
2. Inference in Regression Analysis

If Yi ∼ N(µi, σ
2
i ), Yi’s are independent, and a1, . . . , an are known constants then

n∑

i=1

aiYi ∼ N

(
n∑

i=1

aiµi,
n∑

i=1

a2
iσ

2
i

)
.

Thus, a linear combination of independent normal random variables is itself a
normal random variable.

Theorem: b0 and b1 are linear combinations of the Yi’s. That is, we can write

b1 =
n∑

i=1

kiYi and b0 =
n∑

i=1

liYi

where k1, . . . , kn and l1, . . . , ln are known constants.

1



Proof: Recall SXX =
∑n

i=1(Xi − X̄)2. So

b1 =
1

SXX

n∑

i=1

(Xi − X̄)(Yi − Ȳ )

=
1

SXX

[
n∑

i=1

(Xi − X̄)Yi − Ȳ
n∑

i=1

(Xi − X̄)

]

=
1

SXX

n∑

i=1

(Xi − X̄)Yi =
n∑

i=1

(
Xi − X̄

SXX

)
Yi

=
n∑

i=1

kiYi with ki =
Xi − X̄

SXX
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b0 = Ȳ − b1X̄ =
1
n

n∑

i=1

Yi − X̄
n∑

i=1

kiYi

=
n∑

i=1

(
1
n
− kiX̄

)
Yi

=
n∑

i=1

liYi with li =
1
n
− kiX̄.

Thus, b0 and b1 are linear combinations of the Yi’s and, hence, they are normal
variates. What about their means and variances?
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Theorem: Under SLR model with normal errors:

b1 ∼ N

(
β1,

σ2

SXX

)
and b0 ∼ N

(
β0,

σ2

n

∑
i X

2
i

SXX

)
.

We are first interested in
∑

i ki,
∑

i kiXi and
∑

i k
2
i .

n∑

i=1

ki =
n∑

i=1

Xi − X̄

SXX
=

1
SXX

n∑

i=1

(Xi − X̄) = 0

n∑

i=1

kiXi =
n∑

i=1

Xi − X̄

SXX
Xi =

1
SXX

SXX = 1

n∑

i=1

k2
i =

1
S2

XX

n∑

i=1

(Xi − X̄)2 =
1

SXX
.
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Proof: Since b1 =
∑n

i=1 kiYi, we get

E(b1) =
n∑

i=1

kiE(Yi) =
n∑

i=1

ki(β0 + β1Xi).

Because
∑

i ki = 0 and
∑

i kiXi = 1, this is

E(b1) = β0

n∑

i=1

ki + β1

n∑

i=1

kiXi = β1.

With
∑

i k
2
i = 1/SXX , we get

var(b1) = V ar

(
n∑

i=1

kiYi

)
=

n∑

i=1

k2
i V ar(Yi) = σ2

n∑

i=1

k2
i =

σ2

SXX
.
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Showing b0 ∼ N
(
β0,

σ2

n

∑
i X2

i
SXX

)
is basically the same.
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Example: 93 house prices in G’ville sold Dec. 1995.
Y = selling price (in 1,000$), X = area (1,000 sq.feet)

Assume the SLR model holds

E(Yi) = β0 + β1Xi

LS estimators are b0 = −25.2 and b1 = 75.6. We are interested in testing

H0 : β1 = 0 (no linear relation between area and price) HA : β1 6= 0

Since 75.6 6= 0, can we conclude that HA is true?

Recall: b1 ∼ N(β1, σ
2/SXX), where SXX =

∑
i(Xi − X̄)2 = 25.38.

Consider 2 different scenarios:

Scenario 1: σ2/SXX = 2, 500 ⇒
√

σ2/SXX = 50
Scenario 2: σ2/SXX = 100 ⇒

√
σ2/SXX = 10
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Remember, if Z ∼ N(µ, σ2), then

 

 

dist’n of Z

95%

2.5% 2.5%

µ − 1.96 σ2 µ µ + 1.96 σ2

8



For the 2 scenarios we have:

Scenario 1:
√

σ2/SXX = 50 Scenario 2:
√

σ2/SXX = 10

 

 

dist’n of  b1 

95%

2.5% 2.5%

β1 − 100 β1 β1 + 100
 

 

dist’n of  b1 

95%

2.5% 2.5%

β1 − 20 β1 β1 + 20
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Scenario 1: If β1 = 0 (H0 true) then there is a 95% chance that b1 falls between
−100 and 100.
b1 = 75.6 is consistent with H0 : β1 = 0

Scenario 2: If β1 = 0 (H0 true) then there is a 95% chance that b1 falls between
−20 and 20.
b1 = 75.6 suggests that H0 : β1 = 0 is false.

Conclusion: if we know
√

σ2/SXX, we know how likely the value b1 = 75.6 is
under H0, and we can decide if b1 = 75.6 is more consistent with H0 : β1 = 0 or
HA : β1 6= 0.

Last time we showed that

b1 ∼ N(β1, σ
2/SXX) ⇒ b1 − β1√

σ2/SXX

∼ N(0, 1)
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That means that

P

(
−1.96 ≤ b1 − β1√

σ2/SXX

≤ 1.96

)
= 0.95

P


b1 − 1.96

√
σ2

SXX
≤ β1 ≤ b1 + 1.96

√
σ2

SXX


 = 0.95

So, a 95% confidence interval for β1 is

b1 ± 1.96

√
σ2

SXX

Is this a useful confidence interval ? NO!
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We have to estimate σ2 under the SLR model. Remember, the mean squared
error

s2 =
1

n− 2

n∑

i=1

(Yi − b0 − b1Xi)2 = MSE

is an unbiased estimate of σ2. So we have all we need!

What’s next?

1. tests and confidence intervals for β1

2. confidence intervals for the mean of Y at some value of X, say X∗, that is, for

β0 + β1X
∗

3. prediction intervals for the next random variable observed with X = X∗
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Confidence Intervals and Tests for β1

The key is b1 ∼ N(β1, σ
2/SXX). Thus

b1 − β1√
σ2/SXX

∼ N(0, 1)

But this is not useful because we don’t know σ2.

If we replace σ2 with our estimate of σ2, MSE, we get

b1 − β1√
MSE/SXX

∼ t(n− 2).

Everything is based on this!
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In what follows, α is:

• the type 1 error probability = P(reject H0 | H0 true)

• always between 0 and 1 (it’s a probability)

• usually set at 0.01, 0.05 or 0.10
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(1 − α)100% Confidence Interval for β1

With probability 1− α

−t(1− α/2;n− 2) ≤ b1 − β1√
MSE/SXX

≤ t(1− α/2; n− 2)

Thus, the (1− α) ∗ 100% confidence interval for β1 is

b1 ± t(1− α/2; n− 2)
√

MSE/SXX
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Don’t confuse t(n− 2) with t(1− α/2; n− 2):

• t(n− 2): denotes the type of distribution (t) and its parameter (n− 2)

• t(1− α/2; n− 2): denotes the 1− α/2 percentile of the t(n− 2) distribution
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α Level Hypothesis Tests concerning β1

A Two-Sided Test H0 : β1 = c, HA : β1 6= c

B One-Sided Test H0 : β1 ≥ c, HA : β1 < c

C One-Sided Test H0 : β1 ≤ c, HA : β1 > c

Test Statistic:

t∗ =
b1 − c√

MSE/SXX

Rejection Rules:

A: reject H0 if |t∗| > t(1− α/2; n− 2)
B: reject H0 if t∗ ≤ −t(1− α; n− 2)
C: reject H0 if t∗ > t(1− α; n− 2)
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P-Value: This is the probability of a more extreme t∗ value than the one we got,
given that H0 is true.

 

 

t(n−2)

A

−|t*|  0 |t*|
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t(n−2)

B

t*  0 
 

 

t(n−2)

C

 0 t*
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Example of how to do Hypothesis Tests:

Question: Test H0 : β1 = 0 vs. HA : β1 6= 0 at level α = 0.05 for the house
prices data. What is the p-value?

b1 = 75.6, SXX = 25.38, MSE = 379.21

If H0 is true, then there is no linear relationship between E(Y ) and square footage.

Answer: H0 : β1 = 0, HA : β1 6= 0, α = 0.05

Test Statistic:

t∗ =
b1 − 0√

MSE/SXX

=
75.6√

379.21/25.38
= 19.56

Rejection Rule: Reject H0 if |t∗| > t(1− α/2; n− 2) = t(0.975; 91) = 1.99.

Conclusion: Reject H0 since 19.56 = |t∗| > t(0.975; 91) = 1.99. There is a
significant linear relationship between mean house price and square footage.

20



Example cont’ed: What’s the picture?

 

 

t(91)

A

2.5% 2.5%

−1.99  0 1.99
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Reconsider rejection rule:

P (reject H0|H0 true) = P (|t∗| > 1.99|H0 true)

= 1− 0.95 = α

Where is t∗ on this picture?

I would have rejected H0 for any |t∗| > 1.99 !

P-Value: Prob of a more extreme t∗ is almost 0.
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Extrapolation is Bad!

Never use estimated regression function Ê(Y ) = b0 + b1X outside the range of
X values in the data!

Remember the math class/hours on papers example
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1 2 3 4 5

20
30

40
50

60
70

#math classes

#h
ou

rs

My friend is taking 7 math classes next semester. How many hours will he spend
writing papers?

80− 11.7(7) = −1.9 ⇒ Nice concept, but wrong!
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Confidence Intervals for Mean Response

Let Xh denote the level of X for which we wish to estimate the mean response
E(Yh) = β0 + β1Xh.
Xh may be a value which occurred in the sample, or some other value within the
scope of the model.

Point estimator Ŷh of E(Yh) is

Ŷh = b0 + b1Xh

Notify that with b0 =
∑

i liYi and b1 =
∑

i kiYi we get

Ŷh =
n∑

i=1

liYi + Xh

n∑

i=1

kiYi =
n∑

i=1

(
li + Xhki

)
Yi
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Thus Ŷh is normally dist’d and we can figure out its mean and variance:

E(Ŷh) = β0 + β1Xh

var(Ŷh) = σ2

{
1
n

+
(Xh − X̄)2

SXX

}

Together we have

Ŷh ∼ N

(
β0 + β1Xh, σ2

{
1
n

+
(Xh − X̄)2

SXX

})

or
Ŷh − (β0 + β1Xh)√
σ2

{
1
n + (Xh−X̄)2

SXX

} ∼ N (0, 1)
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Plug in MSE for the unknown σ2 gives

Ŷh − (β0 + β1Xh)√
MSE

{
1
n + (Xh−X̄)2

SXX

} ∼ t(n− 2)

Just like for β1, a (1− α)100% CI for β0 + β1Xh is

Ŷh ± t(1− α/2; n− 2)

√
MSE

{
1
n

+
(Xh − X̄)2

SXX

}
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Example: Recall for the house data

Ê(price) = −25.2 + 75.6(area)

SXX = 25.38, MSE = 379.21, X̄ = 1.65

Suppose you are thinking of constructing several 2,000 sq.ft. homes in G’ville and
you want to know about how much these houses will sell for.

Point estimate is Ê(price) = −25.2 + 75.6(2) = 126

A 95% CI for β0 + β1(2) is

126± t(0.975; 91)

√
379.21

{
1
93

+
(2− 1.65)2

25.38

}
= 126± 4.86 ≈ (121, 131).

Thus, we are 95% confident that the mean selling price of 2,000 sq.ft. houses is
between 121,000$ and 131,000$. (CI for E(Yh) is smallest for Xh = X̄)
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Prediction Interval for Yh(new)

After we collect the data, we might be interested in predicting a new observation
whose X value is Xh.

Before, we estimated the mean of the distribution of Y . Now we predict an
individual outcome drawn from the distribution of Y .

Example: There is a 2,000 sq.ft. house about to be put up for sale. Its price is a
r.v. Yh(new) and Xh = 2.

Suppose that β0 and β1 are known.

Question: What do we expect Yh(new) to be?
Answer: Yh(new) = β0 + β1Xh + εh(new)
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So E(Yh(new)) = β0 + β1Xh, var(Yh(new)) = σ2 and

Yh(new) ∼ N(β0 + β1Xh, σ2)

Thus the 1− α prediction limits for Yh(new) are:

E(Yh(new))± z(1− α/2)σ.

Anyway, we don’t know the parameters. But we have a (1 − α) ∗ 100% CI for
β0 + β1Xh:

(b0 + b1Xh)± t(1− α/2; n− 2)

√
MSE

{
1
n

+
(Xh − X̄)2

SXX

}

Dist’ns of Yh(new) at the upper and lower CI limit.
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leftmost E(Yh) Ŷh rightmost E(Yh) 

pred. limits
if E(Yh) here 

pred. limits
if E(Yh) here 

Confidence Limits for E(Yh) 

Prediction Limits for Yh 
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The (1 − α) ∗ 100% Prediction Interval for Yh(new) is slightly wider than the
(1− α) ∗ 100% CI for β0 + β1Xh.

We consider the difference

Yh(new) − Ŷh = Yh(new) −
n∑

i=1

(li + Xhki)Yi

where Ŷh = b0 + b1Xh is indep. of Yh(new). Because it’s a linear combination, it’s
a normal variate with

E(Yh(new) − Ŷh) = E(Yh(new))− E(Ŷh) = 0
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and

var(Yh(new) − Ŷh) = var(Yh(new)) + var(Ŷh)

= σ2 + σ2

{
1
n

+
(Xh − X̄)2

SXX

}

= σ2

{
1 +

1
n

+
(Xh − X̄)2

SXX

}

Thus (Yh(new) − Ŷh)/
√

var(Yh(new) − Ŷh) ∼ N(0, 1)

Yh(new) − Ŷh√
MSE

{
1 + 1

n + (Xh−X̄)2

SXX

} ∼ t(n− 2)
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and a (1− α) ∗ 100% PI for Yh(new) is given by:

Ŷh ± t(1− α/2; n− 2)

√
MSE

{
1 +

1
n

+
(Xh − X̄)2

SXX

}

Example: A 95% Prediction Interval for Yh(new), the price of the 2,000 sq.ft.
house is

126±t(0.975; 91)

√
379.21

{
1 +

1
93

+
(2− 1.65)2

25.38

}
= 126±38.5 ≈ (87.5, 164.5).

Thus, there is a 95% probability that the price of the house will be between
87,500$ and 164,500$.

34



ANalysis Of Variance: ANOVA

Nothing new, just a different way of looking at what we have already done.

Say we have the LS estimates of β0, β1
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(X1,Y1)

(X2,Y2)

Y = ∑
i=1

n
Yi

Ŷ = b0
+ b1X

Y
1

Y
Ŷ

2
Y

2

Y
2

−
Y

Y
2

−
Ŷ

2
Ŷ

2
−

Y
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Consider the linear relationship (Yi − Ȳ ) = (Ŷi − Ȳ ) + (Yi − Ŷi)
Is there a quadratic analogue?
Total Sum of Squares: the variation in the Y ’s if we forget about X

SSTO =
n∑

i=1

(Yi − Ȳ )2

Regression Sum of Squares: the variation in Y ’s explained at X

SSR =
n∑

i=1

(Ŷi − Ȳ )2

Error Sum of Squares: the variation in Y ’s around the regression line

SSE =
n∑

i=1

(Yi − Ŷi)2
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Does the partition SSTO = SSR + SSE hold? Yes!

n∑

i=1

(Yi − Ȳ )2 =
n∑

i=1

(Ŷi − Ȳ )2 +
n∑

i=1

(Yi − Ŷi)2

Generally, in ANOVA methods, the SSTO is partitioned into several sums of
squares which each have an associated degrees of freedom (df).

ANOVA Table for SLR:

Source
variat. Sum of Squares (SS) df mean SS

Regr. SSR =
∑

i(Ŷi − Ȳ )2 1 SSR
1

Error SSE =
∑

i(Yi − Ŷi)2 n− 2 SSE
n−2

Total SSTO =
∑

i(Yi − Ȳ )2 n− 1
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Another way to test H0 : β1 = 0 vs. HA : β1 6= 0

Test statistic:

F ∗ =
MSR

MSE

Rejection rule: reject H0 if F ∗ > F (1− α; 1, n− 2)
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Fact: F-test and t-test are equivalent; that is the F-test rejects if and only if the
t-test rejects.

Notice: using b0 = Ȳ − b1X̄ results in

SSR =
n∑

i=1

(Ŷi − Ȳ )2 =
n∑

i=1

(b0 + b1Xi − Ȳ )2 =
n∑

i=1

(Ȳ − b1X̄ + b1Xi − Ȳ )2

= b2
1

n∑

i=1

(−X̄ + Xi)2 = b2
1SXX

Thus

F ∗ =
b2
1SXX

MSE
=

b2
1

MSE/SXX
=

(
b1√

MSE/SXX

)2

= (t∗)2

Generally, if T ∼ t(n− 2) then T 2 ∼ F (1, n− 2)
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Coefficient of Determination, r2

Question: How strong is the linear relationship between Y and X?

Remember: SSTO = SSR + SSE

Define:

r2 =
SSR

SSTO
=

SSTO− SSE

SSTO
= 1− SSE

SSTO
with 0 ≤ r2 ≤ 1.

The higher the r2, the stronger the linear relationship!

Extreme cases:
• Ŷi = Yi: then SSE = 0 ⇒ r2 = 1
• b1 = 0 ⇒ Ŷi = Ȳ : then SSR = 0 ⇒ r2 = 0

BUT: r2 ≈ 0 does not always mean that there is no relationship at all between
Y and X! It only means that the relationship is not linear!

41


