4. Simultaneous Inferences

Data: X_i = Age of Whiskey, Y_i = Proof

1

Assumption of a SLR results in

$$\widehat{\mathsf{E}}(Y) = 103.5 + 0.955X$$

 $r^2 = 0.9487$, $\sqrt{\mathsf{MSE}} = 0.6617$, $\bar{X} = 3.65$, $S_{XX} = 71.025$

We plan on selling 2 types of Whiskey:

- 2 years old
- 5 years old

Government requires Cl's for the proof that hold **jointly** at 95%.

- Proof after 2 years: $E(Y_2) = \beta_0 + \beta_1(2)$
- Proof after 5 years: $E(Y_5) = \beta_0 + \beta_1(5)$
- 95% CI for $E(Y_2)$ is

$$b_0 + b_1(2) \pm t(0.975; 8) \sqrt{\mathsf{MSE}\left(\frac{1}{10} + \frac{(2 - \bar{X})^2}{S_{XX}}\right)} = (104.86, 105.99)$$

• 95% CI for $E(Y_5)$ is

$$b_0 + b_1(5) \pm t(0.975; 8) \sqrt{\mathsf{MSE}\left(\frac{1}{10} + \frac{(5 - \bar{X})^2}{S_{XX}}\right)} = (107.75, 108.83)$$

We say that a CI covers, if it contains the true parameter.

Define A_2 to be the event that the CI for $E(Y_2)$ covers. Define A_5 to be the event that the CI for $E(Y_5)$ covers.

Then

$$P(A_2) = 0.95, \quad P(A_5) = 0.95, \quad P(A_2 \cap A_5) \stackrel{?}{=} 0.95$$

NO! Let's do some experiments:

exp't #	A_2	A_5	$A_2 \cap A_5$
1	yes	yes	yes
2	yes	no	no
3	yes	yes	yes
4	no	yes	no
5	yes	yes	yes
6	yes	yes	yes
:	÷	:	:

There will be 5% no's in the A_2 column and 5% no's in the A_5 column. But there are more than 5% (but less than 10%) no's in the $A_2 \cap A_5$ column.

$$P(A_{2} \cap A_{5}) = P(A_{2}) + P(A_{5}) - P(A_{2} \cup A_{5})$$

= $1 - P(\overline{A_{2}}) + 1 - P(\overline{A_{5}}) - P(A_{2} \cup A_{5})$
= $1 - P(\overline{A_{2}}) - P(\overline{A_{5}}) + P(\overline{A_{2} \cup A_{5}})$
 $\geq 1 - \left(P(\overline{A_{2}}) + P(\overline{A_{5}})\right)$

 $\overline{A_2}$ is the event that the CI for $E(Y_2)$ does not cover, with $P(\overline{A_2}) = \alpha$. Conclusion: To get $P(A_2 \cap A_5) \ge 0.95$ we need $P(\overline{A_2}) + P(\overline{A_5}) \le 0.05$. General Bonferroni Inequality: for g such events A_i

$$P(A_1 \cap A_2 \cap \ldots \cap A_g) \ge 1 - \sum_{i=1}^g P(\overline{A_i})$$

Thus, if
$$P(\overline{A_i})=lpha/g$$
 we get

$$P(A_1 \cap A_2 \cap \ldots \cap A_g) \ge 1 - \sum_{i=1}^g \frac{\alpha}{g} = 1 - \alpha$$

$$\begin{split} \hat{Y}_{1} &\pm t \left(1 - \frac{\alpha}{2g}; n - 2\right) \sqrt{\mathsf{MSE}\left(\frac{1}{n} + \frac{(X_{1} - \bar{X})^{2}}{S_{XX}}\right)} \\ \hat{Y}_{2} &\pm t \left(1 - \frac{\alpha}{2g}; n - 2\right) \sqrt{\mathsf{MSE}\left(\frac{1}{n} + \frac{(X_{2} - \bar{X})^{2}}{S_{XX}}\right)} \\ \vdots \end{split}$$

$$\hat{Y}_g \pm t \left(1 - \frac{\alpha}{2g}; n - 2\right) \sqrt{\mathsf{MSE}\left(\frac{1}{n} + \frac{(X_g - \bar{X})^2}{S_{XX}}\right)}$$

These CI's hold jointly at $(1 - \alpha)100\%$.

Working-Hotelling Procedure: give confidence band for the entire (true) regression line, $\beta_0 + \beta_1 X$, within the range of the data.

This band is constructed pointwise at X_a

$$\hat{Y}_a \pm \sqrt{2F(1-\alpha;2,n-2)} \sqrt{\mathsf{MSE}\left(\frac{1}{n} + \frac{(X_a - \bar{X})^2}{S_{XX}}\right)}$$

Thinnest at \bar{X} .

We are $(1-\alpha)100\%$ confident that the true regression function is within this band. Since the whole band has $(1-\alpha)100\%$ confidence, you can pick as many Cl's for E(Y) at as many different X's as you want and the **joint** confidence is at least $(1-\alpha)100\%$. **Comparing both CI's:** It is simple to compare which one gives smaller intervals, just compare

$$t\left(1-\frac{\alpha}{2g};n-2\right)$$
 to $\sqrt{2F(1-\alpha;2,n-2)}$

Example: We want 2 CI's for the proof of Whiskey when age is 2 and 5 years to hold jointly at 95%.

Bonferroni: use 2 CI's each at level $\alpha/g=\alpha/2=0.025$

t(1 - 0.0125; 8) = 2.751.

Working-Hotelling:

$$\sqrt{2F(0.95;2,8)} = 2.986.$$

	Individual CI's	Bonferroni joint	W-Hotelling
2	(104.86, 105.99)	(104.75, 106.10)	(104.69,106.16)
5	(107.75, 108.83)	(107.64, 108.94)	(107.59, 108.99)