}\right)^{2}}{S_{X X}}\right)} \\
\hat{Y}_{2} \pm t\left(1-\frac{\alpha}{2 g} ; n-2\right) \sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{\left(X_{2}-\bar{X}\right)^{2}}{S_{X X}}\right)} \\
\hat{Y}_{g} \pm t\left(1-\frac{\alpha}{2 g} ; n-2\right) \sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{\left(X_{g}-\bar{X}\right)^{2}}{S_{X X}}\right)} \\
6
\end{gathered}
$$

These Cl's hold jointly at $(1-\alpha) 100 \%$.

Working-Hotelling Procedure: give confidence band for the entire (true) regression line, $\beta_{0}+\beta_{1} X$, within the range of the data.

This band is constructed pointwise at X_{a}

$$
\hat{Y}_{a} \pm \sqrt{2 F(1-\alpha ; 2, n-2)} \sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{\left(X_{a}-\bar{X}\right)^{2}}{S_{X X}}\right)}
$$

Thinnest at \bar{X}.
We are $(1-\alpha) 100 \%$ confident that the true regression function is within this band. Since the whole band has $(1-\alpha) 100 \%$ confidence, you can pick as many Cl's for $\mathrm{E}(Y)$ at as many different X 's as you want and the joint confidence is at least (1a) 100%.

Comparing both CI's: It is simple to compare which one gives smaller intervals, just compare

$$
t\left(1-\frac{\alpha}{2 g} ; n-2\right) \quad \text { to } \quad \sqrt{2 F(1-\alpha ; 2, n-2)}
$$

Example: We want 2 Cl's for the proof of Whiskey when age is 2 and 5 years to hold jointly at 95\%.

Bonferroni: use 2 Cl 's each at level $\alpha / g=\alpha / 2=0.025$

$$
t(1-0.0125 ; 8)=2.751
$$

Working-Hotelling:

$$
\sqrt{2 F(0.95 ; 2,8)}=2.986
$$

	Individual CI's	Bonferroni joint	W-Hotelling
2	$(104.86,105.99)$	$(104.75,106.10)$	$(104.69,106.16)$
5	$(107.75,108.83)$	$(107.64,108.94)$	$(107.59,108.99)$

