Regression Analysis

- 1. Simple Linear Regression
- 2. Inference in Regression Analysis
- 3. Diagnostics
- 4. Simultaneous Inference
- 5. Matrix Algebra
- 6. Multiple Linear Regression
- 7. Extra Sums of Squares
- 8.-10. Building the Regression Model
- 11 Qualitative Predictor Variables

1. Simple Linear Regression

Suppose that we are interested in the average height of male undergrads at UF. We put each guy's name (population) in a hat and randomly select 100 (sample). Here they are: $Y_{1}, Y_{2}, \ldots, Y_{100}$.

Suppose, in addition, we also measure their weights and the number of cats owned by their parents. Here they are: $W_{1}, W_{2}, \ldots, W_{100}$ and $C_{1}, C_{2}, \ldots, C_{100}$.

Questions:

1. How would you use this data to estimate the average height of a male undergrad?
2. male undergrads who weigh between 200-210?
3. male undergrads whose parents own 3 cats?

Answers:

1. $\bar{Y}=\frac{1}{100} \sum_{i=1}^{100} Y_{i}$, the sample mean.
2. average the Y_{i} 's for guys whose $X_{i} \mathrm{~s}$ are between 200-210.
3. average the Y_{i} 's for guys whose $C_{i} \mathrm{~s}$ are 3? No!

Same as in 1., because height certainly do not depend on the number of cats.
Intuitive description of regression:
(height) $Y=$ variable of interest $=$ response variable $=$ dependent variable (weight) $X=$ explanatory variable $=$ predictor variable $=$ independent variable

Fundamental assumption of regression

1. For each particular value of the predictor variable X, the response variable Y is a random variable whose mean (expected value) depends on X.
2. The mean value of $Y, \mathrm{E}(Y)$, can be written as a deterministic function of X.

Example: $\mathrm{E}\left(\right.$ height $\left._{i}\right)=f\left(\right.$ weight $\left._{i}\right)$

$$
\mathrm{E}\left(\text { height }_{i}\right)=\left\{\begin{array}{l}
\beta_{0}+\beta_{1}\left(\text { weight }_{i}\right) \\
\beta_{0}+\beta_{1}\left(\text { weight }_{i}\right)+\beta_{2}\left(\text { weight }_{i}^{2}\right) \\
\beta_{0} \exp \left[\beta_{1}\left(\text { weight }_{i}\right)\right]
\end{array}\right.
$$

where β_{0}, β_{1}, and β_{2} are unknown parameters!

Scatterplot weight versus height and weight versus E (height):

Simple Linear Regression (SLR)

A scatterplot of $100\left(X_{i}, Y_{i}\right)$ pairs (weight, height) shows that there is a linear trend.

Equation of a line: $Y=b+m \cdot X$ (slope and intercept)

At $X^{*}: \quad Y=b+m X^{*}$
At $X^{*}+1: Y=b+m\left(X^{*}+1\right)$
Difference is: $\left(b+m\left(X^{*}+1\right)\right)-\left(b+m X^{*}\right)=m$

Is: height $=b+m \cdot$ weight ? (functional relation)
No! The relationship is far from perfect (it's a statistical relation)!
We can say that: $\mathrm{E}($ height $)=b+m \cdot$ weight
That is, height is a random variable, whose expected value is a linear function of weight.

Distribution of height for a person who is 180 lbs , i.e. Mean $\mathrm{E}($ height $)=b+m \cdot 180$.

Formal Statement of the SLR Model

Data: $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$
Equation:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}, \quad i=1,2, \ldots, n
$$

Assumptions:

- Y_{i} is the value of the response variable in the i th trial
- X_{i} 's are fixed known constants
- ϵ_{i} 's are uncorrelated and identically distributed random errors with $\mathrm{E}\left(\epsilon_{i}\right)=0$ and $\operatorname{var}\left(\epsilon_{i}\right)=\sigma^{2}$.
- β_{0}, β_{1}, and σ^{2} are unknown parameters (constants).

Consequences of the SLR Model

- The response Y_{i} is the sum of the constant term $\beta_{0}+\beta_{1} X_{i}$ and the random term ϵ_{i}. Hence, Y_{i} is a random variable.
- The ϵ_{i} 's are uncorrelated and since each Y_{i} involves only one ϵ_{i}, the Y_{i} 's are uncorrelated as well.
- $\mathrm{E}\left(Y_{i}\right)=\mathrm{E}\left(\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}\right)=\beta_{0}+\beta_{1} X_{i}$.

Regression function (it relates the mean of Y to X) is

$$
\mathrm{E}(Y)=\beta_{0}+\beta_{1} X
$$

- $\operatorname{var}\left(Y_{i}\right)=\operatorname{var}\left(\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}\right)=\operatorname{var}\left(\epsilon_{i}\right)=\sigma^{2}$.

Thus $\operatorname{var}\left(Y_{i}\right)=\sigma^{2}$ (same constant variance for all $Y_{i}{ }^{\prime}$ s).

Why is it called $S L R$?

Simple: only one predictor X_{i}

Linear: regression function, $\mathrm{E}(Y)=\beta_{0}+\beta_{1} X$, is linear in the parameters.

Why do we care about the regression model?
If the model is realistic and we have reasonable estimates of β_{0} and β_{1} we have:

1. The ability to predict new Y_{i} 's given a new X_{i}
2. An understanding of how the mean of $Y_{i}, \mathrm{E}\left(Y_{i}\right)$, changes with X_{i}

Repetition - The Summation Operator:

Fact 1: If $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ then

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)=0
$$

Fact 2:

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) X_{i}=\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}
$$

Least Squares Estimation of regression parameters β_{0} and β_{1}

$X_{i}=\#$ math classes taken by i th student in spring
$Y_{i}=$ \#hours student i spends writting papers in spring
Randomly select 4 students
$\left(X_{1}, Y_{1}\right)=(1,60),\left(X_{2}, Y_{2}\right)=(2,70)$,
$\left(X_{3}, Y_{3}\right)=(3,40),\left(X_{4}, Y_{4}\right)=(5,20)$

If we assume a SLR model for these data, we are assuming that at each X, there is a distribution of \#hours and that the means (expected values) of these responses all lie on a line.

We need estimates of the unknown parameters β_{0}, β_{1}, and σ^{2}. Let's focus on β_{0} and β_{1} for now.

Every $\left(\beta_{0}, \beta_{1}\right)$ pair defines a line $\beta_{0}+\beta_{1} X$. The Least Squares Criterion says choose the line that minimizes the sum of the squared vertical distances from the data points $\left(X_{i}, Y_{i}\right)$ to the line ($X_{i}, \beta_{0}+\beta_{1} X_{i}$).

Formally, the least squares estimators of β_{0} and β_{1}, call them b_{0} and b_{1}, minimize

$$
Q=\sum_{i=1}^{n}\left(Y_{i}-\left(\beta_{0}+\beta_{1} X_{i}\right)\right)^{2}
$$

which is the sum of the squared vertical distances from the points to the line.

Instead of evaluating Q for every possible line $\beta_{0}+\beta_{1} X$, we can find the best β_{0} and β_{1} using calculus. We will minimize the function Q with respect to β_{0} and β_{1}

$$
\begin{aligned}
\frac{\partial Q}{\partial \beta_{0}} & =\sum_{i=1}^{n} 2\left(Y_{i}-\left(\beta_{0}+\beta_{1} X_{i}\right)\right)(-1) \\
\frac{\partial Q}{\partial \beta_{1}} & =\sum_{i=1}^{n} 2\left(Y_{i}-\left(\beta_{0}+\beta_{1} X_{i}\right)\right)\left(-X_{i}\right)
\end{aligned}
$$

Set it to 0 (and change notation) yields the normal equations (very important)!

$$
\begin{aligned}
\sum_{i=1}^{n}\left(Y_{i}-\left(b_{0}+b_{1} X_{i}\right)\right) & =0 \\
\sum_{i=1}^{n}\left(Y_{i}-\left(b_{0}+b_{1} X_{i}\right)\right) X_{i} & =0
\end{aligned}
$$

Solving these equations simultaneously yields

$$
\begin{aligned}
b_{1} & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
b_{0} & =\bar{Y}-b_{1} \bar{X}
\end{aligned}
$$

This result is even more important! Use second derivative to show that a minimum is attained.

A more efficient formula for the calculation of b_{1} is

$$
\begin{aligned}
b_{1} & =\frac{\sum_{i=1}^{n} X_{i} Y_{i}-\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)}{\sum_{i=1}^{n} X_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n} X_{i} Y_{i}-n \bar{X} \bar{Y}}{S_{X X}}
\end{aligned}
$$

where $S_{X X}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.

Example:

Let us calculate the estimates of slope and intercept of our example:

$$
\begin{aligned}
& \sum_{i} X_{i} Y_{i}=60+140+120+100=420 \\
& \sum_{i} X_{i}=11, \sum_{i} Y_{i}=190, \sum_{i} X_{i}^{2}=39
\end{aligned}
$$

$$
\begin{aligned}
b_{1} & =\frac{\sum_{i=1}^{n} X_{i} Y_{i}-\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)}{\sum_{i=1}^{n} X_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)^{2}} \\
& =\frac{420-\frac{1}{4}(11)(190)}{39-\frac{1}{4}(11)^{2}}=\frac{-102.5}{8.75}=-11.7 \\
b_{0} & =\bar{Y}-b_{1} \bar{X}=\frac{1}{4} 190-(-11.7)\left(\frac{1}{4} 11\right)=80.0
\end{aligned}
$$

Estimated regression function

$$
\widehat{\mathrm{E}(Y)}=80-11.7 X
$$

$$
\text { At } X=1: \widehat{\mathrm{E}(Y)}=80-11.7(1)=68.3
$$

$$
\text { At } X=5: \widehat{\mathrm{E}(Y)}=80-11.7(5)=21.5
$$

Properties of Least Squares Estimators

An important theorem, called the Gauss Markov Theorem, states that the Least Squares Estimators are unbiased and have minimum variance among all unbiased linear estimators.

Point Estimation of the Mean Response:
Under the SLR model, the regression function is

$$
\mathrm{E}(Y)=\beta_{0}+\beta_{1} X .
$$

We use our estimates of β_{0} and β_{1} to construct the estimated regression function

$$
\widehat{\mathrm{E}(Y)}=b_{0}+b_{1} X
$$

Fitted Values: Define

$$
\hat{Y}_{i}=b_{0}+b_{1} X_{i}, \quad i=1,2, \ldots, n
$$

\hat{Y}_{i} is the fitted value at X_{i}.
Residuals: Define

$$
e_{i}=Y_{i}-\hat{Y}_{i}, \quad i=1,2, \ldots, n
$$

e_{i} is called i th residual. The vertical distance between the i th Y value and the line.

26

Properties of Fitted Regression Line

- The sum of the residuals is zero:

$$
\sum_{i=1}^{n} e_{i}=0
$$

- The sum of the squared residuals, $\sum_{i=1}^{n} e_{i}^{2}$, is a minimum.
- The sum of the observed values equals the sum of the fitted values:

$$
\sum_{i=1}^{n} Y_{i}=\sum_{i=1}^{n} \hat{Y}_{i}
$$

- The sum of the residuals weighted by X_{i} is zero:

$$
\sum_{i=1}^{n} X_{i} e_{i}=0
$$

- The sum of the residuals weighted by \hat{Y}_{i} is zero:

$$
\sum_{i=1}^{n} \hat{Y}_{i} e_{i}=0
$$

- The regression line always goes through the point (\bar{X}, \bar{Y}).

Errors versus Residuals

$$
\begin{aligned}
e_{i} & =Y_{i}-\hat{Y}_{i} \\
& =Y_{i}-b_{0}-b_{1} X_{i} \\
\epsilon_{i} & =Y_{i}-\beta_{0}-\beta_{1} X_{i}
\end{aligned}
$$

So e_{i} is like $\hat{\epsilon}_{i}$, but ϵ_{i} is not a parameter!

Estimation of σ^{2} in SLR:

Motivation from iid (independent \& identically distributed) case, where Y_{1}, \ldots, Y_{n} iid with $\mathrm{E}\left(Y_{i}\right)=\mu$ and $\operatorname{var}\left(Y_{i}\right)=\sigma^{2}$.

Sample variance (two steps)

1. find

$$
\sum_{i=1}^{n}\left(Y_{i}-\widehat{\mathrm{E}\left(Y_{i}\right)}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Square the difference between each observation and the estimate of its mean.
2. divide by degrees of freedom

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} .
$$

Lost 1 degree of freedom, because we estimated 1 parameter, μ.

SLR model with $\mathrm{E}\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}$ and $\operatorname{var}\left(Y_{i}\right)=\sigma^{2}$, independent but not identically distributed.

Let's do the same two steps.

1. find

$$
\sum_{i=1}^{n}\left(Y_{i}-\widehat{\mathrm{E}\left(Y_{i}\right)}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\left(b_{0}+b_{1} X_{i}\right)\right)^{2}=\mathrm{SSE}
$$

Square the difference between each observation and the estimate of its mean.
2. divide by degrees of freedom

$$
s^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(Y_{i}-\left(b_{0}+b_{1} X_{i}\right)\right)^{2}=\mathrm{MSE}
$$

Lost 2 degree of freedom, because we estimated 2 parameters, β_{0} and β_{1}.
SSE: error (residual) sum of squares; MSE: error (residual) mean square

Properties of the point estimator of σ^{2} :

$$
\begin{aligned}
s^{2} & =\frac{1}{n-2} \sum_{i=1}^{n}\left(Y_{i}-\left(b_{0}+b_{1} X_{i}\right)\right)^{2} \\
& =\frac{1}{n-2} \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2} \\
& =\frac{1}{n-2} \sum_{i=1}^{n} e_{i}^{2}
\end{aligned}
$$

MSE is an unbiased estimate of σ^{2}, that is

$$
\mathrm{E}(\mathrm{MSE})=\sigma^{2}
$$

Normal Error Regression Model

No matter what may be the form of the distribution of the error terms ϵ_{i} the least squares method provides unbiased point estimators of β_{0} and β_{1} that have minimum variance among all unbiased linear estimators.

To set up interval estimates and make tests, however, we need to make assumptions about the distribution of the ϵ_{i}.

The normal error regression model is as follows:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}, \quad i=1,2, \ldots, n
$$

Assumptions:

- Y_{i} is the value of the response variable in the i th trial
- X_{i} 's are fixed known constants
- ϵ_{i} 's are independent $N\left(0, \sigma^{2}\right)$ random errors.
- β_{0}, β_{1}, and σ^{2} are unknown parameters (constants).

This implies, that the responses are independent random variates with

$$
Y_{i} \sim N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)
$$

Motivate Inference in SLR Models

Let $X_{i}=$ \#siblings and $Y_{i}=$ \#hours spent on papers. Data $(1,20),(2,50),(3,30),(5,30)$ gives

$$
\widehat{\mathrm{E}(Y)}=33+0.3 X
$$

Conclusion: b_{1} is not zero, so \#siblings is linearly related to \#hours,right?

WRONG!

b_{1} is a random variable because it depends on the Y_{i} 's.
Think of consecutively collecting data and recalculating b_{1} for each data. We draw the histogram of these b_{1} 's

Scenario 1: Highly variable
Histogram of bvar

Scenario 2: Highly concentrated
Histogram of bcon

Think about $H_{0}: \beta_{1}=0$
Is H_{0} false? Scenario 1: not sure Scenario 2: definitely

If we know the exact dist' n of b_{1}, we can formally decide if H_{0} is true. We need formal statistical test of
$H_{0}: \beta_{1}=0$ (not)
$H_{A}: \beta_{1} \neq 0$ (there is a linear relationship between $\mathrm{E}(Y)$ and X)

