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Introduction

e Based on material from and in Tom Snijders and Roel
Bosker: Multilevel Analysis: An Introduction to Basic and
Advanced Multilevel Modeling (2nd ed.), SAGE (2012).

e Associated website: http://www.stats.ox.ac.uk/"snijders/

e Special interest on Varying Intercept and Varying
Coefficient Models (Generalized Linear Mixed Models,
GLMM) to relate on Hierarchical Structures in the data.

e All models will be handled by using @ functions like lme,
lmer, or glmer.
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Motivation

Q: Is there any relevant functional relationship of y on x7?
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Motivation

A: Yes! There are 5 linear models, one for each group in the data.




Motivation

Q: Is there constant variance in y7?




Motivation

A: Yes! There are 3 homoscedastic groups in the data.




Motivation

How to account for groups or clusters in the data?

e Multilevel analysis is a suitable approach to base the model
on social contexts as also on characteristics of individual
respondents.

e In a hierarchical (generalized) linear model the response
variable represents the lowest level (level one, micro level).

e Aggregates of level-one variables can serve as explanatory
aspects for the second level (macro level).

e Explanatory variables could be available at any level.

e Repeated measurements, time series or longitudinal data also
form such homogeneous groups.

e Especially, groups, and individuals in these groups, of Social
Networks can be compared and modeled utilizing multilevel
analysis.



Motivation

Some examples of units at the macro and micro level:

macro-level (2) micro-level (1)

schools teachers
classes pupils
neighborhoods  families
districts voters

firms departments
departments employees
families children
doctors patients
interviewers respondents
Judges suspects

subjects measurements



Motivation

Two-level models
with micro-level (level 1) and macro-level (level 2):

macro




Motivation

Arguments in favor of multilevel models (and not to use ordinary
least squares regression) in case of multilevel data:

e Relevant effects are often not recognized because they seem
to be irrelevant.

e Standard errors and tests conclusions could be simply wrong.



Random Intercept Model

e Let / indicate the level-one unit (e.g. individual) and let j the
level-two unit (e.g. group).

e For individual / in group J, let y; be the response variable and
x;; the associated vector of explanatory variables at level one.

e For group J, let z; be the vector of explanatory variables at
level two and denote the size of group j by n;.

An overall SLR that fully ignores the group structure would be:

yii = Bo + Bixj +€j

Group-dependent SLRs

Yiy = Boj + Buixj + €



Random Intercept Model

Thus, there are two kinds of fixed effects regression models:
@ models in which the group structure is fully ignored,

® models with fixed effects for the groups, i.e. Bg; and By; are
fixed group-specific parameters.

In a random intercept model, the intercepts By; are random
variables and represent random differences between the groups

Yij = Boj + Bixj + €jj,

where fo; denotes the average intercept 7yoo plus the
group-dependent deviation ug;, I.e.

Boj = Yoo + Uo;

Here, there is only one slope 81, that is common to all groups.



Random Intercept Model

Denote the constant slope parameter B1 by y19, then we get

Yii = Yoo + Y10Xjj + Uoj + €j

In this random intercept model, we additionally assume that

* g, are independent random variables,

e E(ug;) = 0 and var(up;) = 78,

e they are a simple random sample from a normal population,
i.e
iid
tp; ~ Normal(0, 73)

We are not interested in all individual values of these random

effects, but only in their variance 72.



Random Intercept Model

Arguments for choosing fixed (F) or random (R) intercepts
(group indicators):
e If groups are unique entities and inference should focus on
these groups: F.
This often is the case with a small number of groups.

e If groups are regarded as a random sample from a (perhaps
hypothetical) population and inference should focus on this
population: R.

This often is the case with a large number of groups.

e If group effects up; (etc.) are not normally distributed, R is
risky (or use more complicated multilevel models).



Random Intercept Model

We now discuss the random intercept model without explanatory
variables:

Yij = Yoo + Uoj + €}
Variance decomposition (ug; and ¢;; are independent):
var(y;) = var(ug;) + var(e;) = 74 + 0°
Covariance between two responses (i # /') in the same group J is
cov(yy. i) = var(uo;) = 75

giving the intraclass correlation coefficient

cov(yj. yirj) 5
Vi yin) = _
oL yis) var(yy) var(yi;) 'rg + 02



Random Intercept Model

Example: 211 schools in the Netherlands with 3758 pupils (age
about 11 years) in elementary schools. The nesting structure is
students within classes. The response variable is the pupils result
in a language test.

> library(lme4)
> summary (lmer (1angPOST~ (1|schoolnr) ,data=mlbook_red,REML=FALSE)

Random effects:

Groups  Name Variance Std.Dev.
schoolnr (Intercept) 18.13 4.257
Residual 62.85 7.928

Number of obs: 3758, groups: schoolnr, 211

Fixed effects:
Estimate Std. Error t value
(Intercept) 41.0046 0.3249 126.2



Random Intercept Model

Interpretaion of these results:

e The (fixed average) intercept is estimated by Yoo = 41.0
with standard error se(4g0) = 0.3. Thus, the population
from which the y;; are from is normal with mean 41 and
standard deviation 1/18.13 + 62.85 =9.0

e The level-two variance (schools variability) is estimated by
75 = 18.1 (or the standard deviation is 7o = 4.3). Thus, the
population from which the random intercepts are drawn is a
Normal(41.0,18.1).

e The level-one variance (students language test scores
variability) is estimated by 62 = 62.85 (or the standard
deviation is 6 = 7.9).

e We estimate the intraclass correlation as

18.13
A = = 22
P=1813+6085



Random Intercept Model
In a next step we extend this model and also allow for fixed
effects of explanatory variables, i.e.
Yij = Yoo + V10X + Uoj + €
In what follows, x relates to the centered verbal 1Q score.
> summary (1lmer (1angPOST~IQ_verb+(1|schoolnr), data=mlbook_red,

+ REML=FALSE)

Random effects:

Groups  Name Variance Std.Dev.
schoolnr (Intercept) 9.845 3.138
Residual 40.469 6.362

Number of obs: 3758, groups: schoolnr, 211

Fixed effects:

Estimate Std. Error t value
(Intercept) 41.05488 0.24339 168.68
IQ_verb 2.50744 0.05438 46.11



Random Intercept Model

How does this compare with a SLR not accounting for the

multilevel structure induced by schools, i.e.

Yij = Yoo + Y10Xjj + €j

> summary (lm(langPOST ~ IQ_verb, data =

Coefficients:

Estimate Std. Error t value
(Intercept) 41.29584 0.11517 358.56
IQ_verb 2.65126 0.05643 46.98

Signif. codes: 0 ‘*x*x’ 0.001 ‘*x’ 0.01

mlbook_red))

Pr(>[tl)
<2e-16 **x*
<2e-16 **x*

‘x’ 0.056 ‘.7 0.1 ¢

Residual standard error: 7.059 on 3756 degrees of freedom
Multiple R-squared: 0.3702, Adjusted R-squared: 0.37

F-statistic: 2207 on 1 and 3756 DF, p-

value: < 2.2e-16

)

1



Random Intercept Model

Comparing the results from the random intercept model and from
the SLR:

e The random intercept model contains the fixed effects ygg
and 1o (as also the SLR) and the variance components o2
and 7¢ from the random effects. The SLR assumes that

°=0
TO — .

e The multilevel model has more structure and accounts for

the dependence of responses from the same school.

e The numerical results are surprisingly very similar.



Random Intercept Model

15 randomly chosen models with ug; X Normal(0, 9.8):
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Random Intercept Model

Several explanatory variables:

Yij = Yoo +Y10X1,jj + -+ VpoXp,ij + Vo121 + - -+ +YogZgi + Uoj + €j

Included are

e p level-one explanatory variables x; ;, ..., X, ; associated
with each individual / in each group J.

* g level-two explanatory variables zy;, . . ., Xq; associated with
each group J.

Difference between within-group and between-group regression:

e The within-group regression coefficient expresses the effect
of the explanatory variable within a given group.

e The between-group regression coefficient expresses the effect

of the group mean of the explanatory variable on the group
mean of the response variable.



Random Intercept Model

Difference between within-group and between-group regression:

between group

within group C

within group B

within group A




Random Intercept Model

Example: pocket money for children in families.
e This will depend on the child’s age as also on the average
age of the children in the family.
e The within-group regression coefficient measures the effect
of age differences within a given family

e The between-group regression coefficient measures the effect
of average age on the average pocket money received by the
children in the family.



Random Intercept Model

Example: pocket money for children in families.
Denote age of child / in family j by x;;, and the average age of all
children in family j by z; = X,;. In the model

Yij = Yoo + V10X + Uoj + €j

the within-group and between-group coefficient are forced to be
equal. If we add z; as additional explanatory variable, we obtain

Yij = Yoo + Y10Xjj + Yo1Xej + Uoj + €
= (Y00 + Yo1Xej + Uoj) + V10X + €

resulting in the within-group j regression line

E(yij) = Yoo + Yo1Xej + Y10Xji



Random Intercept Model

Example: pocket money for children in families.
Yij = Yoo + V10X + Yo1Xej + Uo; + €jj
Averaging this model over all elements in group j gives

Yej = Y00 + Y10Xej + Y01Xej + Upj + €
= Y00 + (710 + Y01)Xej + toj + €j

resulting in the between-group regression line
E(Yej) = Yoo + (710 + Y01)Xej

with regression coefficient y1o + Yo1.



Random Intercept Model

> summary (lmer (LangPOST ~ IQ_verb + sch_iqv + (1|schoolnr),
+ data = mlbook_red, REML = FALSE)

Random effects:

Groups  Name Variance Std.Dev.
schoolnr (Intercept) 8.68 2.946
Residual 40.43 6.358

Number of obs: 3758, groups: schoolnr, 211

Fixed effects:

Estimate Std. Error t value
(Intercept) 41.11378 0.23181 177.36
IQ_verb 2.45361 0.05549 44 .22
sch_iqv 1.31242 0.26160 5.02



Random Intercept Model

The parameters of the random part of the model and the
estimated intercept variance are in

> mlmod <- lmer (langPOST ~ IQ_verb + sch_iqv + (1|schoolnr),
+ data = mlbook_red, REML = FALSE)

> VarCorr (mlmod)

Groups  Name Std.Dev.
schoolnr (Intercept) 2.9461
Residual 6.3584

> VarCorr (mlmod)$schoolnr[1,1]
[1] 8.679716



Random Intercept Model

For other methods for the objects produced by Imer, see

> methods(class="merMod")

(1]

(5]

(9]
[13]
[17]
[21]
[25]
[29]
[33]
[37]
[41]

anova
deviance
family
fortify
isGLMM
loglik
nobs
profile
refitML
simulate
VarCorr

as.function
df .residual
fitted

getL

isLMM
model.frame
plot

qgqmath
residuals
summary
vcov

coef
dropl
fixef
getlME
isNLMM
model .matrix
predict
ranef
show
terms
weights

confint
extractAIC
formula
hatvalues
isREML
ngrps
print
refit
sigma
update



Random Intercept Model

Denote now the average IQ of pupils in school j by X,;, then the
model states

Yij = Y00 + Y10Xjj + Yo1Xej + Uoj + €j

with
e within-group coefficient 19 estimated by 2.45,

e between-group coefficient y19 + 7yo1 estimated by
2.45+1.31 =3.77, (a pupil with a given 1Q is predicted to
obtain a higher language test score if (s)he is in a class with
higher average IQ score),

e difference between within-group and between-group
coefficient is tested by the respected t-value of 5.02 (highly
significant).



Random Intercept Model

What can we say about the latent random effects ug;?
Consider the empty model

Yij = Yoo + uoj + € = Boj + €
Since these are no parameters we cannot estimate them.

However, we are able to predict these quantities by using the
Empirical Bayes method.



Random Intercept Model

Yij = Yoo + uoj + € = Boj + €

We started with the prior model tg; “ Normal(0, 72)
Then we took a sample yy;, .. ynJ from the jth group assuming

that the conditional model y; |qu i Normal(~yoo + uo;, o) holds.
If we only use group j then Bg; would be estimated by

501 =VYej

Using the entire sample we would estimate the population mean
Yoo by the overall mean, i.e.

/700 - .)7.0 -

ZZ%

J

,_\
._\



Random Intercept Model

Yij = Yoo + uoj + € = Boj + €

Now combine these two sources of information using a weighted
average and resulting in the empirical Bayes (posterior mean)
estimator

Bsi” = Niboj + (1 = X300
with optimal weights

2
T4

A= 50—
J g—&-az/nj

The weight A; somehow evaluates the reliability of the jth group
mean B\Oj =Y. as an estimator of the true mean 7yoo + to;.

If explanatory variables are in the model, the same principle can
be applied.



Random Intercept Model

The ratio
2
TO 5
Aj _T5+0?/np Th
. 2/n; T A2/n.
1—) K /gj a?/n;
To+o%/n)

is the ratio of the true variance 73 to the error variance o2/n;.

Since these parameters are usually unknown, we substitute their
estimates in order to calculate S5F.

These posterior means can be used to detect groups with
unexpected high/low values of their response (given their
predictors).



Random Intercept Model

Model: Denote the average IQ of pupils in school j by X,;, then

Yij = Yoo + V10X + Yo1Xej + Ug; + €jj

Q: How should parents choose a school for their kids?
A: Good schools are those where the students on average achieve
more than expected on the basis of their 1Q.

The level-two residual ug; contains this information and has to be
estimated from the data. Comparison is sometimes based on
associated confidence intervals based on comparative (posterior)
standard errors

seC(E/(')EjB) = 56(05-5 — Up;)

or on diagnostic standard errors

d(r~EB ~EB
se (uoj ):se(uoj )



Random Intercept Model

Conditional means (and variances) of the random effects are
obtained as follows (ranef stands for random effects)

pmu <- ranef (mlmod, condVar=TRUE)

# posterior means

postmean <- pmu$schoolnr[,1]

# comparative (posterior) variances

postvar <- attr(pmu$schoolnr, ’postVar’)[1,1,]

# diagnostic variances

diagvar <- VarCorr(mlmod)$schoolnr[1,1] - postvar
# comparative standard deviations

compsd <- sqrt(postvar)

V V V V V V V V V

# bounds of 95), comparative intervals

# (testing equality of level-two residuals)
lower <- postmean - 1.39*compsd

upper <- postmean + 1.39*compsd

VvV V V V



Random Intercept Model

Caterpillar plot (comparative 95 % confidence intervals for the
random effects)

perm <- order(postmean, lower, upper)
pm_sort <- postmean[perm]
upper_sort <- upper [perm]
lower_sort <- lower [perm]

vV V V V

\Y

library(Hmisc)
> errbar(1:211, pm_sort, upper_sort, lower_sort)



Random Intercept Model

posterior confidence intervals
0
|
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200




Hierarchical Linear Model

Multilevel or Hierarchical Models:

Level 3

Level 2

Level 1




Hierarchical Linear Model

In addition to the intercept, also the effect of x could randomly
depend on the group, i.e. in the model

Vi = Boj + BijXij + €jj
also the slope §1; has a random part. Thus, we have

Boj = Yoo + Ug;
B1j = Y10 + Uy

Substitution in the model results in

Yij = Yoo + 10Xy + Uoj + U1jXj; +€j



Hierarchical Linear Model

Random intercept and random slope model:
Yij = Yoo + Y10Xjj + toj + U1jXjj + €jj

Assume that the random effects (ug;, u1;) are independent pairs
across j from a bivariate normal with zero means (0, 0) and

var(uoj) = Too = T4
var(ulj) =Ti11 = ’7'12

COV(LIOJ', Lllj) = T01

Again, the (ug;, uyj) are not individual parameters, but their
variances and covariance are of interest.

This is again a linear model for the mean, and a parameterized
covariance within groups with independence between groups.



Hierarchical Linear Model
Random slope model for the language scores: denote the average
IQ of all pupils in school j by X,;, then the model now states

Yij = Yoo + Y10Xjj + Yo1Xej + Uoj + U1;Xjj + €j

> ransl <- lmer(langPOST ~ IQ_verb + sch_iqv

+ + (IQ_verbl|schoolnr), data = mlbook_red,
+ REML = FALSE)

> summary (ransl)

Random effects:

Groups  Name Variance Std.Dev. Corr
schoolnr (Intercept) 8.877 2.9795

IQ_verb 0.195 0.4416 -0.63
Residual 39.685  6.2996

Number of obs: 3758, groups: schoolnr, 211

ThLIS, V/Eﬁ’(UOj) = ’TA'g = 8.88, v/a\r(ulj) = ’TA'12 = 0.19, and
var(e;) = 6% = 39.68,



Hierarchical Linear Model

Second part of the R output:

Fixed effects:

Estimate Std. Error t value

(Intercept) 41.1275 0.2336 176.04
IQ_verb 2.4797 0.0643  38.57
sch_iqv 1.0285 0.2622 3.92

Correlation of Fixed Effects:
(Intr) IQ_vrdb

IQ_verb -0.279

sch_iqv -0.003 -0.188

Estimated model:

E(y,-j|u0j, Ulj) =41.13 + 2.48X,'J' + 1.03?.] + Ugj + U1jXj



Hierarchical Linear Model

15 randomly chosen models with g, X Normal(0, 8.9) and
oy % Normal(0,0.2) for school j = 1 with 1Q; = —1 4:

langPOST
40 50
l

30
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20




Hierarchical Linear Model

General formulation of a two-level model:

Yy, = Xj’7+ ZJ'UJ' + €

o] emi([o] [5])

Often we simplify and consider a model with ¥; = ¢l but also
other structures are possible (e.g. time series).
The above model is equivalent to

y; ~ Normal (X9, Z,Q,;Z] + )

a special case of a linear mixed model.



Generalized Linear Mixed Models
Extend the model on the linear exponential family, e.g. student i
in university j takes an exam and the result can be modeled as
Pr(y; = "sucess") = Iogit_l(x,-JTfy + zJ-TuJ-)
again with u; g Normal(0, Q).

Thus, assume that conditional on the random effects, the
response distribution is a linear exponential family, i.e. with pdf

f(ylu;)
and the random effect is from a zero mean normal distribution,
i.e. with pdf

f(u; Q)

The likelihood function corresponds to the marginal pdf of the
response which is

fly;7.Q) = / f(y|u;y)f(u; Q)du



Generalized Linear Mixed Models

The MLE 4 and € is the maximizer of the integral

f(y;’y,Q)_/f(y|u;’7)f(u;Q)du
_H/ny1|“1 Q)du,

but very often there does not even exist an explicit form of it.

The normal—-normal model discussed before is an exception
because this is a conjugate pair of distributions.

Laplace or Gauss-Hermite approximations can be utilized to
simplify the likelihood function above.



Multilevel Logistic Model

Gelman and Hill (2007) consider a multilevel logistic model for
the survey response y;; that equals 1 for supporters of the
Republican candidate and 0 for Democrats in the election 1988.
Their model uses the predictors sex and ethnicity (African
American or other) as also the 51 States indexed by j =1, ..., 51.

Pr(y; = 1) = logit —*(yoo + o, + Y1ofemale; + yaoblackj)
with 51 state-specific random intercepts wug; o Normal(0, 7§).
> mean(female)

[1] 0.5886913

> mean(black)
[1] 0.07615139



Multilevel Logistic Model

This model is fitted in R by

> M1 <- glmer (y ~ black + female + (1|state),
+ family=binomial(link="logit"))
> display(M1)

coef.est coef.se

(Intercept) 0.45 0.10
black -1.74 0.21
female -0.10 0.10

Error terms:

Groups  Name Std.Dev.

state (Intercept) 0.41

No residual sd
number of obs: 2015, groups: state, 49
AIC = 2666.7, DIC = 2531.5

deviance = 2595.1



Multilevel Logistic Model

The average intercept is 0.45 with standard error 0.10, the
coefficients for black and female are —1.74(0.21) and
—0.10(0.10). Furthermore, 75 = 0.41.

Estimates of state-specific intercepts are available by

> coef (M1)

$state

(Intercept) black female
0.990578098 -1.741612 -0.09704731
0.686196961 -1.741612 -0.09704731
0.314917122 -1.741612 -0.09704731
0.306467230 -1.741612 -0.09704731

SO W



Connecting to Social Network Analysis

Variance components (individual variance within groups and
variance between groups) in multilevel models are especially
interesting in the social network context (from P.P. Pare):

interpretation as a measure of sociability of behaviors

the larger the between group variance the more social is the
behavior

if 100% variance is within group and 0% between groups, the
behavior is purely individual

if 0% variance is within group and 100% between groups, the
behavior is purely social (individuals behave in perfect
conformity with their own group and all the variation is
between groups)

in reality, there is often a division of the variance within and
between groups, but different behaviors can be compared in
regard to their level of sociability



