2. Inference in Regression Analysis

If $Y_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right), Y_{i}^{\prime}$'s are independent, and a_{1}, \ldots, a_{n} are known constants then

$$
\sum_{i=1}^{n} a_{i} Y_{i} \sim N\left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right) .
$$

Thus, a linear combination of independent normal random variables is itself a normal random variable.

Theorem: b_{0} and b_{1} are linear combinations of the Y_{i} 's. That is, we can write

$$
b_{1}=\sum_{i=1}^{n} k_{i} Y_{i} \quad \text { and } \quad b_{0}=\sum_{i=1}^{n} l_{i} Y_{i}
$$

where k_{1}, \ldots, k_{n} and l_{1}, \ldots, l_{n} are known constants.

Proof: Recall $S_{X X}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$. So

$$
\begin{aligned}
b_{1} & =\frac{1}{S_{X X}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) \\
& =\frac{1}{S_{X X}}\left[\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}-\bar{Y} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\right] \\
& =\frac{1}{S_{X X}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}=\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{S_{X X}}\right) Y_{i} \\
& =\sum_{i=1}^{n} k_{i} Y_{i} \text { with } \quad k_{i}=\frac{X_{i}-\bar{X}}{S_{X X}}
\end{aligned}
$$

$$
\begin{aligned}
b_{0} & =\bar{Y}-b_{1} \bar{X}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\bar{X} \sum_{i=1}^{n} k_{i} Y_{i} \\
& =\sum_{i=1}^{n}\left(\frac{1}{n}-k_{i} \bar{X}\right) Y_{i} \\
& =\sum_{i=1}^{n} l_{i} Y_{i} \text { with } l_{i}=\frac{1}{n}-k_{i} \bar{X} .
\end{aligned}
$$

Thus, b_{0} and b_{1} are linear combinations of the Y_{i} 's and, hence, they are normal variates. What about their means and variances?

Theorem: Under SLR model with normal errors:

$$
b_{1} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{S_{X X}}\right) \quad \text { and } \quad b_{0} \sim N\left(\beta_{0}, \frac{\sigma^{2}}{n} \frac{\sum_{i} X_{i}^{2}}{S_{X X}}\right)
$$

We are first interested in $\sum_{i} k_{i}, \sum_{i} k_{i} X_{i}$ and $\sum_{i} k_{i}^{2}$.

$$
\begin{aligned}
\sum_{i=1}^{n} k_{i} & =\sum_{i=1}^{n} \frac{X_{i}-\bar{X}}{S_{X X}}=\frac{1}{S_{X X}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)=0 \\
\sum_{i=1}^{n} k_{i} X_{i} & =\sum_{i=1}^{n} \frac{X_{i}-\bar{X}}{S_{X X}} X_{i}=\frac{1}{S_{X X}} S_{X X}=1 \\
\sum_{i=1}^{n} k_{i}^{2} & =\frac{1}{S_{X X}^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{S_{X X}} .
\end{aligned}
$$

Proof: Since $b_{1}=\sum_{i=1}^{n} k_{i} Y_{i}$, we get

$$
\mathrm{E}\left(b_{1}\right)=\sum_{i=1}^{n} k_{i} \mathrm{E}\left(Y_{i}\right)=\sum_{i=1}^{n} k_{i}\left(\beta_{0}+\beta_{1} X_{i}\right)
$$

Because $\sum_{i} k_{i}=0$ and $\sum_{i} k_{i} X_{i}=1$, this is

$$
\mathrm{E}\left(b_{1}\right)=\beta_{0} \sum_{i=1}^{n} k_{i}+\beta_{1} \sum_{i=1}^{n} k_{i} X_{i}=\beta_{1} .
$$

With $\sum_{i} k_{i}^{2}=1 / S_{X X}$, we get

$$
\operatorname{var}\left(b_{1}\right)=\operatorname{Var}\left(\sum_{i=1}^{n} k_{i} Y_{i}\right)=\sum_{i=1}^{n} k_{i}^{2} \operatorname{Var}\left(Y_{i}\right)=\sigma^{2} \sum_{i=1}^{n} k_{i}^{2}=\frac{\sigma^{2}}{S_{X X}}
$$

Showing $b_{0} \sim N\left(\beta_{0}, \frac{\sigma^{2}}{n} \frac{\sum_{i} X_{i}^{2}}{S_{X X}}\right)$ is basically the same.

Example: 93 house prices in G'ville sold Dec. 1995. $Y=$ selling price (in $1,000 \$$), $X=$ area (1,000 sq.feet)

Assume the SLR model holds

$$
\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}
$$

LS estimators are $b_{0}=-25.2$ and $b_{1}=75.6$. We are interested in testing $H_{0}: \beta_{1}=0$ (no linear relation between area and price) $H_{A}: \beta_{1} \neq 0$

Since $75.6 \neq 0$, can we conclude that H_{A} is true?
Recall: $b_{1} \sim N\left(\beta_{1}, \sigma^{2} / S_{X X}\right)$, where $S_{X X}=\sum_{i}\left(X_{i}-\bar{X}\right)^{2}=25.38$.
Consider 2 different scenarios:
Scenario 1: $\sigma^{2} / S_{X X}=2,500 \Rightarrow \sqrt{\sigma^{2} / S_{X X}}=50$
Scenario 2: $\sigma^{2} / S_{X X}=100 \Rightarrow \sqrt{\sigma^{2} / S_{X X}}=10$

Remember, if $Z \sim N\left(\mu, \sigma^{2}\right)$, then

For the 2 scenarios we have:
Scenario 1: $\sqrt{\sigma^{2} / S_{X X}}=50$

Scenario 2: $\sqrt{\sigma^{2} / S_{X X}}=10$

Scenario 1: If $\beta_{1}=0\left(H_{0}\right.$ true) then there is a 95% chance that b_{1} falls between -100 and 100 .
$b_{1}=75.6$ is consistent with $H_{0}: \beta_{1}=0$
Scenario 2: If $\beta_{1}=0$ (H_{0} true) then there is a 95% chance that b_{1} falls between -20 and 20.
$b_{1}=75.6$ suggests that $H_{0}: \beta_{1}=0$ is false.
Conclusion: if we know $\sqrt{\sigma^{2} / S_{X X}}$, we know how likely the value $b_{1}=75.6$ is under H_{0}, and we can decide if $b_{1}=75.6$ is more consistent with $H_{0}: \beta_{1}=0$ or $H_{A}: \beta_{1} \neq 0$.

Last time we showed that

$$
b_{1} \sim N\left(\beta_{1}, \sigma^{2} / S_{X X}\right) \quad \Rightarrow \quad \frac{b_{1}-\beta_{1}}{\sqrt{\sigma^{2} / S_{X X}}} \sim N(0,1)
$$

That means that

$$
\begin{gathered}
P\left(-1.96 \leq \frac{b_{1}-\beta_{1}}{\sqrt{\sigma^{2} / S_{X X}}} \leq 1.96\right)=0.95 \\
P\left(b_{1}-1.96 \sqrt{\frac{\sigma^{2}}{S_{X X}}} \leq \beta_{1} \leq b_{1}+1.96 \sqrt{\frac{\sigma^{2}}{S_{X X}}}\right)=0.95
\end{gathered}
$$

So, a $\mathbf{9 5 \%}$ confidence interval for β_{1} is

$$
b_{1} \pm 1.96 \sqrt{\frac{\sigma^{2}}{S_{X X}}}
$$

Is this a useful confidence interval ? NO!

We have to estimate σ^{2} under the SLR model. Remember, the mean squared error

$$
s^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}=\mathrm{MSE}
$$

is an unbiased estimate of σ^{2}. So we have all we need!

What's next?

1. tests and confidence intervals for β_{1}
2. confidence intervals for the mean of Y at some value of X, say X^{*}, that is, for

$$
\beta_{0}+\beta_{1} X^{*}
$$

3. prediction intervals for the next random variable observed with $X=X^{*}$

Confidence Intervals and Tests for $\boldsymbol{\beta}_{1}$

The key is $b_{1} \sim N\left(\beta_{1}, \sigma^{2} / S_{X X}\right)$. Thus

$$
\frac{b_{1}-\beta_{1}}{\sqrt{\sigma^{2} / S_{X X}}} \sim N(0,1)
$$

But this is not useful because we don't know σ^{2}.
If we replace σ^{2} with our estimate of σ^{2}, MSE, we get

$$
\frac{b_{1}-\beta_{1}}{\sqrt{\mathrm{MSE} / S_{X X}}} \sim t(n-2)
$$

Everything is based on this!

In what follows, α is:

- the type 1 error probability $=\mathrm{P}\left(\right.$ reject $H_{0} \mid H_{0}$ true $)$
- always between 0 and 1 (it's a probability)
- usually set at $0.01,0.05$ or 0.10

$(1-\alpha) \mathbf{1 0 0 \%}$ Confidence Interval for $\boldsymbol{\beta}_{1}$

With probability $1-\alpha$

$$
-t(1-\alpha / 2 ; n-2) \leq \frac{b_{1}-\beta_{1}}{\sqrt{\mathrm{MSE} / S_{X X}}} \leq t(1-\alpha / 2 ; n-2)
$$

Thus, the $(1-\alpha) * 100 \%$ confidence interval for β_{1} is

$$
b_{1} \pm t(1-\alpha / 2 ; n-2) \sqrt{\mathrm{MSE} / S_{X X}}
$$

Don't confuse $t(n-2)$ with $t(1-\alpha / 2 ; n-2)$:

- $t(n-2)$: denotes the type of distribution (t) and its parameter $(n-2)$
- $t(1-\alpha / 2 ; n-2)$: denotes the $1-\alpha / 2$ percentile of the $t(n-2)$ distribution

α Level Hypothesis Tests concerning $\boldsymbol{\beta}_{1}$

A Two-Sided Test $H_{0}: \beta_{1}=c, H_{A}: \beta_{1} \neq c$
B One-Sided Test $H_{0}: \beta_{1} \geq c, H_{A}: \beta_{1}<c$
C One-Sided Test $H_{0}: \beta_{1} \leq c, H_{A}: \beta_{1}>c$

Test Statistic:

$$
t^{*}=\frac{b_{1}-c}{\sqrt{\mathrm{MSE} / S_{X X}}}
$$

Rejection Rules:
A: reject H_{0} if $\left|t^{*}\right|>t(1-\alpha / 2 ; n-2)$
B: reject H_{0} if $t^{*} \leq-t(1-\alpha ; n-2)$
C: reject H_{0} if $t^{*}>t(1-\alpha ; n-2)$

P-Value: This is the probability of a more extreme t^{*} value than the one we got, given that H_{0} is true.

Example of how to do Hypothesis Tests:

Question: Test $H_{0}: \beta_{1}=0$ vs. $H_{A}: \beta_{1} \neq 0$ at level $\alpha=0.05$ for the house prices data. What is the p-value?
$b_{1}=75.6, S_{X X}=25.38, \mathrm{MSE}=379.21$
If H_{0} is true, then there is no linear relationship between $\mathrm{E}(Y)$ and square footage.
Answer: $H_{0}: \beta_{1}=0, H_{A}: \beta_{1} \neq 0, \alpha=0.05$
Test Statistic:

$$
t^{*}=\frac{b_{1}-0}{\sqrt{\mathrm{MSE} / S_{X X}}}=\frac{75.6}{\sqrt{379.21 / 25.38}}=19.56
$$

Rejection Rule: Reject H_{0} if $\left|t^{*}\right|>t(1-\alpha / 2 ; n-2)=t(0.975 ; 91)=1.99$.
Conclusion: Reject H_{0} since $19.56=\left|t^{*}\right|>t(0.975 ; 91)=1.99$. There is a significant linear relationship between mean house price and square footage.

Example cont'ed: What's the picture?

Reconsider rejection rule:

$$
\begin{aligned}
P\left(\text { reject } H_{0} \mid H_{0} \text { true }\right) & =P\left(\left|t^{*}\right|>1.99 \mid H_{0} \text { true }\right) \\
& =1-0.95=\alpha
\end{aligned}
$$

Where is t^{*} on this picture?
I would have rejected H_{0} for any $\left|t^{*}\right|>1.99$!
\mathbf{P}-Value: Prob of a more extreme t^{*} is almost 0 .

Extrapolation is Bad!

Never use estimated regression function $\widehat{\mathrm{E}}(Y)=b_{0}+b_{1} X$ outside the range of X values in the data!

Remember the math class/hours on papers example

My friend is taking 7 math classes next semester. How many hours will he spend writing papers?
$80-11.7(7)=-1.9 \quad \Rightarrow \quad$ Nice concept, but wrong!

Confidence Intervals for Mean Response

Let X_{h} denote the level of X for which we wish to estimate the mean response $\mathrm{E}\left(Y_{h}\right)=\beta_{0}+\beta_{1} X_{h}$.
X_{h} may be a value which occurred in the sample, or some other value within the scope of the model.

Point estimator \hat{Y}_{h} of $\mathrm{E}\left(Y_{h}\right)$ is

$$
\hat{Y}_{h}=b_{0}+b_{1} X_{h}
$$

Notify that with $b_{0}=\sum_{i} l_{i} Y_{i}$ and $b_{1}=\sum_{i} k_{i} Y_{i}$ we get

$$
\hat{Y}_{h}=\sum_{i=1}^{n} l_{i} Y_{i}+X_{h} \sum_{i=1}^{n} k_{i} Y_{i}=\sum_{i=1}^{n}\left(l_{i}+X_{h} k_{i}\right) Y_{i}
$$

Thus \hat{Y}_{h} is normally dist'd and we can figure out its mean and variance:

$$
\begin{aligned}
\mathrm{E}\left(\hat{Y}_{h}\right) & =\beta_{0}+\beta_{1} X_{h} \\
\operatorname{var}\left(\hat{Y}_{h}\right) & =\sigma^{2}\left\{\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{S_{X X}}\right\}
\end{aligned}
$$

Together we have

$$
\hat{Y}_{h} \sim N\left(\beta_{0}+\beta_{1} X_{h}, \sigma^{2}\left\{\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{S_{X X}}\right\}\right)
$$

or

$$
\frac{\hat{Y}_{h}-\left(\beta_{0}+\beta_{1} X_{h}\right)}{\sqrt{\sigma^{2}\left\{\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{S_{X X}}\right\}}} \sim N(0,1)
$$

Plug in MSE for the unknown σ^{2} gives

$$
\frac{\hat{Y}_{h}-\left(\beta_{0}+\beta_{1} X_{h}\right)}{\sqrt{\operatorname{MSE}\left\{\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{S_{X X}}\right\}}} \sim t(n-2)
$$

Just like for β_{1}, a $(1-\alpha) 100 \% \mathrm{Cl}$ for $\beta_{0}+\beta_{1} X_{h}$ is

$$
\hat{Y}_{h} \pm t(1-\alpha / 2 ; n-2) \sqrt{\operatorname{MSE}\left\{\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{S_{X X}}\right\}}
$$

Example: Recall for the house data

$$
\widehat{\mathrm{E}}(\text { price })=-25.2+75.6(\text { area })
$$

$S_{X X}=25.38, \mathrm{MSE}=379.21, \bar{X}=1.65$
Suppose you are thinking of constructing several 2,000 sq.ft. homes in G'ville and you want to know about how much these houses will sell for.
Point estimate is $\widehat{\mathrm{E}}$ (price) $=-25.2+75.6(2)=126$
$\mathrm{A} 95 \% \mathrm{Cl}$ for $\beta_{0}+\beta_{1}(2)$ is

$$
126 \pm t(0.975 ; 91) \sqrt{379.21\left\{\frac{1}{93}+\frac{(2-1.65)^{2}}{25.38}\right\}}=126 \pm 4.86 \approx(121,131)
$$

Thus, we are 95% confident that the mean selling price of 2,000 sq.ft. houses is between $121,000 \$$ and $131,000 \$$. (Cl for $\mathrm{E}\left(Y_{h}\right)$ is smallest for $X_{h}=\bar{X}$)

Prediction Interval for $\boldsymbol{Y}_{\boldsymbol{h}(\text { new }}$

After we collect the data, we might be interested in predicting a new observation whose X value is X_{h}.

Before, we estimated the mean of the distribution of Y. Now we predict an individual outcome drawn from the distribution of Y.

Example: There is a $2,000 \mathrm{sq} . \mathrm{ft}$. house about to be put up for sale. Its price is a r.v. $Y_{h(n e w)}$ and $X_{h}=2$.

Suppose that β_{0} and β_{1} are known.
Question: What do we expect $Y_{h(n e w)}$ to be?
Answer: $Y_{h(n e w)}=\beta_{0}+\beta_{1} X_{h}+\epsilon_{h(n e w)}$

So $\mathrm{E}\left(Y_{h(\text { new })}\right)=\beta_{0}+\beta_{1} X_{h}, \operatorname{var}\left(Y_{h(\text { new })}\right)=\sigma^{2}$ and

$$
Y_{h(n e w)} \sim N\left(\beta_{0}+\beta_{1} X_{h}, \sigma^{2}\right)
$$

Thus the $1-\alpha$ prediction limits for $Y_{h(n e w)}$ are:

$$
\mathrm{E}\left(Y_{h(\text { new })}\right) \pm z(1-\alpha / 2) \sigma .
$$

Anyway, we don't know the parameters. But we have a $(1-\alpha) * 100 \% \mathrm{Cl}$ for $\beta_{0}+\beta_{1} X_{h}$:

$$
\left(b_{0}+b_{1} X_{h}\right) \pm t(1-\alpha / 2 ; n-2) \sqrt{\operatorname{MSE}\left\{\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{S_{X X}}\right\}}
$$

Dist'ns of $Y_{h(n e w)}$ at the upper and lower Cl limit.

The $(1-\alpha) * 100 \%$ Prediction Interval for $Y_{h(n e w)}$ is slightly wider than the $(1-\alpha) * 100 \% \mathrm{Cl}$ for $\beta_{0}+\beta_{1} X_{h}$.

We consider the difference

$$
Y_{h(n e w)}-\hat{Y}_{h}=Y_{h(n e w)}-\sum_{i=1}^{n}\left(l_{i}+X_{h} k_{i}\right) Y_{i}
$$

where $\hat{Y}_{h}=b_{0}+b_{1} X_{h}$ is indep. of $Y_{h(n e w)}$. Because it's a linear combination, it's a normal variate with

$$
\mathrm{E}\left(Y_{h(n e w)}-\hat{Y}_{h}\right)=\mathrm{E}\left(Y_{h(\text { new })}\right)-\mathrm{E}\left(\hat{Y}_{h}\right)=0
$$

and

$$
\begin{aligned}
\operatorname{var}\left(Y_{h(n e w)}-\hat{Y}_{h}\right) & =\operatorname{var}\left(Y_{h(n e w)}\right)+\operatorname{var}\left(\hat{Y}_{h}\right) \\
& =\sigma^{2}+\sigma^{2}\left\{\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{S_{X X}}\right\} \\
& =\sigma^{2}\left\{1+\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{S_{X X}}\right\}
\end{aligned}
$$

Thus $\left(Y_{h(\text { new })}-\hat{Y}_{h}\right) / \sqrt{\operatorname{var}\left(Y_{h(\text { new })}-\hat{Y}_{h}\right)} \sim N(0,1)$

$$
\frac{Y_{h(n e w)}-\hat{Y}_{h}}{\sqrt{\operatorname{MSE}\left\{1+\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{S_{X X}}\right\}}} \sim t(n-2)
$$

and a $(1-\alpha) * 100 \% \mathrm{PI}$ for $Y_{h(\text { new })}$ is given by:

$$
\hat{Y}_{h} \pm t(1-\alpha / 2 ; n-2) \sqrt{\operatorname{MSE}\left\{1+\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{S_{X X}}\right\}}
$$

Example: A 95\% Prediction Interval for $Y_{h(n e w)}$, the price of the 2,000 sq.ft. house is
$126 \pm t(0.975 ; 91) \sqrt{379.21\left\{1+\frac{1}{93}+\frac{(2-1.65)^{2}}{25.38}\right\}}=126 \pm 38.5 \approx(87.5,164.5)$.

Thus, there is a 95% probability that the price of the house will be between $87,500 \$$ and $164,500 \$$.

ANalysis Of Variance: ANOVA

Nothing new, just a different way of looking at what we have already done.
Say we have the LS estimates of β_{0}, β_{1}

Consider the linear relationship $\left(Y_{i}-\bar{Y}\right)=\left(\hat{Y}_{i}-\bar{Y}\right)+\left(Y_{i}-\hat{Y}_{i}\right)$
Is there a quadratic analogue?
Total Sum of Squares: the variation in the Y^{\prime} 's if we forget about X

$$
S S T O=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Regression Sum of Squares: the variation in Y 's explained at X

$$
S S R=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
$$

Error Sum of Squares: the variation in Y 's around the regression line

$$
\mathrm{SSE}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

Does the partition SSTO $=$ SSR + SSE hold? Yes!

$$
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

Generally, in ANOVA methods, the SSTO is partitioned into several sums of squares which each have an associated degrees of freedom (df).

ANOVA Table for SLR:

Source variat.	Sum of Squares (SS)	df	mean SS
Regr.	$\mathrm{SSR}=\sum_{i}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$	1	$\frac{\mathrm{SSR}}{1}$
Error	$\mathrm{SSE}=\sum_{i}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$	$n-2$	$\frac{\text { SSE }}{n-2}$
Total	$\mathrm{SSTO}=\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}$	$n-1$	

Another way to test $H_{0}: \beta_{1}=0$ vs. $H_{A}: \beta_{1} \neq 0$

Test statistic:

$$
F^{*}=\frac{\mathrm{MSR}}{\mathrm{MSE}}
$$

Rejection rule: reject H_{0} if $F^{*}>F(1-\alpha ; 1, n-2)$

Fact: F-test and t-test are equivalent; that is the F-test rejects if and only if the t-test rejects.

Notice: using $b_{0}=\bar{Y}-b_{1} \bar{X}$ results in

$$
\begin{aligned}
S S R & =\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{n}\left(b_{0}+b_{1} X_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{n}\left(\bar{Y}-b_{1} \bar{X}+b_{1} X_{i}-\bar{Y}\right)^{2} \\
& =b_{1}^{2} \sum_{i=1}^{n}\left(-\bar{X}+X_{i}\right)^{2}=b_{1}^{2} S_{X X}
\end{aligned}
$$

Thus

$$
F^{*}=\frac{b_{1}^{2} S_{X X}}{\mathrm{MSE}}=\frac{b_{1}^{2}}{\mathrm{MSE} / S_{X X}}=\left(\frac{b_{1}}{\sqrt{\mathrm{MSE} / S_{X X}}}\right)^{2}=\left(t^{*}\right)^{2}
$$

Generally, if $T \sim t(n-2)$ then $T^{2} \sim F(1, n-2)$

Coefficient of Determination, r^{2}

Question: How strong is the linear relationship between Y and X ?
Remember: SSTO = SSR + SSE
Define:

$$
r^{2}=\frac{\mathrm{SSR}}{\mathrm{SSTO}}=\frac{\mathrm{SSTO}-\mathrm{SSE}}{\mathrm{SSTO}}=1-\frac{\mathrm{SSE}}{\mathrm{SSTO}} \quad \text { with } 0 \leq r^{2} \leq 1
$$

The higher the r^{2}, the stronger the linear relationship!
Extreme cases:

- $\hat{Y}_{i}=Y_{i}$: then SSE $=0 \Rightarrow r^{2}=1$
- $b_{1}=0 \Rightarrow \hat{Y}_{i}=\bar{Y}$: then SSR $=0 \Rightarrow r^{2}=0$

BUT: $r^{2} \approx 0$ does not always mean that there is no relationship at all between Y and X ! It only means that the relationship is not linear!

