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Outline

Estimation:

• Review of concepts

• Population vs. Sample

• Shape, Center, Spread

• Estimation of population parameters

Inference: Con�dence Intervals and Hypothesis Tests for

• Proportions in one and two samples

• Means in one and two samples



Review

In statistics, any kind of information we want to obtain and any
conclusions we want to draw are based on data
How do we get data?

• Often, we obtain data by taking a random sample from a large
population and observe/measure various variables

• But see also the concept of Experiments

Di�erent types of variables:

• Categorical and numerical variables

• Discrete and continuous variables



Review

Describing the distribution of variables:

• Depends on type of variable

• By means of graphics:
• Bar Chart, Pie Chart, Histogram, Boxplot, Q-Q Plots,

Scatterplot, . . .

• By means of numerical summaries:
• For categorical/discrete variables: Frequencies and relative

frequencies (proportions)
• For numerical/continuous variables: Mean, Median, Mode,

Quartiles, Percentiles, Standard Deviation, IQR, Correlation,
. . .



Review

What do we look for?

• Shape: Symmetric or skewed distribution, number of modes
(bimodal, etc.)

• Center: Where are most of the values located? Where does
the distribution peak?

• Spread: How disperse (variable) are the values, what is the
smallest, largest value?



Estimation

• The distribution (i.e., shape, center and spread) of a variable
X in the population is unknown! (We call X a random
variable)

• We wish to estimate some of its characteristics (e.g., the
center) by taking a sample X1, X2, . . . , Xn of n observations
or measurements of the variable

• We assume that all observations are independent and come
from the same distribution (the true distribution of the
variable in the population)

• This leads to independent and identically distributed (iid)
observations



Estimation

• Notation: Xi
iid∼ F , i = 1, . . . , n, where F is the true but

unknown distribution function of the variable X.

• Example 1: Suppose F denotes the unknown distribution of
the variable FVC in the population of all �remen.

• We say that the FVC values from the 79 �remen in our data
set is a random (iid) sample from the true distribution.

• Based on this random sample, can we estimate the center
(e.g., mean) of the FVC distribution, i.e., a �typical� FVC
value for this population of �remen?

• Can we estimate the spread (e.g., standard deviation) of the
distribution?



Estimation

• Example 2: Suppose F denotes the unknown distribution of
the variable �region� in the population of all �remen.

• We say that the sample of region membership for the n = 79
�remen in our data set is an iid sample from the true
distribution.

• Based on this random sample, can we estimate the true
proportion of �remen from region 1 in the entire population of
�remen?



Estimation

We take a sample from a population to learn about (i.e., estimate)
population parameters such as:

Population Mean Prop. Std. Dev. Corr. Slope
Parameter: µ π σ ρ β

Estimate or

Statistic: µ̂ = x̄ π̂ = p σ̂ = s ρ̂ = r β̂ = b

x̄ = 1
n

∑n
i=1 xi is the sample mean (average)

p is the sample proportion

s =
√

1
n−1

∑n
i=1(xi − x̄)2 is the sample standard deviation

r is the sample correlation coe�cient
b is the estimated slope in a linear regression model



Estimation

What are population parameters?

• Remember the random variable X and its distribution F .

• Population parameters specify F and help to describe X.

Most important one: Expected value E(X)
• Describes a �typical� value; center/location

• De�nition:

E(X) =


∞∫
−∞

xf(x)dx continuous case∑
all x's

xP (X = x) discrete case

• We often refer to the expected value as µ



Estimation

Example 1 (cont.): Suppose the FVC distribution in the population
of all �remen follows a normal model with mean µ = 5.8 and
standard deviation σ = 0.8.
Thus, F ≡ N(µ, σ2) ≡ N(5.8, 0.82) and we write
X ∼ N(5.8, 0.82), where X is the random variable denoting FVC.
What is the expected value of X?

E(X) =
∫ ∞
−∞

xf(x)dx =
∫ ∞
−∞
x

1√
2πσ2

exp

{
−1

2

(
x− µ
σ

)2
}
dx

= · · · = µ = 5.8

It's just what we called µ in the normal model!
Interpretation: We expect to see a FVC value of 5.8 when
observing this random variable.



Estimation

Example 2 (cont.): Suppose the number of �remen from region 1
follows a Binomial model with true proportion of �remen from
region 1 equal to π = 41%. Among the n = 79 �remen sampled,
how many do we expect to come from region 1?
Let X=#(�remen from region 1), write X ∼ Binomial(79, 0.41)
What is the expected value of X?

E(X) =
n∑
x=0

xP (X = x) =
n∑
x=0

x

(
n

x

)
πx(1− π)n−x = · · · = nπ

E(X) =
n∑
x=0

x

(
79
x

)
0.41x(1− 0.41)79−x = · · · = 79× 0.41 = 32.39

Interpretation: From the 79 �remen, we expect 32.4 to be
from region 1.



Estimation

Another important population parameter: Variance var(X)
• Describes the variability (spread) of the random variable
around its expected value

• De�nition:

var(X) =


∞∫
−∞

(x− E(X))2f(x)dx continuous case∑
all x's

(x− E(X))2P (X = x) discrete case

• We often refer to the variance as σ2 and to the standard
deviation, which is simply its square root, as σ.



Estimation

Example 1 (cont.): Remember X ∼ N(5.8, 0.82), where X was the
random variable denoting FVC. What is the variance of X?

var(X) =

∞∫
−∞

(x− µ)2
1√

2πσ2
exp

{
−1

2

(
x− µ
σ

)2
}
dx

= · · · = σ2 = 0.64

Its just what we called σ2 in the normal model!
The more meaningful measure for spread is the standard deviation,
which is simply

√
0.64 = 0.8.

Interpretation: The spread of the FVC values around their
mean is 0.8.
For bell-shaped distributions, about 68% of observations fall within
one standard deviation of the mean, and 95% of observations fall
within two standard deviation of the mean.



Estimation

Example 2 (cont.): Remember X = #(�remen from region 1) and
X ∼ Binomial(79, 0.41).
What is the spread in the number of �remen from region 1?

var(X) =
n∑
x=0

(x− µ)2P (X=x) =
n∑
x=0

(x−nπ)2
(
n

x

)
πx(1−π)n−x

= · · · = nπ(1−π) = 79× 0.41× (1−0.49) = 19.1

Interpretation: The standard deviation of the number of
�remen from region 1 is 4.4.
When sample size n is large and π around 0.5, then can use same
rule of thumb as before (68%, 95%).



Estimation

Rules for expected values and variances:

E(aX + b) = aE(X) + b, E

(
n∑
i=1

Xi

)
=

n∑
i=1

E(Xi)

var(aX + b) = a2var(X), var

(
n∑
i=1

Xi

)
=

n∑
i=1

var(Xi)

The last identity only holds if the Xi's are independent.



Estimation

Careful:

var(X1 −X2) = var(X1) + var(X2)− 2cov(X1,X2)

If X1 and X2 are independent

cov(X1,X2) = E
(

(X1 − E(X1))× (X2 − E(X2))
)

= E(X1 ×X2)− E(X1)× E(X2) = 0

Sum of two normal random variables is again normal:

X1∼N(µ1, σ
2
1), X2∼N(µ2, σ

2
2) =⇒ X1+X2∼N(µ1+µ2, σ

2
1+σ2

2)



Estimation

• In the two examples, we assumed to know the true distribution
of X exactly! This is unrealistic.

• Often, we know (or guess) the shape (e.g., normal, binomial,
exponential), but not the values of the parameters that de�ne
the shape. We need to estimate them based on a random
sample X1, . . . , Xn.

• What is a reasonable estimate of the expected value (i.e., the
true mean µ or true proportion π?

• The sample average.

• What is a reasonable estimate of the variance σ2 and the
standard deviation σ?

• The sample variance and the sample standard deviation.



Estimation

We take a sample from a population to learn about (i.e., estimate)
population parameters such as:

Population Mean Prop. Std. Dev. Corr. Slope
Parameter: µ π σ ρ β

Estimate or

Statistic: µ̂ = x̄ π̂ = p σ̂ = s ρ̂ = r β̂ = b

x̄ = 1
n

∑n
i=1 xi is the sample mean (average)

p is the sample proportion

s =
√

1
n−1

∑n
i=1(xi − x̄)2 is the sample standard deviation

r is the sample correlation coe�cient
b is the estimated slope in a linear regression model



Estimation

• Why is the sample mean x̄ a reasonable estimate of the
expected value µ (the true population mean)?

• Let's see what is a typical value for the sample mean, i.e., let's
�nd the expected value of the sample mean constructed from
a random sample X1, . . . , Xn:

E
(
X̄
)

= E

(
1
n

n∑
i=1

Xi

)
= 1

n

n∑
i=1

E(Xi) = 1
n

n∑
i=1

µ = µ

• Hence, a typical value for the sample mean is exactly the true
population mean (and not something else)!

• We call the sample mean an unbiased estimator of the true
population mean µ.

• Can we �nd the spread of the sample mean?



Estimation

var
(
X̄
)

= var

(
1
n

n∑
i=1

Xi

)
= 1

n2

n∑
i=1

var(Xi) = 1
n2

n∑
i=1

σ2 =
σ2

n

• Hence, the standard deviation of the sample mean is√
var(X̄) =

√
σ2

n
=

σ√
n

• The larger the sample size n, the smaller the spread of the
sample mean X̄.

• But not proportionally: taking 4 times as large a sample only
reduces the spread (=precision) of X̄ by a factor of 2!



Estimation

An important Fact: The Central Limit Theorem

• Let X1, . . . , Xn, be iid random variables (a random sample)
with E(Xi) = µ and var(Xi) = σ2, i = 1, . . . , n. (No other
assumptions about F are necessary, such as shape)

• Then, for n su�ciently large, the sample mean X̄ follows a
normal distribution with mean µ and variance σ2/n. For
short:

X̄ ∼ N(µ, σ2/n)

• Applied to 0/1 (Bernoulli) random variables, this means that
the sample proportion P (which is just X̄) follows a normal
distribution with mean equal to the true proportion π and
variance equal to π(1− π)/n. For short:

P ∼ N(π, π(1− π)/n)



Estimation

• One last thing: We cannot compute the standard deviation of
X̄! It contains the population parameter σ.

• But, we can estimate σ2 by s2, and plug it into the formula.

• This gives the so called standard error: s/
√
n.

• That is, the standard error of the sample mean X̄ is s/
√
n.

• Standard errors are the key components to measure precision
of estimators such as the sample mean or the sample
proportion.

• The magnitude of the standard error re�ects the uncertainty
we have in estimating a population parameter by using a
random sample of size n.

• In fact, can we give an interval of plausible values of a
population parameter based on a random sample?



Inference: Con�dence Interval for π

• Example 2 (cont.) Based on the random sample of n = 79
�remen from the 2 regions, can we �nd a range of plausible
values for the true proportion of �remen that are from region
1?

• Obviously, we can get a point estimate for the true proportion
by �nding the sample proportion of �remen from region 1 in
our sample of 79 �remen.

> firemen <- read.table("firemen.dat", header=TRUE)

> attach(firemen)

> mean(region==1)

> [1] 0.4303797

The sample proportion is p = 0.43, or 43%.

• But would we take another random sample of 79 new �remen,
we would obtain a (slightly) di�erent p.



Inference: Con�dence Interval for π

• Simulation experiment: Assume we know that there are
exactly 1000 �remen in the two regions, 410 of which are from
region 1. We can use R to simulate a random sample of
n = 79 �remen:

> region.all <- c(rep(1, 410), rep(2, 590))

> region.sample <- sample(region.all, 79, replace=TRUE)

> mean(region.sample==1)

> 0.3797468

• Do this a number of times, and save each proportion

> props <- matrix(NA, 1000, 1)

> for (i in 1:1000) {

region.sample <- sample(region.all, 79, replace=TRUE)

props[i] <- mean(region.sample==1)

}



Inference: Con�dence Interval for π

• Plot a Histogram:

> hist(props)
Histogram of props
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• This shows a range of plausible values



Inference: Con�dence Interval for π

• Now, in reality we only have a single sample, and we don't
know the true proportion of �remen from region 1. (That's
precisely what we want to �nd out a range for!)

• But, can we estimate the spread of the histogram from just
our single sample, without knowing the true proportion?

• Remember CLT (for large n): P ∼ N(π, π(1− π)/n).
• The standard error of the sample proportion P is (just replace
the unknown π appearing in the formula by the known p):
p(1− p)/n.

• For our example, the standard error of the sample proportion
is:
√

0.43(1− 0.43)/79 = 0.0557.



Inference: Con�dence Interval for π

• Does the shape of the histogram remind you of a model?

• Remember, by the CLT, the shape of the distribution of p is
normal. Also, remember, we can apply the rule which says
that 95% of sample proportions (one of which is ours) will fall
within 2 standard deviations (which we estimate by the
standard error) of the true mean π.

• Hence, the interval that extends two standard errors from the
sample proportion should capture the mean (in 95% of the
cases).

• A 95% con�dence interval for an unknown, true proportion
π is given by:

p± 2
√
p(1− p)/n



Inference: Con�dence Interval for π

• In general, 100(1− α)% of sample proportions (one of which
is ours) will fall within z1−α/2 standard deviations (which we
estimate by standard error) of the true mean π, where z1−α/2
is the 1− α/2 percentile of the standard normal distribution.

• A 100(1− α)% con�dence interval for an unknown, true
proportion π is given by:

p± z1−α/2
√
p(1− p)/n

• For our Example 2 (using α = 0.05):

0.43± 1.96
√

0.43(1− 0.43)/79 = [0.319, 0.541]

• Interpretation: In repeated sampling (that is, where we repeat
the experiment several times), in 95 out of 100 cases this
interval captures (contains/covers) the true proportion π.



Inference: Con�dence Interval for π

• Interpretation: We are 95% certain that the true
proportion of �remen from region 1 is at least 31.9%
and at most 54.1%.

• The part ±2
√
p(1− p)/n is known as the margin of error,

which you all have seen for results of opinion polls.

• Caution: This con�dence interval does not work when n or π
is small! Rule of thumb: np > 10 and n(1− p) > 10.
(However, when π is really small (e.g., 0.0001), this is also
inappropriate and there are easy alternatives.)

• Question: The chief �re inspector claims that 30% of �remen
are from region 1. Is that a reasonable claim?

• Answer: No, since 30% is not contained in the con�dence
interval for the true proportion of �remen from region 1. It is
not a plausible value for the true proportion.



Inference: Hypothesis Testing

• The last question can also be formulated as a hypothesis
test: The hypothesis is if the true proportion of �remen from
region 1 is equal to 30% or di�erent from 30%.

• Question: Is there su�cient evidence from the sample to reject
the hypothesis that the true proportion is equal to 30%?

• Since most hypothesis test can be answered via a con�dence
interval, we cover hypothesis testing only lightly here.

• Every hypothesis test has 4 steps

• Let's �rst look at a hypothesis test for a single proportion.



Inference: Hypothesis Test for π

• Step 1: Specify null and alternative hypotheses (always about
a population parameter):

two-sided: H0 : π = π0 HA : π 6= π0

one-sided: H0 : π ≤ π0 HA : π > π0

one-sided: H0 : π ≥ π0 HA : π < π0,

where π is the true (unknown) proportion and π0 is some
speci�c value. Also, choose α-level (controls type I error, see
later).

• Step 2: Specify the (asymptotic) distribution for the
estimator of the unknown parameter. In almost all cases:
apply the CLT assuming H0 is true:

P ∼ N(π0, π0(1− π0)/n)



Inference: Hypothesis Test for π

• Step 3 (P-value): Assuming that H0 is true, �nd the
probability of observing an even more extreme (as speci�ed by
the alternative hypothesis) sample proportion as the one
observed:

I.e., in the one sided case with HA: π > π0, �nd Pr(P > p),
where p is the observed proportion.

In the two-sided case, �nd 2× Pr(P > |p|).

To �nd this, calculate the Test Statistic: under H0

Z =
P − π0√

π0(1− π0)/n
.



Inference: Hypothesis Test for π

• Calculate the Test Statistic: under H0

Z =
P − π0√

π0(1− π0)/n
.

The probability Pr(P > p) is the same as Pr(Z > z), and
2× Pr(P > |p|) is the same as 2× Pr(Z > |z|), where Z is a
standard normal random variable (i.e., Z ∼ N(0, 1)).

The probability under the N(0, 1) model is easy to calculate
(Tables, R). The resulting probability is known as the P-value.



Inference: Hypothesis Test for π

• Step 4 (Conclusion):
If P-value < α: Su�cient evidence for HA.

• H0 is no more tenable, reject it. The likelihood of observing
such a sample proportion when the null hypothesis is true is so
small, so that the null hypothesis must be wrong.

If P-value ≥ α: Insu�cient evidence. Cannot reject the
claim H0, therefore retain it.

• The sample did not provide overwhelming evidence to reject
the null hypothesis. The likelihood of observing such a sample
proportion is not so small when the null hypothesis is correct.
Therefore, no reason to reject it.

• How to choose α?



Inference: Hypothesis Test for π

• 2 Errors (wrong decisions):
• Type I: reject H0 although H0 is true;
• Type II: retain H0 although H0 is false (i.e. HA true)

• The probability of making Type I error equals α:

Pr(reject H0|H0 true) = α.

• In hypotheses testing we control the Type I error (at
100α%) by choosing a small α-level in Step 1 (e.g. 5%, 1%,
10%).

• The Power of a test = 1−Type II error = reject H0 when it is
false = reject H0 when you should!

• The larger the power, the better.

• There is a relationship between Type I error, power and sample
size.



Inference: Hypothesis Test for π

• Example 2 (cont.) Test the hypothesis that the true
proportion of �remen from region 1 is 30%.

• Step 1: Write out null and alternative hypothesis

H0 : π = 0.3 H0 : π 6= 0.3

and choose α = 5%.
• Step 2: From the CLT we know:

P ∼ N(0.3, 0.3(1− 0.3)/79) = N(0.3, 0.309)

• Step 3: Calculate Test statistic

z =
p− π0√

π0(1− π0)/n
=

0.43− 0.30√
0.3(1− 0.3)/79

= 2.52

and P-value: 2× Pr(Z > |z|) = 2× Pr(Z > 2.52) = 0.0117.



Inference: Hypothesis Test for π

• This can be easily calculated in R:

> 2*(1 - pnorm(2.52))

> [1] 0.01173548

• Step 4: Conclusion: Since the P-value of 0.0117 is less than
the α of 5%, we reject the null hypothesis and conclude that
the true proportion of �remen from region 1 must be di�erent
from 30%.

• Di�erent by how much?

• Give con�dence interval: [31.9%, 54.1%]

• So, con�dence interval more informative as reject/do not
reject decision of statistical hypothesis test.



Inference: Hypothesis Test for π

• There is an R function, prop.test, that computes con�dence
intervals and P-values for hypothesis tests of unknown
population proportions. However, it uses a slightly di�erent
test statistic, so results are slightly di�erent from ours. The
procedure we outlined before is generally recommended.

> table(region)

region

1 2

34 45



Inference: Hypothesis Test for π

• > prop.test(x=34, n=79, p=0.3)

1-sample proportions test with continuity correction

data: 34 out of 79, null probability 0.3

X-squared = 5.789, df = 1, p-value = 0.01613

alternative hypothesis: true p is not equal to 0.3

95 percent confidence interval:

0.3210938 0.5464879

sample estimates:

p

0.4303797



Inference: Con�dence Interval for µ

• We have seen how to construct con�dence intervals for a
proportion. Now we want to do the same for an unknown
mean of a continuous variable in the population.
Example 1 (cont.): What is a range of plausible values for the
true FVC value of �remen?

• Same procedure as before. By the CLT, we know that the
standard error of the sample mean X̄ is S/

√
n.

• We also know by the CLT that the distribution of the sample
mean is normal.

• Hence, by extending 2 standard errors to the left and right of
our observed sample mean x̄, we should capture the true mean
95% of the time. (In 5% of cases, the sample mean we obtain
is so awkward (unlucky), that we will not capture the true
sample mean.)



Inference: Con�dence Interval for µ

• A 95% con�dence interval for an unknown, true mean µ is
given by:

x̄± 2s/
√
n.

• More generally, a 100(1− α)% con�dence interval for an
unknown, true mean µ is given by

x̄± z1−α/2s/
√
n.

• Same interpretations as before.



Inference: Con�dence Interval for µ

Example 1 (cont.): Find a 95% con�dence interval for the mean
FVC value in the population of �remen.

> x.bar <- mean(fvc)

> s <- sqrt(var(fvc))

> n <- length(fvc))

> alpha <- 0.05

> z <- qnorm(1-alpha/2)

> x.bar + c(+1, -1)*z*s/sqrt(n)

[1] 5.366750 5.703123



Inference: Con�dence Interval for µ

• We are 95% certain that the true FVC of �remen in the
population is at least 5.37 and at most 5.70.

• What does �95% certain� mean: Would we continue to take
samples of the same size, in 95 out of 100 cases the interval so
constructed contains the true mean. (And we hope that our
speci�c case is one that belongs to the 95 cases).

• Question: A FVC value of 5.4 is considered �normal�. Can the
average FCV value for �remen be considered normal?

• Answer: Yes! 5.4 lies within the 95% con�dence interval, it is
therefore a plausible value for the average (mean) FCV value.



Inference: Con�dence Interval for µ

• The con�dence intervals above are valid if the sample size is
�large� (79 is considered large enough).

• For smaller samples, the CLT doesn't work. But we only need
one minor adjustment to obtain a valid con�dence interval
even with small samples.

• However, the price we have to pay is that we have to assume
that the random variables which make up our sample are
actually iid from a normal distribution N(µ, σ2).

• For large sample sizes, we didn't need to make this
assumption. (The CLT guaranteed normality of the sample
mean, no matter what the distribution of the random variables
that make up the sample, as long as they are iid.)



Inference: Con�dence Interval for µ

• The adjustment we have to make is that instead of the
standard normal N(0, 1) distribution to calculate the upper
z1−α/2 quantile (which is often called the critical value), we
have to use Student's t distribution with n− 1 degrees of
freedom and the corresponding upper tn−1,1−α/2 quantile for
that distribution (for which there are also Tables, or use R).

• The con�dence interval then looks as follows:

x̄± tn−1,1−α/2s/
√
n.



Inference: Con�dence Interval for µ

Example 1 (cont.): Find a 95% CI for mean FVC:

> z <- qnorm(1-alpha/2);

> x.bar + c(+1, -1)*z*s/sqrt(n)

[1] 5.366750 5.703123

> t <- qt(1-alpha/2, df=n-1)

> x.bar + c(+1, -1)*t*s/sqrt(n)

[1] 5.364100 5.705773

> c(z, t)

[1] 1.959964 1.990847



Inference: Con�dence Interval for µ

• The CI is virtually the same. In fact, we almost always use t,
because as n gets larger, the critical value based on the t
distribution gets closer to the critical value based on the
N(0, 1) distribution.

• To answer the question, we can also conduct a hypothesis test
for the unknown mean µ.

• Same 4 steps as before, but no with regard to a mean:



Inference: Con�dence Interval for µ

• Step 1 (Setup): Write out null and alternative hypotheses
(always about a population parameter):

two-sided: H0 : µ = µ0 vs. HA : µ 6= µ0

one-sided: H0 : µ = µ0 vs. HA : µ > µ0 (or HA : µ < µ0),

where µ is the true (unknown) mean and µ0 is some
speci�c value. Also, choose α-level (controls type I error).

• Step 2 (Specify): Specify the (asymptotic) distribution for
the estimator of the unknown parameter. In almost all cases:
apply the CLT assuming H0 is true:

X̄ ∼ N(µ0, σ
2/n).



Inference: Con�dence Interval for µ

• Step 3 (Test statistic and P-value): Assuming that H0 is
true, �nd the probability of observing an even more extreme
(as speci�ed by the alternative hypothesis) sample mean as the
one observed: I.e., in the one-sided case with HA: µ > µ0,
�nd Pr(X̄ > x̄), where x̄ is the sample mean. In the two-sided
case, �nd 2 Pr(X̄ > |x̄|).
To �nd it, calculate Test Statistic: t = (x̄− µ0)/(s/

√
n).

The probability Pr(X̄ > x̄) is the same as Pr(T > t), and
2 Pr(X̄ > |x̄|) is the same as 2 Pr(T > |t|), where T is
distributed as Student's t with n− 1 degrees of freedom. This
probability under the t distribution is easy to calculate (Tables,
R). The resulting probability is known as the P-value, and the
entire test is often referred to as the t-test.



Inference: Con�dence Interval for µ

• Step 4 (Conclusion):
If P-value < α: Su�cient evidence for HA.

• H0 is no more tenable, reject it. The likelihood of observing
such a sample mean when H0 were true is too small, so that
H0 must be wrong.

• If P-value ≥ α: Insu�cient evidence. Cannot reject the claim
H0, therefore we retain it.

• The sample did not provide overwhelming evidence to reject
H0. The likelihood of observing such a sample mean is not so
small when H0 is correct. Therefore, no reason to reject it.



Inference: Con�dence Interval for µ

Example 1 (cont.) Is there reason to believe that �remen have an
abnormal FCV? (I.e., is there mean FCV di�erent from the normal
value of 5.4?)

• Step 1: Write out null and alternative hypothesis

H0 : µ = 5.4 vs. HA : µ 6= 5.4

and set α = 5%.

• Step 2: From the CLT we know: X̄ ∼ N(5.4, σ2/n).
• Step 3: Calculate test statistic

t =
X̄ − µ0

σ/
√
n

=
5.535− 5.4
0.763/

√
79

= 1.5725

and P-value: 2 Pr(T > |t|) = 2 Pr(T > 1.57) = 0.1199.



Inference: Con�dence Interval for µ

• Conclusion: We have insu�cient evidence (P = 0.1199)
to conclude that �remen have an abnormal mean FVC.

• We can get all results (CI and test) with one function in R:

> t.test(fvc, mu=5.4)

One Sample t-test

data: fvc

t = 1.5725, df = 78, p-value = 0.1199

alternative hypothesis: true mean is not equal to 5.4

95 percent confidence interval:

5.364100 5.705773

sample estimates:

mean of x

5.534937



Inference: 2 Samples

• Often, we are interested in comparing population parameters
from two groups.

• Example 2 (cont.): Is there a di�erence between the average
FVC from �remen in region 1 and 2?

• First, create a plot to compare the two samples graphically:
Two Boxplots, side by side:

> boxplot(fvc ~ region)



Inference: 2 Samples

1 2

4
5

6
7

It seems that there are no great di�erences. Let's �nd out more
precisely, by �nding a range of plausible values for the di�erence in
mean FVC between �remen from region 1 and 2.



Inference: CI for µ1 − µ2

• We have a random sample of n1 observations from population
1, and a random sample of n2 observations from population 2.

• To construct CI, basically same procedure as before. Appeal to
CLT:

X̄1 ∼ N(µ1, σ
2
1/n1) , X̄2 ∼ N(µ2, σ

2
2/n2)

=⇒ X̄1 − X̄2 ∼ N(µ1 − µ2, σ
2
1/n1 + σ2

2/n2).

• Hence, the standard error for the di�erences in sample means
X̄1 − X̄2 is given by: √

S2
1/n1 + S2

2/n2.



Inference: CI for µ1 − µ2

• Remember, once we have standard error (i.e., a measure how
variable our estimate of the true di�erences is), we can
construct con�dence intervals.

• The con�dence interval for the di�erence between two
population means µ1 − µ2 is given by

(x̄1 − x̄2)± tdf,1−α/2
√
s21/n1 + s22/n2

where tdf,1−α/2 is the upper α/2 quantile of the t distribution
with degrees of freedom df (a complicated formula, use
software).

• Lets again use the R function t.test to get this con�dence
interval.



Inference: CI for µ1 − µ2

> t.test(fvc ~ region)

Welch Two Sample t-test

data: fvc by region

t = -0.8696, df = 65.771, p-value = 0.3877

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

{-0.5067853 0.1992690

sample estimates:

mean in group 1 mean in group 2

5.447353 5.601111

• Interpretation: We are 95% con�dent that the di�erence
between the mean FCV of �remen from region 1 and the mean
FCV of �remen from region 2 is between −0.51 and 0.20.
Since 0 is contained in this interval, there is no signi�cant
di�erence between the mean FCV for these two groups.



Inference: CI for µ1 − µ2

> t.test(fvc ~ region)

Welch Two Sample t-test

data: fvc by region

t = -0.8696, df = 65.771, p-value = 0.3877

• The t-value, df and P-value refer to a hypothesis test for the
di�erence between two means µ1 − µ2:

• Test (two independent sample t-test)

H0 : µ1 − µ2 = 0 vs. HA : µ1 − µ2 6= 0 (or <,>)

• Test Statistic

t =
x̄1 − x̄2√

s21/n1 + s22/n2

refers to tdf distribution.



Inference: CI for µ1 − µ2

• Interpretation of P-value: Since the P-value is large in
comparison to any reasonable value for α (e.g., 1%, 5% or
even 10%), we have insu�cient evidence to reject the null
hypothesis that the two mean FVC values are di�erent.

• Again: Hypothesis test and con�dence interval give same
conclusion, but con�dence interval provides more information
about the size of the di�erence.

• Finally, similar to �nding con�dence intervals for di�erence of
means, we can ask for di�erences of proportions:

Example 3: Is the proportion of �remen older than 20 years the
same in region 1 and 2?



Inference: CI for µ1 − µ2

• To answer this question, we construct a con�dent interval for
the di�erence between the true (but unknown) proportions of
�remen older than 20 years in region 1 and 2.

• What are the sample proportions in the two groups?

> age20 <- (age > 20)

> table(region, age20)

age20

region FALSE TRUE

1 15 19

2 6 39

• So, 19/(15+19) = 55.9% of �remen in region 1 are older than
20 years, while 39/(6+39) = 86.7% of �remen in region 2 are
older than 20 years. Is this observed di�erence of 30.8%
signi�cant, or just due to sampling variability?



Inference: CI for π1 − π2

• We have a random sample of n1 observations from population
1 (yielding the �rst sample proportion p1), and a random
sample of n2 observations from population 2 (yielding the
second sample proportion p2)

• To construct a CI, basically same procedure as before. Appeal
to CLT:

P1 ∼ N(π1, π1(1− π1)/n1) , P2 ∼ N(π2, π2(1− π2)/n2)
=⇒ P1 − P2 ∼ N(π1 − π2, π1(1− π1)/n1 + π2(1− π2)/n2).

• Hence, the standard error for the di�erences in sample
proportions P1 − P2 is given by:√

p1(1− p1)/n1 + p2(1− p2)/n2.



Inference: CI for π1 − π2

• Remember, once we have standard error (i.e., a measure how
variable our estimate of the true di�erences is), we can
construct CIs.

• The con�dence interval for the di�erence between two
population proportions π1 − π2 is

(p1 − p2)± z1−α/2
√
p1(1− p1)/n1 + p2(1− p2)/n2,

where z1−α/2 is the upper α/2 quantile of the standard normal
distribution N(0, 1).

• The R function prop.test delivers this interval.



Inference: CI for π1 − π2

> table(region, age20)

age20

region FALSE TRUE

1 15 19

2 6 39

> prop.test(x=c(19,39), n=c(34,45))

2-sample test for equality of proportions

with continuity correction

data: c(19, 39) out of c(34, 45)

X-squared = 7.8931, df = 1, p-value = 0.004962

alternative hypothesis: two.sided

95 percent confidence interval:

-0.5278754 -0.0878109

sample estimates:

prop 1 prop 2

0.5588235 0.8666667



Inference: CI for π1 − π2

• Interpretation: The CI for the true di�erence in proportions is
[-53%, -9%]. That is, the true proportion of �remen older than
20 years is lower in region 1 when compared to region 2 by at
least 9% and at most 53%.

• We can also say: The true proportion of �remen older than 20
years is at least 9% and at most 53% larger in region 2.

• The R output also displays results (i.e., the P-value) of a
hypothesis test for the hypothesis that the true di�erence is
zero:

H0 : π1 − π2 = 0 HA : π1 − π2 6= 0.



Inference: CI for π1 − π2

• Conclusion: Since the P-value is very small (compared to an α
of 5% or even 1%), we have su�cient evidence to reject the
null hypothesis that the di�erence in true proportions is zero
(i.e., that the true proportions are equal). Therefore, the two
proportions are signi�cantly di�erent.

• A CI gives more information then the hypothesis test. It also
tells the size of the e�ect, i.e., by how much the true
proportions di�er.



Summary

• To describe distribution of a variable: shape, center, spread.

• Typical parameters to describe the center are the mean (for
continuous variables) and the proportion (for binary variables).

• We learned how to estimate these by the sample mean and
sample proportion, respectively.

• We learned that these are reasonable estimates: they are
unbiased.

• We learned how to assess the variability (=precision) of these
estimators by �nding their standard error.

• The estimate plus the standard error combine to give a CI for
the true population parameter.

• We learned how to conduct hypothesis tests about these
parameters.

• Finally, we looked at comparing the mean and proportion
among two groups via constructing a CI for their di�erence.


