Part I - Generalized Linear Models:

An Introduction based on \mathbb{R}

Herwig Friedl

Institute of Statistics
Graz University of Technology, Austria

hfriedl@tugraz.at
http://www.stat.tugraz.at/courses/glmHSE.html

Introduction

- This course will provide an introduction into the concepts of the class of generalized linear models (GLM's).
- This class extends the class of linear models (LM's) to regression models for non-normal data.
- Special interest will be on binary data (logistic regression) and count data (log-linear models).
- All models will be handled by using \mathbb{R} functions like lm, anova, or glm.
- Linear Models (LM's): Recap of Results
- Box-Cox Transformation Family: Extending the LM
- Generalized Linear Models (GLM's): An Introduction
- Linear Exponential Family (LEF): Properties and Members
- GLM's: Parameter Estimates
- GLM's: glm(.) Function
- Gamma Models
- Logistic Models (Binomial Frequencies)
- Log-linear Models (Poisson Counts)
- (Poisson Models for Contingency Tables)

Recap Linear Models

Goal of regression models is to find out how a response variable depends on covariates (explanatory variables).
A special class of regression models are linear models. The general setup is given by

- Data $\left(y_{i}, x_{i 1}, \ldots, x_{i, p-1}\right), i=1, \ldots, n$
- Response $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{\top}$ (random variable)
- Covariates $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i, p-1}\right)^{\top}$ (fixed, known)

Recap Linear Models

Data Example: Life Expectancies

Data source: The World Bank makes available data from the World Development Indicators. To search/download within \mathbb{R} :
> install.packages('WDI'); library(WDI)
> WDIsearch('gdp') \# gives a list of available data on gdp
> d <- WDI (indicator='NY.GDP.PCAP.KD', country=c('AT', 'US'),
$+\quad$ start=1960, end=2013)
$>$ head (d)
iso2c country NY.GDP.PCAP.KD year
1 AT Austria 47901.372013

2 AT Austria 48172.242012
3 AT Austria 48065.322011
4 AT Austria 46858.042010
5 AT Austria 46123.492009
6 AT Austria 48053.482008

Recap Linear Models

Data Example: Life Expectancies

Data on temperature are available at The World Bank, Climate Change Knowledge Portal: Historical Data
> install. packages('gdata')
> library(gdata)
> f.name<-"http://databank.worldbank.org/data/download/catalog/
$+\quad$ cckp_historical_data_0.xls"
> myperl <- "c:/Strawberry/perl/bin/perl.exe"
> sheetCount(f.name, perl=myperl)
Downloading...
trying URL 'http://databank.worldbank.org/data/.../*.xls'
Content type 'application/vnd.ms-excel' length 378368 bytes opened URL
downloaded 369 Kb
Done.
[1] 5

Recap Linear Models

Data Example: Life Expectancies

```
> temp <- read.xls(f.name, sheet="Country_temperatureCRU",
+ perl=myperl)
> temp.data <- temp[ , c("ISO_3DIGIT", "Annual_temp")]
> colnames (temp.data) <- c("iso3c", "temp")
> head(temp.data)
    iso3c temp
1 AFG 12.92
2 AGO 21.51
3 ALB 11.27
4 ARE 26.83
5 ARG 14.22
6 ARM 6.37
```


Recap Linear Models

Data Example: Life Expectancies

Data we are interested in (from 2010):

- life.exp at birth, total (years)
- urban population (percent)
- physicians (per 1,000 people)
- temp annual mean (Celsius)

Which is the response and which are covariates?

Recap Linear Models

Gaussian Linear Model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p-1} x_{i, p-1}+\epsilon_{i}, \quad \epsilon_{i} \stackrel{i i d}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right),
$$

with unknown regression parameters $\beta_{0}, \beta_{1}, \ldots, \beta_{p-1}$ (intercept β_{0}, slopes $\beta_{j}, j=1, \ldots, p-1$) and unknown (homogenous) error variance σ^{2}.
This is equivalent with $y_{i} \stackrel{i n d}{\sim} \operatorname{Normal}\left(\mathrm{E}\left(y_{i}\right), \operatorname{var}\left(y_{i}\right)\right)$, where

$$
\mathrm{E}\left(y_{i}\right)=\mu_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p-1} x_{i, p-1}
$$

is a linear function in the parameters and

$$
\operatorname{var}\left(y_{i}\right)=\sigma^{2}, \quad i=1, \ldots, n
$$

describes a homoscedastic scenario.

Recap Linear Models

Matrix Notation: we define

$$
\begin{aligned}
\mathbf{y} & =\left(y_{1}, \ldots, y_{n}\right)^{\top}, \quad \epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)^{\top} \\
\boldsymbol{\beta} & =\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p-1}\right)^{\top}, \quad \mathbf{x}_{i}=\left(1, x_{i 1}, \ldots, x_{i, p-1}\right)^{\top}, \\
\mathbf{X} & =\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)^{\top}
\end{aligned}
$$

and write a Gaussian regression models as

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\epsilon
$$

with

$$
\mathrm{E}(\mathbf{y})=\boldsymbol{\mu}=\mathbf{X} \boldsymbol{\beta}
$$

and

$$
\operatorname{var}(\mathbf{y})=\sigma^{2} \mathbf{I}_{n}
$$

Here \mathbf{I}_{n} denotes the $(n \times n)$ identity matrix, and the $(n \times p)$ matrix \mathbf{X} is also called Design Matrix.

Recap Linear Models

Exploratory Data Analysis (EDA):

- Check out the ranges of the response and covariates. For discrete covariates (with sparse factor levels) we consider grouping the levels.
- Plot covariates against response. Scatter plot should reflect linear relationships otherwise we consider transformations.
- To check if the constant variance assumption is reasonable, the points of the scatter plot of covariates against the responses should be contained in a band of constant width.

Recap Linear Models

Data Example: Life Expectancies (EDA)

$>\operatorname{summary}(\operatorname{mydata}[, c(5,6,8,10)])$

life.expectancy	urban	physicians	temperature
Min. $: 45.10$	Min. $: 0.1064$	Min. $: 0.0080$	Min. : -7.14
1st Qu.:62.19	1st Qu.:0.3890	1st Qu.:0.2318	1st Qu.:10.40
Median :72.04	Median :0.5683	Median :1.4567	Median :21.90
Mean :69.48	Mean :0.5648	Mean :1.6678	Mean :18.24
3rd Qu.:76.03	3rd Qu.:0.7496	3rd Qu.:2.8146	3rd Qu.:25.06
Max. :82.84	Max. $: 1.0000$	Max. $: 6.8152$	Max. 28.30
		NA's :23	

Recap Linear Models

Data Example: Life Expectancies (EDA)

> plot(mydata[, c(5, 6, 8, 10)])

Recap Linear Models

Data Example: Life Expectancies (Transformations)

plot (physicians, life.expectancy)
plot(log(physicians), life.expectancy)

Recap Linear Models

Parameter Estimation: β
Idea of Least Squares: minimize the sum of squared errors, i.e.

$$
\operatorname{SSE}(\boldsymbol{\beta})=\sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)^{2}
$$

Equivalent with Maximum Likelihood: maximize the sample log-likelihood function

$$
\ell(\boldsymbol{\beta} \mid \mathbf{y})=\sum_{i=1}^{n}\left(\log \frac{1}{\sqrt{2 \pi \sigma^{2}}}-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)^{2}\right)
$$

LSE/MLE Solution: $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$
For $y_{i} \stackrel{i n d}{\sim} \operatorname{Normal}\left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$ we have

$$
\hat{\boldsymbol{\beta}} \sim \operatorname{Normal}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)
$$

Recap Linear Models

Parameter Estimation: σ^{2}
Maximum Likelihood Estimator:

$$
\hat{\sigma}^{2}=\frac{1}{n} \operatorname{SSE}(\hat{\boldsymbol{\beta}})=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\beta}}\right)^{2}, \quad \mathrm{E}\left(\hat{\sigma}^{2}\right)=\left(1-\frac{p}{n}\right) \sigma^{2}
$$

is biased. An unbiased variance estimator is (df corrected)

$$
S^{2}=\frac{1}{n-p} \operatorname{SSE}(\hat{\boldsymbol{\beta}})
$$

For $y_{i} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$ we get

$$
\operatorname{SSE}(\hat{\boldsymbol{\beta}}) / \sigma^{2} \sim \chi_{n-p}^{2}
$$

and $\operatorname{SSE}(\hat{\boldsymbol{\beta}})$ is stochastically independent of $\hat{\boldsymbol{\beta}}$.

Recap Linear Models

ANalysis Of VAriance (ANOVA): let $\hat{\mu}_{i}=\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\beta}}$, then

$$
\underbrace{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}_{\operatorname{SST}}=\underbrace{\sum_{i=1}^{n}\left(\hat{\mu}_{i}-\bar{y}\right)^{2}}_{\operatorname{SSR}(\hat{\boldsymbol{\beta}})}+\underbrace{\sum_{i=1}^{n}\left(y_{i}-\hat{\mu}_{i}\right)^{2}}_{\operatorname{SSE}(\hat{\boldsymbol{\beta}})}
$$

Total SS equals (maxim.) Regression SS plus (minim.) Error SS
Thus, the proportion of variability explained by the regression model is described by the coefficient of determination

$$
R^{2}=\frac{\operatorname{SSR}(\hat{\boldsymbol{\beta}})}{\operatorname{SST}}=1-\frac{\operatorname{SSE}(\hat{\boldsymbol{\beta}})}{\operatorname{SST}} \in(0,1)
$$

To penalize for model complexity p we use its adjusted version

$$
R_{a d j}^{2}=1-\frac{\operatorname{SSE}(\hat{\boldsymbol{\beta}}) /(n-p)}{\operatorname{SST} /(n-1)} \notin(0,1)
$$

Recap Linear Models

Hypothesis Tests: t-Test

If the model is correctly stated then

$$
\hat{\boldsymbol{\beta}} \sim \operatorname{Normal}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right)
$$

Thus, for each slope parameter $\beta_{j}, j=1, \ldots, p-1$, we have

$$
\hat{\beta}_{j} \sim \operatorname{Normal}\left(\beta_{j}, \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{j+1, j+1}^{-1}\right)
$$

and therefore

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{\sqrt{\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{j+1, j+1}^{-1}}} \sim \operatorname{Normal}(0,1)
$$

Since S^{2} and $\hat{\boldsymbol{\beta}}$ are independent, replacing σ^{2} by S^{2} results in

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{\sqrt{S^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{j+1, j+1}^{-1}}} \sim t_{n-p}
$$

Recap Linear Models

Hypothesis Tests: t-Test

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{\sqrt{S^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{j+1, j+1}^{-1}}} \sim t_{n-p}
$$

Therefore, we can test the relevance of a single predictor x_{j} by

$$
H_{0}: \beta_{j}=0 \quad \text { vs } \quad H_{1}: \beta_{j} \neq 0
$$

and use the well-known test statistic

$$
\frac{\text { Estimate }}{\text { Std. Error }}=\frac{\hat{\beta}_{j}}{\sqrt{S^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{j+1, j+1}^{-1}}} \stackrel{H_{0}}{\sim} t_{n-p}
$$

Recap Linear Models

Hypothesis Tests: F-Test

If a predictor is a factor with k levels (e.g., continent: Europe, Africa, America, Asia), then we usually define a baseline category (e.g. Europe) and consider the model

$$
\mu=\beta_{0}+\beta_{A f} I(\text { Africa })+\beta_{A m} I(\text { America })+\beta_{A s} I(\text { Asia })
$$

To check if the predictor continent is irrelevant we have to simultaneously test $k-1$ parameters

$$
H_{0}: \beta_{A f}=\beta_{A m}=\beta_{A s}=0 \quad \text { vs } \quad H_{1}: \operatorname{not} H_{0}
$$

Fitting the model twice, under H_{0} and under H_{1}, results in $\operatorname{SSR}\left(\hat{\boldsymbol{\beta}}_{0}\right)$ and $\operatorname{SSR}\left(\hat{\boldsymbol{\beta}}_{1}\right)$ and we get the test statistic

$$
\frac{\left(\operatorname{SSR}\left(\hat{\boldsymbol{\beta}}_{1}\right)-\operatorname{SSR}\left(\hat{\boldsymbol{\beta}}_{0}\right)\right) /(k-1)}{\operatorname{SSE}\left(\hat{\boldsymbol{\beta}}_{1}\right) /(n-p)} \stackrel{H_{0}}{\sim} F_{k-1, n-p} .
$$

Recap Linear Models

Weighted Least Squares in case of heteroscedastic errors, i.e.

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}, \quad \epsilon \sim \operatorname{Normal}\left(\mathbf{0}, \sigma^{2} \mathbf{W}\right), \quad \mathbf{W}=\operatorname{diag}\left(w_{1}, \ldots, w_{n}\right)
$$

The MLE (weighted LSE) of $\boldsymbol{\beta}$ is given by

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{W}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W}^{-1} \mathbf{y}
$$

with

$$
\mathrm{E}(\hat{\boldsymbol{\beta}})=\boldsymbol{\beta} \quad \text { and } \quad \operatorname{var}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{W}^{-1} \mathbf{X}\right)^{-1}
$$

The MLE of σ^{2} is

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} \frac{\left(y_{i}-\hat{\mu}_{i}\right)^{2}}{w_{i}}=\frac{1}{n} \mathbf{r}^{\top} \mathbf{W}^{-1} \mathbf{r}
$$

with the vector of raw residuals $\mathbf{r}=\mathbf{y}-\hat{\boldsymbol{\mu}}$.

Recap Linear Models

Data Example: Life Expectancies

> mod <- lm(life.expectancy ~ urban + physicians + temperature)
$>$ summary (mod)

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	58.61188	2.01497	29.088	$<2 \mathrm{e}-16$	$* * *$
urban	14.66519	2.72913	5.374	$3.09 \mathrm{e}-07$	$* * *$
physicians	2.72412	0.50569	5.387	$2.90 \mathrm{e}-07$	$* * *$
temperature	-0.07181	0.06758	-1.063	0.29	

Signif. codes: $0{ }^{\prime} * * * ’ 0.001$ '**' 0.01 '*’ 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.459 on 142 degrees of freedom (23 observations deleted due to missingness)
Multiple R-squared: 0.6191, Adjusted R-squared: 0.611
F-statistic: 76.93 on 3 and 142 DF, p-value: < $2.2 \mathrm{e}-16$

Recap Linear Models

Data Example: Life Expectancies

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	58.61188	2.01497	29.088	$<2 \mathrm{e}-16$	$* * *$
urban	14.66519	2.72913	5.374	$3.09 \mathrm{e}-07$	$* * *$
physicians	2.72412	0.50569	5.387	$2.90 \mathrm{e}-07$	$* * *$
temperature	-0.07181	0.06758	-1.063	0.29	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
The predictors urban and physicians are significant. Only temperature has a negative effect and is also not significant.

Recap Linear Models

Data Example: Life Expectancies

Residual standard error: 5.459 on 142 degrees of freedom (23 observations deleted due to missingness)
Multiple R-squared: 0.6191, Adjusted R-squared: 0.611
F-statistic: 76.93 on 3 and 142 DF, p-value: < $2.2 \mathrm{e}-16$
Under the model, the estimated standard error of the response is 5.5 (years). We have $n-p=142$ and $p-1=3$ predictors.

Almost 62% of the total variability is explained by this model. The adjusted version of R^{2} is 61.1%.

We finally test that all three predictors are irrelevant. The associated F-test clearly rejects this hypothesis.

Recap Linear Models

Data Example: Life Expectancies (log(physicians))

> mod.log <- update(mod, .~. -physicians+log(physicians))
> summary (mod.log)

Coefficients:

| | Estimate | Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$ | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 66.70367 | 1.79065 | 37.251 | $<2 \mathrm{e}-16 * * *$ |
| urban | 8.76445 | 2.53243 | 3.461 | $0.000711 * * *$ |
| temperature | -0.03008 | 0.05668 | -0.531 | 0.596408 |
| log(physicians) | 3.51370 | 0.39341 | 8.931 | $1.97 e-15 * * *$ |

Signif. codes: $0{ }^{\prime} * * * ’ 0.001$ ' $* *$ ' 0.01 ' $*$ ' 0.05 '.' 0.1 ' ' 1

Predictor \log (physicians) is now highly significant but temperature lost it's significance!

Recap Linear Models

Data Example: Life Expectancies (log(physicians))

```
Residual standard error: 4.794 on 142 degrees of freedom
    (23 observations deleted due to missingness)
Multiple R-squared: 0.7063, Adjusted R-squared: 0.7001
F-statistic: 113.8 on 3 and 142 DF, p-value: < 2.2e-16
```

Standard error is much smaller now than before (± 4.8 years)!

Even 70% of the total variability is now explained by this model.
Same conclusion based on global F-test as in previous model.

Recap Linear Models

Data Example: Life Expectancies (ANOVA)

> anova(mod.log)
Analysis of Variance Table

Response: life.expectancy

	Df	Sum Sq	Mean Sq F value	$\operatorname{Pr}(>F)$		
urban	1	5359.7	5359.7	233.219	$<2.2 \mathrm{e}-16 * * *$	
temperature	1	653.2	653.2	28.424	$3.747 \mathrm{e}-07$	$* * *$
log(physicians)	1	1833.3	1833.3	79.771	$1.973 \mathrm{e}-15$	$* * *$
Residuals	142	3263.4	23.0			

Signif. codes: $0{ }^{\prime} * * * ’ 0.001$ ' $* *$ ' $0.01^{\prime} *^{\prime} 0.05$ '.' 0.1 ' ' 1

Recap Linear Models

ANOVA

Remember the SST decomposition under the Model $\mu=\mathbf{X} \boldsymbol{\beta}$:

$$
\mathrm{SST}=\operatorname{SSR}(\hat{\boldsymbol{\beta}})+\operatorname{SSE}(\hat{\boldsymbol{\beta}})
$$

Information about this is contained in the ANOVA Table:

Source	df	Sum of Sq.	MSS	F
Regression	$p-1$	$\operatorname{SSR}(\hat{\boldsymbol{\beta}})$	$\operatorname{MSR}(\hat{\boldsymbol{\beta}})=$	
			$\operatorname{SSR}(\hat{\boldsymbol{\beta}}) /(p-1)$	$\frac{\operatorname{MSR}(\hat{\boldsymbol{\beta}})}{\operatorname{MSE}(\hat{\boldsymbol{\beta}})}$
Error	$n-p$	$\operatorname{SSE}(\hat{\boldsymbol{\beta}})$	$\operatorname{MSE}(\hat{\boldsymbol{\beta}})=$ 	
SSE $(\hat{\boldsymbol{\beta}}) /(n-p)$				

Recap Linear Models

ANOVA

Null Model: assuming an iid random sample ($\mathrm{E}\left(y_{i}\right)=\beta_{0}$), results in $\operatorname{SSE}\left(\hat{\beta}_{0}\right)=\sum_{i}\left(y_{i}-\hat{\beta}_{0}\right)^{2}$ with $\hat{\beta}_{0}=\bar{y}$. Thus, $\operatorname{SSE}\left(\hat{\beta}_{0}\right)=\sum_{i}\left(y_{i}-\bar{y}\right)^{2} \equiv \operatorname{SST}$ in this case.

Nested Model: we assume that

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\epsilon}, \quad \text { and test on } \quad H_{0}: \boldsymbol{\beta}_{2}=\mathbf{0}
$$

with $\operatorname{dim}\left(\boldsymbol{\beta}_{1}\right)=p_{1}$ (including the intercept) and $\operatorname{dim}\left(\boldsymbol{\beta}_{2}\right)=p_{2}$ (additional slopes). The corresponding SSR and SSE terms are

$$
\operatorname{SSR}\left(\hat{\boldsymbol{\beta}}_{1}\right)=\sum_{i=1}^{n}\left(\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\beta}}_{1}-\bar{y}\right)^{2}, \quad \operatorname{SSE}\left(\hat{\boldsymbol{\beta}}_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\beta}}_{1}\right)^{2}
$$

Recap Linear Models

ANOVA

Sequentially adding the term \mathbf{X}_{2} in the model where \mathbf{X}_{1} is already included results in

Source	df	Sum of Squares $/ \mathrm{SS}$		MSS
\mathbf{X}_{1}	$p_{1}-1$	$\operatorname{SSR}\left(\hat{\boldsymbol{\beta}}_{1}\right)$	$\operatorname{MSR}\left(\hat{\boldsymbol{\beta}}_{1}\right)=$	F
			$\frac{\operatorname{SSR}\left(\hat{\boldsymbol{\beta}}_{1}\right)}{p_{1}-1}$	$\frac{\operatorname{MSR}\left(\hat{\boldsymbol{\beta}}_{1}\right)}{\operatorname{MSE}(\hat{\boldsymbol{\beta}})}$
			$\operatorname{MSR}\left(\hat{\boldsymbol{\beta}}_{2} \mid \hat{\boldsymbol{\beta}}_{1}\right)=$	
$\mathbf{X}_{2} \mid \mathbf{X}_{1}$	p_{2}	$\operatorname{SSR}\left(\hat{\boldsymbol{\beta}}_{2} \mid \hat{\boldsymbol{\beta}}_{1}\right)=$	$\operatorname{MSR}\left(\hat{\boldsymbol{\beta}}_{2} \mid \hat{\boldsymbol{\beta}}_{1}\right)$	
		$\operatorname{SSR}(\hat{\boldsymbol{\beta}})-\operatorname{SSR}\left(\hat{\boldsymbol{\beta}}_{1}\right)$	$\frac{\operatorname{SSR}\left(\hat{\boldsymbol{\beta}}_{2} \mid \hat{\boldsymbol{\beta}}_{1}\right)}{p_{2}}$	$\frac{\operatorname{MSE}(\hat{\boldsymbol{\beta}})}{}$
			$\operatorname{MSE}(\hat{\boldsymbol{\beta}})=$	
Error	$n-p$	$\operatorname{SSE}(\hat{\boldsymbol{\beta}})$	$\operatorname{SSE}(\hat{\boldsymbol{\beta}}) /(n-p)$	
Total	$n-1$	SST		

Recap Linear Models

ANOVA

We now assume that the model $\mathbf{y}=\beta_{0}+\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\epsilon}$ holds.
Test 1: test statistic

$$
F=\frac{\operatorname{MSR}\left(\hat{\boldsymbol{\beta}}_{1} \mid \hat{\beta}_{0}\right)}{\operatorname{MSE}(\hat{\boldsymbol{\beta}})}
$$

tests the model improvement when adding the predictors in \mathbf{X}_{1} to the iid model based on β_{0} only.

Test 2: test statistic

$$
F=\frac{\operatorname{MSR}\left(\hat{\boldsymbol{\beta}}_{2} \mid \hat{\boldsymbol{\beta}}_{1}, \hat{\beta}_{0}\right)}{\operatorname{MSE}(\hat{\boldsymbol{\beta}})}
$$

tests the model improvement when adding the predictors in \mathbf{X}_{2} to the model with \mathbf{X}_{1} and β_{0} already contained.

Recap Linear Models

Data Example: Life Expectancies (ANOVA)

> anova(mod.log)
Analysis of Variance Table

Response: life.expectancy

	Df	Sum Sq	Mean Sq F value	$\operatorname{Pr}(>F)$		
urban	1	5359.7	5359.7	233.219	$<2.2 \mathrm{e}-16 \quad * * *$	
temperature	1	653.2	653.2	28.424	$3.747 \mathrm{e}-07$	$* * *$
log(physicians)	1	1833.3	1833.3	79.771	$1.973 \mathrm{e}-15$	$* * *$
Residuals	142	3263.4	23.0			

Signif. codes: $0{ }^{\prime} * * *$ ’ 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Each further predictor that enters the model significantly improves the model fit.

Linear Models: Restrictions

Problems:

- $y_{i} \nsim \operatorname{Normal}\left(E\left(y_{i}\right), \operatorname{var}\left(y_{i}\right)\right)$
- $\mathrm{E}\left(y_{i}\right) \neq \mathbf{x}_{i}^{\top} \boldsymbol{\beta} \in \mathbb{R}$
- $\operatorname{var}\left(y_{i}\right) \neq \sigma^{2}$ equal (homoscedastic) for all $i=1, \ldots, n$

Remedies:

- transform y_{i} such that $g\left(y_{i}\right) \stackrel{i n d}{\sim} \operatorname{Normal}\left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$
- utilize a GLM where $y_{i} \stackrel{i n d}{\sim} \operatorname{LEF}\left(g^{-1}\left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right), \phi V\left(\mu_{i}\right)\right)$

Box-Cox Transformation

For positive Responses $(y>0)$ define

$$
y(\lambda)= \begin{cases}\frac{y^{\lambda}-1}{\lambda,}, & \text { if } \lambda \neq 0 \\ \log y, & \text { if } \lambda=0\end{cases}
$$

$y(\lambda) \rightarrow \log y$ for $\lambda \rightarrow 0$, such that $y(\lambda)$ is continuous in λ.
Assumption: there is a value λ for which

$$
y_{i}(\lambda) \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu_{i}(\lambda)=\mathbf{x}_{i}^{\top} \boldsymbol{\beta}(\lambda), \sigma^{2}(\lambda)\right)
$$

Compute MLEs with respect to the sample density of the untransformed (original) response y.

Box-Cox Transformation

Density Transformation Theorem: If $g(Y) \sim F_{g(Y)}(y)$ holds for a continuous r.v. and $g(\cdot)$ is a monotone function, then the untransformed r.v. Y has cdf

$$
F_{Y}(y)=\operatorname{Pr}(Y \leq y)=\operatorname{Pr}(g(Y) \leq g(y))=F_{g(Y)}(g(y))
$$

Thus, the density of Y is

$$
f_{Y}(y)=\frac{\partial F_{g(Y)}(g(y))}{\partial y}=f_{g(Y)}(g(y)) \cdot\left|\frac{\partial g(y)}{\partial y}\right|
$$

with Jacobian $\left|\frac{\partial g(y)}{\partial y}\right|$.

Box-Cox Transformation

Density of untransformed y is

$$
f\left(y \mid \lambda, \mu(\lambda), \sigma^{2}(\lambda)\right)= \begin{cases}\frac{1}{\sqrt{2 \pi \sigma^{2}(\lambda)}} \exp \left(-\frac{\left(\frac{\left(y^{\lambda}-1\right)}{\lambda}-\mu(\lambda)\right)^{2}}{2 \sigma^{2}(\lambda)}\right) y^{\lambda-1}, & \lambda \neq 0 \\ \frac{1}{\sqrt{2 \pi \sigma^{2}(\lambda)}} \exp \left(-\frac{(\log y-\mu(\lambda))^{2}}{2 \sigma^{2}(\lambda)}\right) y^{-1}, & \lambda=0 .\end{cases}
$$

- If $\lambda \neq 0$ and $\mu(\lambda)=\mathbf{x}^{\top} \boldsymbol{\beta}(\lambda)$ then

$$
f\left(y \mid \lambda, \mu(\lambda), \sigma^{2}(\lambda)\right)=\frac{1}{\sqrt{2 \pi \lambda^{2} \sigma^{2}(\lambda)}} \exp \left(-\frac{\left(y^{\lambda}-1-\lambda \mathbf{x}^{\top} \boldsymbol{\beta}(\lambda)\right)^{2}}{2 \lambda^{2} \sigma^{2}(\lambda)}\right)|\lambda| y^{\lambda-1}
$$

Box-Cox Transformation

Using $\beta_{0}=1+\lambda \beta_{0}(\lambda), \beta_{j}=\lambda \beta_{j}(\lambda), j=1, \ldots, p-1$, and $\sigma^{2}=\lambda^{2} \sigma^{2}(\lambda)$ then

$$
\begin{aligned}
f\left(y \mid \lambda, \mu(\lambda), \sigma^{2}(\lambda)\right) & =\frac{1}{\sqrt{2 \pi \lambda^{2} \sigma^{2}(\lambda)}} \exp \left(-\frac{\left(y^{\lambda}-1-\lambda \mathbf{x}^{\top} \boldsymbol{\beta}(\lambda)\right)^{2}}{2 \lambda^{2} \sigma^{2}(\lambda)}\right)|\lambda| y^{\lambda-1} \\
f\left(y \mid \lambda, \boldsymbol{\beta}, \sigma^{2}\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y^{\lambda}-\mathbf{x}^{\top} \boldsymbol{\beta}\right)^{2}}{2 \sigma^{2}}\right)|\lambda| y^{\lambda-1} .
\end{aligned}
$$

- If $\lambda=0$, let $\beta_{j}=\beta_{j}(\lambda), j=0, \ldots, p-1$, and $\sigma^{2}=\sigma^{2}(\lambda)$

$$
f\left(y \mid 0, \boldsymbol{\beta}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(\log y-\mathbf{x}^{\top} \boldsymbol{\beta}\right)^{2}}{2 \sigma^{2}}\right) y^{-1} .
$$

If λ would be known, then the MLE could be easily computed!

Box-Cox Transformation

Relevant part of the sample log-likelihood function is

- $\lambda \neq 0$:
$\ell\left(\lambda, \boldsymbol{\beta}, \sigma^{2} \mid \mathbf{y}\right)=-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}^{\lambda}-\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)^{2}+n \log |\lambda|+(\lambda-1) \sum_{i=1}^{n} \log y_{i}$
- $\lambda=0$:

$$
\ell\left(0, \boldsymbol{\beta}, \sigma^{2} \mid \mathbf{y}\right)=-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(\log y_{i}-\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)^{2}-\sum_{i=1}^{n} \log y_{i}
$$

Box-Cox Transformation: MLE's

If λ would be known, then the MLEs would be

$$
\begin{aligned}
& \hat{\boldsymbol{\beta}}_{\lambda}= \begin{cases}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}^{\lambda}, & \lambda \neq 0, \\
\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \log \mathbf{y}, & \lambda=0,\end{cases} \\
& \hat{\sigma}_{\lambda}^{2}=\frac{1}{n} \operatorname{SSE}_{\lambda}\left(\hat{\boldsymbol{\beta}}_{\lambda}\right)= \begin{cases}\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}^{\lambda}-\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\beta}}_{\lambda}\right)^{2}, & \lambda \neq 0, \\
\frac{1}{n} \sum_{i=1}^{n}\left(\log y_{i}-\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\beta}}_{\lambda}\right)^{2}, & \lambda=0 .\end{cases}
\end{aligned}
$$

Box-Cox Transformation: Profile-Likelihood

Profile (log-) likelihood function $p \ell(\lambda \mid \mathbf{y})=\ell\left(\lambda, \hat{\boldsymbol{\beta}}_{\lambda}, \hat{\sigma}_{\lambda}^{2} \mid \mathbf{y}\right)=$

$$
= \begin{cases}-\frac{n}{2} \log \operatorname{SSE}_{\lambda}\left(\hat{\boldsymbol{\beta}}_{\lambda}\right)+n \log |\lambda|+(\lambda-1) \sum_{i=1}^{n} \log y_{i}, & \lambda \neq 0, \\ -\frac{n}{2} \log \operatorname{SSE}_{0}\left(\hat{\boldsymbol{\beta}}_{0}\right)-\sum_{i=1}^{n} \log y_{i}, & \lambda=0 .\end{cases}
$$

This is the sample log-likelihood function that has been already maximized with respect to β and σ^{2}.

It only depends on the transformation parameter λ.
Find the maximum in λ by simply using a grid search strategy.

Box-Cox Transformation: Profile-Likelihood

Likelihood Ratio Test (LRT): $H_{0}: \lambda=\lambda_{0}$ versus $H_{1}: \lambda \neq \lambda_{0}$.
For the LRT statistic it holds that

$$
-2\left(p \ell\left(\lambda_{0} \mid \mathbf{y}\right)-p \ell(\hat{\lambda} \mid \mathbf{y})\right) \xrightarrow{D} \chi_{1}^{2}
$$

If $-2\left(p \ell\left(\lambda_{0} \mid \mathbf{y}\right)-p \ell(\hat{\lambda} \mid \mathbf{y})\right) \sim \chi_{1}^{2}$, a $(1-\alpha)$ confidence interval contains all values λ_{0}, for which

$$
-\left(p \ell\left(\lambda_{0} \mid \mathbf{y}\right)-p \ell(\hat{\lambda} \mid \mathbf{y})\right)<\frac{1}{2} \chi_{1 ; 1-\alpha}^{2}
$$

(notice that $\chi_{1 ; 0.95}^{2}=3.841, \chi_{1 ; 0.99}^{2}=6.635$).

Box-Cox Transformation: Properties

Log-Transformation $(\lambda=0)$: if $\log y_{i} \sim \operatorname{Normal}\left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$ then

$$
\begin{aligned}
\operatorname{median}\left(\log y_{i}\right) & =\mathbf{x}_{i}^{\top} \boldsymbol{\beta}, \\
\mathrm{E}\left(\log y_{i}\right) & =\mathbf{x}_{i}^{\top} \boldsymbol{\beta}, \\
\operatorname{var}\left(\log y_{i}\right) & =\sigma^{2} .
\end{aligned}
$$

Untransformed response y_{i} follows a log-normal distribution with

$$
\begin{aligned}
\operatorname{median}\left(y_{i}\right) & =\exp \left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right), \\
\mathrm{E}\left(y_{i}\right) & =\exp \left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}+\sigma^{2} / 2\right)=\exp \left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right) \exp \left(\sigma^{2} / 2\right), \\
\operatorname{var}\left(y_{i}\right) & =\left(\exp \left(\sigma^{2}\right)-1\right) \exp \left(2 \mathbf{x}_{i}^{\top} \boldsymbol{\beta}+\sigma^{2}\right) .
\end{aligned}
$$

- Additive model for mean and median of $\log y_{i}$ corresponds to a multiplicative model for mean and median of y_{i}.
- $\mathrm{E}\left(y_{i}\right)$ is $1<\exp \left(\sigma^{2} / 2\right)$ times its median $\left(y_{i}\right)$.
- $\operatorname{var}\left(y_{i}\right)$ is no longer constant for $i=1, \ldots, n$.

Box-Cox Transformation: Properties

Power-Transformation $(\lambda \neq 0)$: if $y_{i}^{\lambda} \sim \operatorname{Normal}\left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$ then

$$
\begin{aligned}
\operatorname{median}\left(y_{i}^{\lambda}\right) & =\mathbf{x}_{i}^{\top} \boldsymbol{\beta}, \\
\mathbb{E}\left(y_{i}^{\lambda}\right) & =\mathbf{x}_{i}^{\top} \boldsymbol{\beta}, \\
\operatorname{var}\left(y_{i}^{\lambda}\right) & =\sigma^{2} .
\end{aligned}
$$

Untransformed response y_{i} follows a distribution with

$$
\begin{aligned}
\operatorname{median}\left(y_{i}\right) & =\mu_{i}^{1 / \lambda} \\
\mathrm{E}\left(y_{i}\right) & \approx \mu_{i}^{1 / \lambda}\left(1+\sigma^{2}(1-\lambda) /\left(2 \lambda^{2} \mu_{i}^{2}\right)\right), \\
\operatorname{var}\left(y_{i}\right) & \approx \mu_{i}^{2 / \lambda} \sigma^{2} /\left(\lambda^{2} \mu_{i}^{2}\right) .
\end{aligned}
$$

Box-Cox Transformation: Example

Girth (diameter), Height and Volume for $n=31$ Black Cherry Trees available in \mathbb{R}.
Relationship between volume V in feet ${ }^{3}$, height H in feet and diameter D in inches (1 inch $=2.54 \mathrm{~cm}, 12$ inches $=1$ foot $)$.
> H <- trees\$Height; D <- trees\$Girth; V <- trees\$Volume
> plot(D, V); lines(lowess(D, V)) \# curvature (wrong scale?)
> plot(H, V) \# increasing variance?

Box-Cox Transformation: Example

> (mod <- lm (V ~ H + D)) \# still fit a linear model for volume Coefficients:

(Intercept)	H	D
-57.9877	0.3393	4.7082

> plot(D, residuals(mod), ylab="residuals"); abline(0, 0)
> lines(lowess(D, residuals(mod))) \# sink in the middle

Box-Cox Transformation: Example

Box-Cox Transformation: Example

> library(MASS)
> bc<-boxcox(V~H+D,lambda=seq(0.0,0.6,length=100), plotit=FALSE)
> ml.index <- which(bc\$y == max(bc\$y))
> bc\$x[ml.index]
[1] 0.3090909
> boxcox(V~H+D, lambda $=\operatorname{seq}(0.0,0.6,1 \mathrm{en}=18))$ \# plot it now

Box-Cox Transformation: Example

Box-Cox Transformation: Example

Is volume cubic in height and diameter?
> plot(D, V^(1/3), ylab=expression(V^\{1/3\}))
> lines(lowess(D, $\left.\mathrm{V}^{\wedge}(1 / 3)\right)$) \# curvature almost gone
> (mod1 <- $\left.\operatorname{lm}\left(V^{\wedge}(1 / 3) \sim H+D\right)\right)$
Coefficients:

$$
\begin{array}{rrr}
\text { (Intercept) } & H & D \\
-0.08539 & 0.01447 & 0.15152
\end{array}
$$

For fixed $\lambda=1 / 3$ we have $\widehat{\operatorname{median}}(V)=\hat{\mu}_{1 / 3}^{3}$ where
$\mathrm{E}\left(V^{1 / 3}\right)=\mu_{1 / 3} \cdot \hat{E}(V)=\hat{\mu}_{1 / 3}^{3}\left(1+3 \hat{\sigma}_{1 / 3}^{2} / \hat{\mu}_{1 / 3}^{2}\right)$. Compare responses with estimated medians
> mu <- fitted(mod1)
> plot(mu^3, V) \# fitted median modell

Box-Cox Transformation: Example

Box-Cox Transformation: Example

Alternative strategy:

Remove curvature by a log-transform of all predictors (i.e., regress on $\log (D)$ and $\log (H)$).
Should we also consider $\log (V)$ as response?
> plot(log(D), $\log (V))$ \# shows nice linear relationship
> $\operatorname{lm}(\log (V) \sim \log (H)+\log (D))$ \# response $\log (V)$ or still V?
Coefficients:

(Intercept)	$\log (H)$	$\log (D)$
-6.632	1.117	1.983

$>\operatorname{boxcox}\left(V^{\sim} \log (H)+\log (D), \operatorname{lambda=seq}(-0.35,0.25, l e n g t h=100)\right)$

Box-Cox Transformation: Example

Box-Cox Transformation: Example

Which of the models is better? Comparison by LRT. Both models are members of the model family

$$
\begin{aligned}
V^{*} & \sim \operatorname{Normal}\left(\beta_{0}+\beta_{1} H^{*}+\beta_{2} D^{*}, \sigma^{2}\right) \\
V^{*} & =\left(V^{\lambda_{V}}-1\right) / \lambda_{V} \\
H^{*} & =\left(H^{\lambda_{H}}-1\right) / \lambda_{H} \\
D^{*} & =\left(D^{\lambda_{D}}-1\right) / \lambda_{D}
\end{aligned}
$$

Compare Profile-Likelihood function in $\lambda_{V}=1 / 3, \lambda_{H}=\lambda_{D}=1$ $\left(E\left(V^{1 / 3}\right)=\beta_{0}+\beta_{1} H+\beta_{2} D\right)$, with that in $\lambda_{V}=\lambda_{H}=\lambda_{D}=0$ $\left(E(\log (V))=\beta_{0}+\beta_{1} \log (H)+\beta_{2} \log (D)\right)$.

Box-Cox Transformation: Example

> bc1 <- boxcox(V ~ H + D, lambda = 1/3, plotit=FALSE)
> bc1\$y
[1] 25.33313
> bc2 <- boxcox(V ~ log(H) + log(D), lambda = 0, plotit=FALSE)
$>\mathrm{bc} 2$ \$y
[1] 26.11592
LRT Statistic: $-2(25.333-26.116)=1.566$ (not significant).

Box-Cox Transformation: Example

Remark: Coefficient of $\log (H)$ close to $1\left(\hat{\beta}_{1}=1.117\right)$ and coefficient of $\log (D)$ close to $2\left(\hat{\beta}_{2}=1.983\right)$.

Tree can be represented by a cylinder or a cone. Volume is $\pi h d^{2} / 4$ (cylinder) or $\pi h d^{2} / 12$ (cone), i.e.

$$
\mathrm{E}(\log (V))=c+1 \log (H)+2 \log (D)
$$

with $c=\log (\pi / 4)$ (cylinder) or $c=\log (\pi / 12)$ (cone).
Attention: D has to be converted from inches to feet $\Rightarrow D / 12$ as predictor.

Box-Cox Transformation: Example

$>\operatorname{lm}(\log (V) \sim \log (H)+\log (D / 12))$
Coefficients:
$\begin{array}{rrr}\text { (Intercept) } & \log (H) & \log (D / 12) \\ -1.705 & 1.117 & 1.983\end{array}$

Conversion only influences intercept!
Fix slopes $\left(\beta_{1}, \beta_{2}\right)$ to $(1,2)$ and estimate only intercept β_{0}, i.e. consider the model

$$
\mathrm{E}(\log (V))=\beta_{0}+1 \log (H)+2 \log (D / 12)
$$

Term $1 \log H+2 \log (D / 12)$ is called offset (predictor with fixed parameter 1).

Box-Cox Transformation: Example

$>(\bmod 3<-\operatorname{lm}(\log (V) \sim 1+\operatorname{offset}(\log (H)+2 * \log (D / 12))))$ Coefficients:

```
(Intercept)
```

-1. 199
> $\log (\mathrm{pi} / 4)$
[1] -0.2415645
> $\log (\mathrm{pi} / 12)$
[1] -1.340177
Volume can be better described by a cone than by a cylinder. However, its volume is slightly larger than the one of a cone.

Introduction to GLM's

- In generalized linear models (GLM's) we again have independent response variables with covariates.
- While a linear model combines additivity of the covariate effects with the normality of the errors, including variance homogeneity, GLM's don't need to satisfy these requirements. GLM's allow also to handle nonnormal responses such as binomial, Poisson and Gamma.
- Regression parameters are estimated using maximum likelihood.
- Standard reference on GLM's is McCullagh \& Nelder (1989).

Introduction to GLM's: Components of a GLM

Response y_{i} and covariables $\mathbf{x}_{i}=\left(1, x_{i 1}, \ldots, x_{i, p-1}\right)^{\top}$.
(1) Random Component:
$y_{i}, i=1, \ldots, n$, independent with density from the linear exponential family (LEF), i.e.

$$
f(y \mid \theta, \phi)=\exp \left\{\frac{y \theta-b(\theta)}{\phi}+c(y, \phi)\right\}
$$

$\phi>0$ is a dispersion parameter and $b(\cdot)$ and $c(\cdot, \cdot)$ are known functions.
(2) Systematic Component:
$\eta_{i}=\eta_{i}(\boldsymbol{\beta})=\mathbf{x}_{i}^{\top} \boldsymbol{\beta}$ is called linear predictor, $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{p-1}\right)^{\top}$ are unknown regression parameters
(3) Parametric Link Component:

The link function $g\left(\mu_{i}\right)=\eta_{i}$ combines the linear predictor with the mean of y_{i}. Canonical link function if $\theta=\eta$.

Introduction to GLM's: LM as GLM

$y_{i} \sim \operatorname{Normal}\left(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$, independent, $i=1, \ldots, n$. Density has
LEF form, since

$$
\begin{aligned}
f\left(y \mid \mu, \sigma^{2}\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(y-\mu)^{2}\right\} \\
& =\exp \left\{\frac{y \mu-\frac{\mu^{2}}{2}}{\sigma^{2}}-\frac{1}{2}\left[\log \left(2 \pi \sigma^{2}\right)+\frac{y^{2}}{\sigma^{2}}\right]\right\}
\end{aligned}
$$

Defining $\theta=\mu$ and $\phi=\sigma^{2}$ results in

$$
b(\theta)=\frac{\mu^{2}}{2} \quad \text { and } \quad c(y, \phi)=-\frac{1}{2}\left[\log \left(2 \pi \sigma^{2}\right)+\frac{y^{2}}{\sigma^{2}}\right]
$$

Since $\theta=\mu$, the canonical link $g(\mu)=\mu$ is used in a LM.

Introduction to GLM's: Moments

It can be shown that for the LEF

$$
\begin{aligned}
\mathrm{E}(y) & =b^{\prime}(\theta)=\mu \\
\operatorname{var}(y) & =\phi b^{\prime \prime}(\theta)=\phi V(\mu),
\end{aligned}
$$

where $V(\mu)=b^{\prime \prime}(\theta)$ is called the variance function.
Thus, we generally consider the model

$$
g(\mu)=g\left(b^{\prime}(\theta)\right)
$$

Thus, the canonical link is defined as

$$
\begin{aligned}
g & =\left(b^{\prime}\right)^{-1} \\
\Rightarrow g(\mu) & =\theta=\mathbf{x}^{\top} \boldsymbol{\beta} .
\end{aligned}
$$

Introduction to GLM's: Estimating parameters

A single algorithm can be used to estimate the parameters of an LEM glm using maximum likelihood.
The log-likelihood of the sample y_{1}, \ldots, y_{n} is

$$
\ell(\boldsymbol{\mu} \mid \mathbf{y})=\sum_{i=1}^{n}\left\{\frac{y_{i} \theta_{i}-b\left(\theta_{i}\right)}{\phi}+c\left(y_{i}, \phi\right)\right\}
$$

The maximum likelihood estimator $\hat{\mu}$ is obtained by solving the score function (chain rule)

$$
s(\boldsymbol{\mu})=\frac{\partial}{\partial \boldsymbol{\mu}} \ell(\boldsymbol{\mu} \mid \mathbf{y})=\frac{\partial}{\partial \boldsymbol{\theta}} \ell(\boldsymbol{\mu} \mid \mathbf{y}) \frac{\partial \theta}{\partial \boldsymbol{\mu}}=\left(\frac{y_{1}-\mu_{1}}{\phi V\left(\mu_{1}\right)}, \ldots, \frac{y_{n}-\mu_{n}}{\phi V\left(\mu_{n}\right)}\right)
$$

that only depends on a mean/variance relationship.

Introduction to GLM's: Estimating parameters

Because of $\mu=\mu(\boldsymbol{\beta})$ the score function for the parameter $\boldsymbol{\beta}$ is (chain rule again)

$$
s(\boldsymbol{\beta})=\frac{\partial}{\partial \boldsymbol{\beta}} \ell(\boldsymbol{\beta} \mid \mathbf{y})=\frac{\partial}{\partial \boldsymbol{\theta}} \ell(\boldsymbol{\mu} \mid \mathbf{y}) \frac{\partial \boldsymbol{\theta}}{\partial \boldsymbol{\mu}} \frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}} \frac{\partial \boldsymbol{\eta}}{\partial \boldsymbol{\beta}}=\sum_{i=1}^{n} \frac{y_{i}-\mu_{i}}{\phi V\left(\mu_{i}\right)} \frac{1}{g^{\prime}\left(\mu_{i}\right)} \mathbf{x}_{i}
$$

which depends again only on the mean/variance relationship.
For the sample y_{1}, \ldots, y_{n} we assumed that there is only one global dispersion parameter ϕ, i.e. $\mathrm{E}\left(y_{i}\right)=\mu_{i}, \operatorname{var}\left(y_{i}\right)=\phi V\left(\mu_{i}\right)$.

Introduction to GLM's: Estimating parameters

The score equation to be solved for the MLE $\hat{\boldsymbol{\beta}}$ is

$$
\sum_{i=1}^{n} \frac{y_{i}-\hat{\mu}_{i}}{V\left(\hat{\mu}_{i}\right)} \frac{1}{g^{\prime}\left(\hat{\mu}_{i}\right)} \mathbf{x}_{i}=\mathbf{0}
$$

which doesn't depend on ϕ and where $g\left(\hat{\mu}_{i}\right)=\mathbf{x}_{i}^{\top} \hat{\boldsymbol{\beta}}$. Notice, if a canonical link $(g(\mu)=\theta)$ is used, we have

$$
g^{\prime}(\mu)=\frac{\partial \theta}{\partial \mu}=\frac{1}{\partial \mu / \partial \theta}=\frac{1}{\partial b^{\prime}(\theta) / \partial \theta}=\frac{1}{b^{\prime \prime}(\theta)}=\frac{1}{V(\mu)}
$$

and the above score equation simplifies to

$$
\sum_{i=1}^{n}\left(y_{i}-\hat{\mu}_{i}\right) \mathbf{x}_{i}=\mathbf{0}
$$

Introduction to GLM's: Estimating parameters

A general method to solve the score equation is the iterative algorithm Fisher's Method of Scoring (derived from a Taylor expansion of $s(\boldsymbol{\beta})$).
In the t-th iteration, the new estimate $\boldsymbol{\beta}^{(t+1)}$ is obtained from the previous one $\boldsymbol{\beta}^{(t)}$ by

$$
\boldsymbol{\beta}^{(t+1)}=\boldsymbol{\beta}^{(t)}+s\left(\boldsymbol{\beta}^{(t)}\right)\left[\left.E\left(\frac{\partial s(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}\right)\right|_{\boldsymbol{\beta}=\boldsymbol{\beta}^{(t)}}\right]^{-1}
$$

Therefore, the speciality is the usage of the expected instead of the observed Hessian matrix.

Introduction to GLM's: Estimating parameters

It could be shown that this iteration can be rewritten as

$$
\boldsymbol{\beta}^{(t+1)}=\left(\mathbf{X}^{\top} \mathbf{W}^{(t)} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W}^{(t)} \mathbf{z}^{(t)}
$$

with the vector of pseudo-observations $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)^{\top}$ and diagonal weight matrix \mathbf{W} defined as

$$
\begin{aligned}
z_{i} & =g\left(\mu_{i}\right)+g^{\prime}\left(\mu_{i}\right)\left(y_{i}-\mu_{i}\right) \\
w_{i} & =\frac{1}{V\left(\mu_{i}\right)\left(g^{\prime}\left(\mu_{i}\right)\right)^{2}}
\end{aligned}
$$

Introduction to GLM's: Estimating parameters

Since

$$
\boldsymbol{\beta}^{(t+1)}=\left(\mathbf{X}^{\top} \mathbf{W}^{(t)} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W}^{(t)} \mathbf{z}^{(t)}
$$

the estimate $\hat{\boldsymbol{\beta}}$ is calculated using an Iteratively (Re-)Weighted Least Squares (IWLS) algorithm:
(1) start with initial guesses $\mu_{i}^{(0)}$ (e.g. $\mu_{i}^{(0)}=y_{i}$ or $\mu_{i}^{(0)}=y_{i}+c$)
(2) calculate working responses $z_{i}^{(t)}$ and weights $w_{i}^{(t)}$
(3) calculate $\boldsymbol{\beta}^{(t+1)}$ by weighted least squares
(4) repeat steps 2 and 3 till convergence.

Introduction to GLM's: Standard errors

For the MLE $\hat{\boldsymbol{\beta}}$ it holds that (asymptotically)

$$
\hat{\boldsymbol{\beta}} \sim \operatorname{Normal}\left(\boldsymbol{\beta}, \phi\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}\right)^{-1}\right)
$$

Thus, standard errors of the estimators $\hat{\beta}_{j}$ are the respective diagonal elements of the estimated variance/covariance matrix

$$
\widehat{\operatorname{var}(\hat{\boldsymbol{\beta}})}=\phi\left(\mathbf{X}^{\top} \hat{\mathbf{W}} \mathbf{X}\right)^{-1}
$$

with $\hat{\mathbf{W}}=\mathbf{W}(\hat{\mu})$. Note that $\left(\mathbf{X}^{\top} \hat{\mathbf{W}} \mathbf{X}\right)^{-1}$ is a by-product of the last IWLS iteration. If ϕ is unknown, an estimator is required.

Introduction to GLM's: Dispersion estimator

There are practical difficulties when estimating ϕ by ML. A method-of-moments like estimator is developed considering the ratios

$$
\phi=\frac{\mathrm{E}\left(y_{i}-\mu_{i}\right)^{2}}{V\left(\mu_{i}\right)}, \quad \text { for all } i=1, \ldots, n
$$

Averaging over all these ratios and assuming that the μ_{i} 's are known results in the estimator

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{V\left(\mu_{i}\right)}
$$

However, since $\boldsymbol{\beta}$ is unknown we better use the bias-corrected version (also known as the mean generalized Pearson's chi-square statistic)

$$
\hat{\phi}=\frac{1}{n-p} \sum_{i=1}^{n} \frac{\left(y_{i}-\hat{\mu}_{i}\right)^{2}}{V\left(\hat{\mu}_{i}\right)}=\frac{1}{n-p} X^{2}
$$

The glm Function

Generalized linear models can be fitted in \mathbb{R} using the glm function, which is similar to 1 m for fitting linear models.
The arguments to a glm call are as follows:
glm(formula, family = gaussian, data, weights, subset, na.action, start = NULL, etastart, mustart, offset, control = glm.control(...), model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, ...)

The glm Function

Formula argument:
The formula is specified for a glm as e.g.

$$
\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2
$$

where x 1 and x 2 are the names of

- numeric vectors (continuous predictors)
- factors (categorial predictors)

All the variables used in the formula must be in the workspace or in the data frame passed to the data argument.

The glm Function

Formula argument:
Other symbols that can be used in the formula are:

- $\mathrm{a}: \mathrm{b}$ for the interaction between a and b
- $\mathrm{a} * \mathrm{~b}$ which expands to $1+\mathrm{a}+\mathrm{b}+\mathrm{a}: \mathrm{b}$
- . first order terms of all variables in data
- - to exclude a term (or terms)
- 1 intercept (default)
- -1 without intercept

The glm Function

Family argument:

The family argument defines the response distribution (variance function) and the link function. The exponential family functions available in \mathbb{R} are e.g.

- gaussian(link = "identity")
- binomial(link = "logit")
- poisson(link = "log")
- Gamma(link = "inverse")

The glm Function

Extractor functions:

The glm function returns an object of class c("glm", "lm").
There are several methods available to access or display components of a glm object, e.g.

- residuals()
- fitted()
- predict()
- coef()
- deviance()
- summary()
- plot()

The glm Function: Example

Refit life expectancies model using glm().
The first part contains the same information as from $\operatorname{lm}()$
> mod<-glm(life.expectancy ~ urban+log(physicians)+temperature)
$>$ summary (mod)

Call:
glm(formula=life.expectancy ~ urban+log(physicians)+temperature)
Deviance Residuals:

Min	1Q	Median	3Q	Max
-14.033	-3.089	0.379	3.328	12.144

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	66.70367	1.79065	37.251	$<2 \mathrm{e}-16$ ***	
urban	8.76445	2.53243	3.461	0.000711 ***	
log (physicians)	3.51370	0.39341	8.931	$1.97 \mathrm{e}-15$	$* * *$
temperature	-0.03008	0.05668	-0.531	0.596408	

The glm Function: Example

Since the default family="gaussian", deviance residuals corresponds to ordinary residuals as in a linear model.

A five-number summary of those raw residuals is given.

Wald tests

Remember that for the MLE it asymptotically holds that

$$
\hat{\boldsymbol{\beta}} \sim \operatorname{Normal}\left(\boldsymbol{\beta}, \phi\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}\right)^{-1}\right)
$$

Thus, we can utilize this to construct a test statistic on the significance of a coefficient, say β_{j} for $j=1, \ldots, p-1$.
If we test

$$
H_{0}: \beta_{j}=0 \text { versus } H_{1}: \beta_{j} \neq 0
$$

we can use the test statistic

$$
t=\frac{\hat{\beta}_{j}}{\sqrt{\hat{\phi}\left(\mathbf{X}^{\top} \hat{\mathbf{W}} \mathbf{X}\right)_{j+1, j+1}^{-1}}}
$$

which under H_{0} asymptotically follows a t distribution with $n-p$ degrees of freedom.

The glm Function: Example

The second part contains some new information on estimated dispersion and goodness-of-fit aspects which we will discuss later in detail.

First the dispersion estimate (if necessary) $\hat{\phi}$ is provided
(Dispersion parameter for gaussian family taken to be 22.9815)
This estimate is simply the squared residual standard error (that was 4.794 in the summary (lm())).

(Scaled) Deviance

Next there is the deviance of two models and the number of missing observations:

```
    Null deviance: 11109.6 on 145 degrees of freedom
Residual deviance: 3263.4 on 142 degrees of freedom
    (23 observations deleted due to missingness)
```

The first refers to the null model which corresponds to a model with intercept only (the iid assumption, no explanatory variables). The associated degrees of freedom are $n-1$.

The second refers to our fitted model with $p-1$ explanatory variables in the predictor and, thus, with associated degrees of freedom $n-p$.

(Scaled) Deviance

The deviance of a model is defined as the distance of log-likelihoods, i.e.

$$
D(\mathbf{y}, \hat{\mu})=-2 \phi(\ell(\hat{\mu} \mid \mathbf{y})-\ell(\mathbf{y} \mid \mathbf{y}))
$$

Here, $\hat{\mu}$ are the fitted values under the considered model (maximizing the log-likelihood under the given parametrization), and \mathbf{y} denote the estimated means under a model without any restriction at all (thus $\hat{\mu}=\mathbf{y}$ in such a saturated model).

(Scaled) Deviance

For any member of the LEF the deviance equals

$$
\begin{aligned}
D(\mathbf{y}, \hat{\boldsymbol{\mu}}) & =-2 \phi \sum_{i=1}^{n} \frac{\left(y_{i} \hat{\theta}_{i}-y_{i} \tilde{\theta}_{i}\right)-\left(b\left(\hat{\theta}_{i}\right)-b\left(\tilde{\theta}_{i}\right)\right)}{\phi} \\
& =-2 \sum_{i=1}^{n}\left\{\left(y_{i} \hat{\theta}_{i}-y_{i} \tilde{\theta}_{i}\right)-\left(b\left(\hat{\theta}_{i}\right)-b\left(\tilde{\theta}_{i}\right)\right)\right\}
\end{aligned}
$$

where $\tilde{\theta}_{i}$ denotes the estimate of θ_{i} under the saturated model. Under the saturated model, there are as many mean parameters μ_{i} allowed as observations y_{i}.
Note that for LEF members the deviance

$$
D(\mathbf{y}, \hat{\boldsymbol{\mu}})=-2 \sum_{i=1}^{n}\left\{\left(y_{i} \hat{\theta}_{i}-y_{i} \tilde{\theta}_{i}\right)-\left(b\left(\hat{\theta}_{i}\right)-b\left(\tilde{\theta}_{i}\right)\right)\right\}
$$

doesn't depend on the dispersion!

(Scaled) Deviance

Example: Gaussian responses ($\phi=\sigma^{2}$) with identity link (LM)

$$
\begin{aligned}
& \ell(\hat{\boldsymbol{\mu}} \mid \mathbf{y})=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2} \sum_{i=1}^{n} \frac{\left(y_{i}-\hat{\mu}_{i}\right)^{2}}{\sigma^{2}} \\
& \ell(\mathbf{y} \mid \mathbf{y})=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)
\end{aligned}
$$

Therefore the deviance equals the sum of squared errors, i.e.

$$
D(\mathbf{y}, \hat{\boldsymbol{\mu}})=-2 \phi(\ell(\hat{\boldsymbol{\mu}} \mid \mathbf{y})-\ell(\mathbf{y} \mid \mathbf{y}))=\sum_{i=1}^{n}\left(y_{i}-\hat{\mu}_{i}\right)^{2}=\operatorname{SSE}(\hat{\boldsymbol{\beta}})
$$

(Scaled) Deviance

Finally we have
AIC: 877.94

Number of Fisher Scoring iterations: 2
The Akaike Information Criterion (AIC) also assess the fit penalizing for the total number of parameters $p+1$ (linear predictor and dispersion in this case) and is defined as

$$
\mathrm{AIC}=-2 \ell(\hat{\mu} \mid \mathbf{y})+2(p+1)
$$

The smaller the AIC value the better the fit. Use AIC only to compare different models (not necessarily nested).
Sometimes, the term $-2 \ell(\hat{\mu} \mid \mathbf{y})$ is called disparity.

Residuals

Several different ways to define residuals in a GLM:

$$
\begin{array}{r}
\text { residuals(object, type = c("deviance", "pearson", "working", } \\
\text { "response", "partial"), ...) }
\end{array}
$$

- deviance: write deviance as $\sum_{i=1}^{n} d\left(y_{i}, \hat{\mu}_{i}\right)^{2}$
- pearson: $r_{i}^{P}=\left(y_{i}-\hat{\mu}_{i}\right) / \sqrt{V\left(\hat{\mu}_{i}\right)}$
- working: $r_{i}^{W}=\hat{z}_{i}-\hat{\eta}_{i}=\left(y_{i}-\hat{\mu}_{i}\right) g^{\prime}\left(\hat{\mu}_{i}\right)$ (remember that $g^{\prime}\left(\hat{\mu}_{i}\right)=1 / V\left(\hat{\mu}_{i}\right)$ for canonical link models)
- response: $y_{i}-\hat{\mu}_{i}$
- partial: $r_{i}^{P}+\hat{\beta}_{j} x_{i j}$ is the partial residual for the j-th covariate

Except the partial residuals, these types are all equivalent for LM's.

Residuals

Deviance residuals are the default used in \mathbb{R} since they reflect the same criterion as used in the fitting.

Plot deviance residuals against fitted values:
> plot(residuals(mod) ~ fitted(mod),
$+\mathrm{xlab}=$ expression(hat(mu)[i]),
$+y l a b=\operatorname{expression}(r[i]))$
$>$ abline(0, 0, lty $=2$)

Residuals

Deviance/Pearson/response/working residuals vs. fitted values:

The glm Function: Plot

The plot() function gives the following sequence of plots:

- deviance residuals vs. fitted values
- Normal Q-Q plot of deviance residuals standardized to unit variance
- scale-location plot of standardized deviance residuals
- standardized deviance residuals vs. leverage with Cook's distance contours
$>\operatorname{plot}(\bmod)$

The glm Function: Plot

Black Cherry Trees Revisited

So far we considered (Box-Cox transformation) models like

- $V_{i}^{1 / 3} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu_{i}, \sigma^{2}\right), \mathrm{E}\left(V^{1 / 3}\right)=\mu=H+D$
- $\log \left(V_{i}\right) \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu_{i}, \sigma^{2}\right), \mathrm{E}(\log (V))=\mu=\log (H)+\log (D)$

In what follows we will assume that a GLM holds with

- $V_{i} \stackrel{i n d}{\sim} \operatorname{Normal}\left(\mu_{i}, \sigma^{2}\right)$ and $g(\mathrm{E}(V))=\eta$.

More specifically, we like to check out the models:

- $\mu^{1 / 3}=H+D$
- $\log (\mu)=\log (H)+\log (D)$.

These models on the observations scale can be easily fitted using $\operatorname{glm}()$.

Black Cherry Trees Revisited

```
\(V_{i} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu_{i}, \sigma^{2}\right), \mu^{1 / 3}=H+D\)
> pmodel <- glm(V ~ H + D, family = gaussian(link=power(1/3)))
\(>\) summary (pmodel)
```

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|t\|)$		
(Intercept)	-0.051322	0.224095	-0.229	0.820518
H	0.014287	0.003342	4.274	$0.000201 * * *$
D	0.150331	0.005838	25.749	$<2 e-16 * * *$

Signif. codes: $0{ }^{\prime} * * * ’ 0.001^{\prime} * * ’ 0.01^{\prime} *$ ' 0.05 '.' 0.1 ' 1
(Dispersion parameter for gaussian family taken to be 6.577063)

$$
\begin{aligned}
& \text { Null deviance: } 8106.08 \text { on } 30 \text { degrees of freedom } \\
& \text { Residual deviance: } 184.16 \text { on } 28 \text { degrees of freedom } \\
& \text { AIC: } 151.21
\end{aligned}
$$

Number of Fisher Scoring iterations: 4

Black Cherry Trees Revisited

```
\(V_{i} \stackrel{i n d}{\sim} \operatorname{Normal}\left(\mu_{i}, \sigma^{2}\right), \mu^{1 / 3}=H+D\)
> AIC(pmodel)
[1] 151.2102
\(>-2 * \operatorname{logLik}(\) pmodel \()+2 * 4\)
'log Lik.' 151.2102 (df=4)
> logLik(pmodel)
'log Lik.' -71.60508 (df=4)
> sum(log(dnorm(V,pmodel\$fit,sqrt(summary (pmodel)\$disp*28/31))))
[1] -71.60508
> sum(residuals(pmodel) \({ }^{\text {- } 2) ~}\)
[1] 184.1577
> deviance (pmodel)
[1] 184.1577
> sum((V-mean(V)) ^2) \# Null Deviance
[1] 8106.084
```


Black Cherry Trees Revisited

$V_{i} \stackrel{i n d}{\sim} \operatorname{Normal}\left(\mu_{i}, \sigma^{2}\right), \log (\mu)=\log (H)+\log (D)$
> summary (glm(V ~ log(H) + log(D), family = gaussian(link=log)))
Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	-6.53700	0.94352	-6.928	$1.57 \mathrm{e}-07$	$* * *$
$\log (\mathrm{H})$	1.08765	0.24216	4.491	0.000111	$* * *$
$\log (\mathrm{D})$	1.99692	0.08208	24.330	$<2 \mathrm{e}-16$	$* * *$

Signif. codes: $0{ }^{\prime} * * * ’ 0.001^{\prime} * * ’ 0.01^{\prime} *$ ’ 0.05 '.' 0.1 ' 1
(Dispersion parameter for gaussian family taken to be 6.41642)

Null deviance: 8106.08 on 30 degrees of freedom Residual deviance: 179.66 on 28 degrees of freedom AIC: 150.44

Number of Fisher Scoring iterations: 4

Gamma Regression

Gamma responses: $y \sim \operatorname{Gamma}(a, \lambda)$ with density function

$$
f(y \mid a, \lambda)=\exp (-\lambda y) \lambda^{a} y^{a-1} \frac{1}{\Gamma(a)}, \quad a, \lambda, y>0
$$

with $\mathrm{E}(y)=a / \lambda$ and $\operatorname{var}(y)=a / \lambda^{2}$.
Mean parametrization needed!

Gamma Regression

Reparametrization: define $\mu=\nu / \lambda, \nu=a$

$$
\begin{aligned}
f(y \mid a, \lambda) & =\exp (-\lambda y) \lambda^{a} y^{a-1} \frac{1}{\Gamma(a)} \\
f(y \mid \mu, \nu) & =\exp \left(-\frac{\nu}{\mu} y\right)\left(\frac{\nu}{\mu}\right)^{\nu} y^{\nu-1} \frac{1}{\Gamma(\nu)} \\
& =\exp \left(\frac{y\left(-\frac{1}{\mu}\right)-\log \mu}{1 / \nu}+\nu \log \nu+(\nu-1) \log y-\log \Gamma(\nu)\right)
\end{aligned}
$$

LEF member with:
$\theta=-1 / \mu, \quad b(\theta)=\log \mu=-\log (-\theta), \quad$ and $\phi=1 / \nu$.

Gamma Regression

$\operatorname{Gamma}(\mu, \nu)$ belongs to the LEF with

$$
\theta=-1 / \mu, \quad b(\theta)=\log \mu=-\log (-\theta), \quad \phi=1 / \nu
$$

Thus,

$$
\begin{aligned}
\mathrm{E}(y) & =b^{\prime}(\theta)=-\frac{-1}{-\theta}=-\frac{1}{\theta}=\mu \\
\operatorname{var}(y) & =\phi b^{\prime \prime}(\theta)=\phi \frac{1}{\theta^{2}}=\phi \mu^{2}
\end{aligned}
$$

with dispersion $\phi=1 / \nu$ and variance function $V(\mu)=\mu^{2}$.
Coefficient of variation:

$$
\frac{\sqrt{\operatorname{var}\left(y_{i}\right)}}{\mathrm{E}\left(y_{i}\right)}=\frac{\sqrt{\phi \mu_{i}^{2}}}{\mu_{i}}=\sqrt{\phi}=\text { constant for all } i=1, \ldots, n .
$$

Gamma Regression

Form of the Gamma (μ, ν) density function is determined by ν. Functions in \mathbb{R} are based on shape $(=1 / \phi)$ and scale $(=\phi \mu)$
> y <- (1:400)/100
$>$ shape <- 0.9
> scale <- 1.5
> plot(y, dgamma(y, shape=shape, scale=scale))
> mean(rgamma(10000, shape=shape, scale=scale)); shape*scale
[1] 1.374609
[1] 1.35
> var(rgamma(10000, shape=shape, scale=scale)); shape*(scale) ^2
[1] 2.001009
[1] 2.025

Gamma Regression

Gamma distributions are generally skewed to the right.
shape <1 (0.9 left)

shape >1 (1.5 right)

Special cases: $\nu=1 / \phi=1$ (exponential) and $\nu \rightarrow \infty$ (normal)

Gamma Regression: Link Function

What's an appropriate link function?

- Canonical link function: $\eta=\theta=-\frac{1}{\mu}$ (inverse-link). Since we need $\mu>0$ we need $\eta<0$ giving complicated restriction on $\boldsymbol{\beta}$.
- Thus, the log-link is often used without restrictions on η, i.e.

$$
\log \mu=\eta
$$

Gamma Regression: Deviance

Assume that $y_{i} \sim \operatorname{Gamma}\left(\mu_{i}, \phi\right)$ (independent) and $\log \mu_{i}=\eta_{i}$. Then

$$
\begin{aligned}
& \ell(\hat{\boldsymbol{\mu}}, \phi \mid \mathbf{y})=\sum_{i=1}^{n}\left\{\frac{y_{i}\left(-\frac{1}{\hat{\mu}_{i}}\right)-\log \hat{\mu}_{i}}{\phi}+c\left(y_{i}, \phi\right)\right\} \\
& \ell(\mathbf{y}, \phi \mid \mathbf{y})=\sum_{i=1}^{n}\left\{\frac{y_{i}\left(-\frac{1}{y_{i}}\right)-\log y_{i}}{\phi}+c\left(y_{i}, \phi\right)\right\}
\end{aligned}
$$

and thus the scaled deviance equals

$$
\begin{aligned}
\frac{1}{\phi} D(\mathbf{y}, \hat{\mu}) & =-\frac{2}{\phi} \sum_{i=1}^{n}\left\{\left(-\frac{y_{i}}{\hat{\mu}_{i}}-\log \hat{\mu}_{i}\right)-\left(-1-\log y_{i}\right)\right\} \\
& =-\frac{2}{\phi} \sum_{i=1}^{n}\left\{\log \frac{y_{i}}{\hat{\mu}_{i}}-\frac{y_{i}-\hat{\mu}_{i}}{\hat{\mu}_{i}}\right\}
\end{aligned}
$$

Gamma Regression: Dispersion

Method of moments is used to estimate the dispersion parameter. We have a sample y_{1}, \ldots, y_{n} with

$$
\mathrm{E}\left(y_{i}\right)=\mu_{i} \quad \text { and } \quad \operatorname{var}\left(y_{i}\right)=\phi \mu_{i}^{2}, \quad i=1, \ldots, n
$$

Consider $z_{i}=y_{i} / \mu_{i}$ with $\mathrm{E}\left(z_{i}\right)=1$ and $\operatorname{var}\left(z_{i}\right)=\phi\left(z_{i}\right.$ are iid $)$. Thus,

$$
\hat{\phi}=\frac{1}{n-p} \sum_{i=1}^{n}\left(\frac{y_{i}}{\hat{\mu}_{i}}-1\right)^{2}=\frac{1}{n-p} \sum_{i=1}^{n}\left(\frac{y_{i}-\hat{\mu}_{i}}{\hat{\mu}_{i}}\right)^{2}
$$

which is equivalent to the mean Pearson statistic.

The glm Function: Example Life Expectancy

We now assume that life expectancy follows a gamma model.
> gmod<-glm(life.expectancy~urban+log(physicians)+temperature,
$+\quad$ family=Gamma(link="log"))
$>$ summary (gmod)

Coefficients:

		Std. Er	t value		
(ercept)	4.	0.0269393	155.981	$<2 \mathrm{e}-16$	
urban	0.1110928	0.0380990	2.916	0.00412	
\log (physicians)	0.0543425	0.0059186	9.182	. $61 \mathrm{e}-16$	
temperature	-0.0002702	0.0008527	-0.317	0.75180	

Signif. codes: $0{ }^{\prime} * * * ’ 0.001$ '**' $0.01^{\prime} *$ ' 0.05 '.' 0.1 ' ' 1
Given urban and log (physicians) are already in the model, temperature seems to be again irrelevant as an additional predictor.

The glm Function: Example Life Expectancy

The next part of the output contains information about:
(Dispersion parameter for Gamma family taken to be 0.005201521)
The dispersion estimate $\hat{\phi}$ is the mean Pearson statistic
> \# direct from summary(.)
> summary (gmod)\$dispersion
[1] 0.005201521
> \# or explicitly calculated as
> sum(residuals(gmod, type="pearson")^2)/gmod\$df.resid
[1] 0.005201521
giving the estimated response variance as $\widehat{\operatorname{var}}\left(y_{i}\right)=0.0052 V\left(\hat{\mu}_{i}\right)$.

The glm Function: Example Life Expectancy

(Dispersion parameter for Gamma family taken to be 0.005201521)

```
    Null deviance: 2.42969 on 145 degrees of freedom
Residual deviance: 0.76096 on 142 degrees of freedom
    (23 observations deleted due to missingness)
AIC: 896.14
Number of Fisher Scoring iterations: 4
```

For the scaled deviance we get

$$
\frac{1}{\hat{\phi}} D(\mathbf{y}, \hat{\mu})=\frac{0.76096}{0.00520}=146.2957
$$

which is pretty close its associated degrees of freedom 142.

The glm Function: Example Life Expectancy

Residual Deviance Test:

Model $(*): y_{i} \stackrel{i n d}{\sim} \operatorname{Gamma}\left(\mu_{i}=\exp \left(\eta_{i}\right), \phi\right), i=1, \ldots, n$.
Reject model ($*$) at level α if

$$
\frac{1}{\phi} D(\mathbf{y}, \hat{\boldsymbol{\mu}})>\chi_{1-\alpha, n-p}^{2}
$$

Since the dispersion ϕ is unknown, we use its estimate $\hat{\phi}$ instead and reject model $(*)$ if

$$
\frac{1}{\hat{\phi}} D(\mathbf{y}, \hat{\mu})>\chi_{1-\alpha, n-p}^{2}
$$

> 1-pchisq(deviance(gmod)/summary(gmod)\$disp, gmod\$df.resid)
[1] 0.3852 \# p-value

The glm Function: Example Life Expectancy

Partial Deviance Test:

Consider the model $g(\boldsymbol{\mu})=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}$ with $\operatorname{dim}\left(\boldsymbol{\beta}_{1}\right)=p_{1}$, $\operatorname{dim}\left(\boldsymbol{\beta}_{2}\right)=p_{2}$ and $p=p_{1}+p_{2}$. Now calculate

- $\hat{\boldsymbol{\mu}}_{1}=g^{-1}\left(\mathbf{X}_{1} \hat{\boldsymbol{\beta}}_{1}\right)$: the fitted means under the reduced model with design \mathbf{X}_{1} only (corresponds to $H_{0}: \boldsymbol{\beta}_{2}=\mathbf{0}$)
- $\hat{\boldsymbol{\mu}}_{2}=g^{-1}\left(\mathbf{X}_{1} \hat{\boldsymbol{\beta}}_{1}+\mathbf{X}_{2} \hat{\boldsymbol{\beta}}_{2}\right)$: the fitted means under the full model with design \mathbf{X}_{1} and \mathbf{X}_{2}
- $\hat{\phi}=X^{2} /(n-p)$: dispersion estimate under the full model

Reject H_{0} at level α if

$$
\frac{\left(D\left(\mathbf{y}, \hat{\boldsymbol{\mu}}_{1}\right)-D\left(\mathbf{y}, \hat{\boldsymbol{\mu}}_{2}\right)\right) / p_{2}}{\hat{\phi}}>F_{1-\alpha, p_{2}, n-p}
$$

The glm Function: Example Life Expectancy

Reject $H_{0}: \beta_{\text {temp }}=0$ if

$$
\frac{\left(D\left(\mathbf{y}, \hat{\mu}_{1}\right)-D\left(\mathbf{y}, \hat{\mu}_{2}\right)\right) / 1}{\hat{\phi}}>F_{1-\alpha, 1, n-p}
$$

> (dev2 <- deviance(gmod))
[1] 0.7609569
> (hatphi <- sum(residuals(gmod, type="pearson")^2)/gmod\$df.r)
[1] 0.005201521
> gmod1 <- glm(life.exp ~ urban + log(physicians),

+ family=Gamma(link="log"))
> (dev1 <- deviance(gmod1))
[1] 0.761484
$>(F<-((\operatorname{dev} 1-\operatorname{dev} 2) / 1) /$ hatphi $)$
[1] 0.1013431
> 1-pf(F, 1, gmod\$df.r)
[1] 0.7506915

The glm Function: Example Life Expectancy

ANalysis Of deViAnce (ANOVA):

Much easier to use again anova():
> anova(gmod, test="F")
Analysis of Deviance Table

Model: Gamma, link: log
Response: life.expectancy
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev F $\operatorname{Pr}(>F)$

NULL			145	2.42969		
urban	1	1.09627	144	1.33342	210.76	<2e-16
\log (physicians)	1	0.57194	143	0.76148	109.96	<2e-16
temperature	1	0.00053	142	0.76096	0.10	0.7507

Signif. codes:		**' 0.0	, 0.	'*' 0.05	'.'	1

The glm Function: Example Life Expectancy

Some Diagnostic Plots:

> plot(gmod1\$y, fitted(gmod1), xlim=c $(45,85), y l i m=c(45,85))$
> abline(0,1)
> plot(fitted(gmod1), residuals(gmod1))

The glm Function: Example Life Expectancy

Something about the usage of predict()

```
predict(object, newdata = NULL,
    type = c("link", "response", "terms"),
    se.fit = FALSE, dispersion = NULL, ...)
```

- newdata: data frame with predictor values for which to predict.
- type: default is on the scale of the linear predictors. The "terms" option returns a matrix giving the fitted values of each term in the model formula on the linear predictor scale.
- se.fit: logical indicator if standard errors are required.
- dispersion: parameter value used in computing standard errors (if omitted, that returned by summary).

The glm Function: Example Life Expectancy

Predict life expectancy for urbanization rates of 37,56 , and 74% (the empirical 25,50 , and 75% data quartiles).
> u.q <- quantile(urban, probs $=$ seq($0.25,0.75,0.25$),

+ na.rm="TRUE")
> new <- expand.grid(physicians=seq(0.5, 8, 0.2), urban = u.q)
> p <- predict(gmod1, newdata=new, type="response")
> plot(new\$physicians, p, xlab="Physicians/1000 people",
+ ylab="Life Expectancy in Years")

The glm Function: Example Life Expectancy

The glm Function: Example Life Expectancy

Remarks about other predictions:
> \# predict linear predictor \hat\eta_i
> pl <- predict(gmod1, newdata=new, type="link")

1	2	3
4.202555	4.221124	4.234993

> \# predict each term in the linear predictor separately
> pt <- predict(gmod1, newdata=new, type="terms") urban log(physicians)
$1-0.01994721-0.023863823$
$2-0.01994721-0.005295193$
$3-0.01994721 \quad 0.008573900$
:
attr(,"constant")
[1] 4.246366
> attr(pt, "const") + pt[,"urban"] + pt[,"log(physicians)"]

4.2025554 .2211244 .234993 ...

Logistic Regression

Response Variables $y_{i}, i=1, \ldots, n$:

- ungrouped: each variable y_{i} can take one of two values, say success/failure (or $0 / 1$),
- grouped: the variable $m_{i} y_{i}$ is the number of successes in a given number of m_{i} trials; y_{i} is the relative success frequency, $m_{i} y_{i}$ denotes the absolute success frequency.

Both situations correspond to a Binomial $\left(m_{i}, \pi_{i}\right)$ model, where in the ungrouped case we have $m_{i}=1$.

Question: Is the binomial distribution also a member of the linear exponential family (LEF)?

Logistic Regression: LEF Member

Standardized Binomial: $m y \sim \operatorname{Binomial}(m, \pi)$ (m known)

$$
\begin{aligned}
f(y \mid m, \pi) & =\operatorname{Pr}(Y=y)=\operatorname{Pr}(m Y=m y)=\binom{m}{m y} \pi^{m y}(1-\pi)^{m-m y} \\
& =\exp \left(\log \binom{m}{m y}+m y \log \pi+m(1-y) \log (1-\pi)\right) \\
& =\exp \left(\frac{y \log \frac{\pi}{1-\pi}-\log \frac{1}{1-\pi}}{1 / m}+\log \binom{m}{m y}\right), \quad y=0, \frac{1}{m}, \frac{2}{m}, \ldots, 1 .
\end{aligned}
$$

If m is another unknown parameter, this is no longer a LEF member!

Logistic Regression: LEF Member

Standardized Binomial: my $\sim \operatorname{Binomial}(m, \pi)$ (m known)
$f(y \mid m, \pi)=\exp \left(\frac{y \log \frac{\pi}{1-\pi}-\log \frac{1}{1-\pi}}{1 / m}+\log \binom{m}{m y}\right), \quad y=0, \frac{1}{m}, \frac{2}{m}, \ldots, 1$.
Let $\theta=\log \frac{\pi}{1-\pi},\left(\pi=e^{\theta} /\left(1+e^{\theta}\right)\right)$ and $\phi=1$ then we have identified another LEF member with
$a=\frac{1}{m}, \quad b(\theta)=\log \frac{1}{1-\pi}=\log (1+\exp (\theta)), \quad c(y, \phi)=\log \binom{m}{m y}$.

Notice: the dispersion parameter $\phi=1$ is known in this case and $a=1 / m$ is a weight and considered to be fixed!

Logistic Regression: Link

For a sample $m_{i} y_{i} \stackrel{i n d}{\sim} \operatorname{Binomial}\left(m_{i}, \pi_{i}\right), y_{i}=0,1 / m_{i}, \ldots, 1$, we have $\mathrm{E}\left(m_{i} y_{i}\right)=m_{i} \pi_{i}$ and $\operatorname{var}\left(m_{i} y_{i}\right)=m_{i} \pi_{i}\left(1-\pi_{i}\right)$ and thus

$$
\mathrm{E}\left(y_{i}\right)=\pi_{i}=: \mu_{i} \quad \text { and } \quad \operatorname{var}\left(y_{i}\right)=\frac{1}{m_{i}} \mu_{i}\left(1-\mu_{i}\right)
$$

with restriction $0<\mu_{i}<1$.
Canonical link $g\left(\mu_{i}\right)=b^{\prime-1}\left(\mu_{i}\right)=\theta_{i}$ is the logit link

$$
\begin{gathered}
\operatorname{logit}\left(\mu_{i}\right)=\log \frac{\mu_{i}}{1-\mu_{i}}=\log \frac{m_{i} \mu_{i}}{m_{i}-m_{i} \mu_{i}}=\theta_{i}=\eta_{i} \\
\Rightarrow \mu_{i}=\frac{\exp \left(\eta_{i}\right)}{1+\exp \left(\eta_{i}\right)}
\end{gathered}
$$

However, in principal any inverse of a continuous distribution function can be used as $g(\cdot)$.

Logistic Regression: Link

The name logit refers to the distribution function of a logistic distributed random variable with density function

$$
f(y \mid \mu, \tau)=\frac{\exp ((y-\mu) / \tau)}{\tau(1+\exp ((y-\mu) / \tau))^{2}}, \quad \mu \in \mathbb{R}, \tau>0
$$

for which $\mathrm{E}(y)=\mu$ and $\operatorname{var}(y)=\tau^{2} \pi^{2} / 3$ holds.
The density and the cdf of its standard form $(\mu=0, \tau=1)$ is

$$
f(y \mid 0,1)=\frac{\exp (y)}{(1+\exp (y))^{2}}, \quad y \in \mathbb{R}, \quad F(y \mid 0,1)=\frac{\exp (y)}{1+\exp (y)}
$$

for which $\mathrm{E}(y)=0$ and $\operatorname{var}(y)=\pi^{2} / 3$ holds.
$F(y \mid 0,1)$ corresponds to the inverse logit link.

Logistic Regression: Links

With $g^{-1}(\eta)=\Phi(\eta)$ we refer to a probit model. Logit- and probit link are both symmetric links.

Extreme value distribution:
Maximum

$$
F_{\max }(y)=\exp (-\exp (-y)), \quad y \in \mathbb{R}
$$

with $\mathrm{E}(y)=\gamma$ (Euler constant $\gamma=0.577216)$ and $\operatorname{var}(y)=\pi^{2} / 6$. The inverse of $F_{\max }(\cdot)$ results in the log-log link and equals

$$
g(\mu)=-\log (-\log (\mu))
$$

Logistic Regression: Links

Minimum

$$
F_{\min }(y)=1-F_{\max }(-y)=1-\exp (-\exp (y)), \quad y \in \mathbb{R}
$$

with $\mathrm{E}(y)=-\gamma$ and $\operatorname{var}(y)=\pi^{2} / 6$.
The inverse of $F_{\text {min }}(\cdot)$ is called complementary log-log link and equals $g(\mu)=\log (-\log (1-\mu))$.

Both extreme value distribution functions give asymmetric links.

Logistic Regression: Links

R allows for family=binomial to use several specifications of the link function: logit, probit, cauchit, as also log and cloglog.
> euler <- 0.577216
$>$ mu.logit <-function(eta) $1 /(1+\exp (-$ eta))
> mu.probit <-function(eta) pnorm(eta, 0, pi/sqrt(3))
$>$ mu.cloglog<-function(eta) 1-exp(-exp(-euler+eta/sqrt(2)))
> plot(mu.logit, (-4): 4, xlim $=c(-4,4)$, ylim $=c(0,1)$,
$+\quad$ xlab $=$ expression(eta),

+ $+\quad \mathrm{ylab}=$ expression(mu $==\mathrm{g}^{\wedge}-1$ * (eta)), lwd=2)
> curve(mu.probit, (-4):4, add = TRUE, lty = 2, lwd=2)
> curve(mu.cloglog, (-4):4, add = TRUE, lty = 3, lwd=2)
> legend(-4, 1, c("logit", "probit", "complementary log-log"),
$+\quad$ lty $=1: 3,1 w d=2)$

Logistic Regression: Links

Logistic Regression: Deviance

For $m_{i} y_{i} \sim \operatorname{Binomial}\left(m_{i}, \mu_{i}\right)$ (m_{i} known) we write the i th log-likelihood contribution as

$$
\log f\left(y_{i} \mid m_{i}, \mu_{i}\right)=m_{i} y_{i} \log \frac{\mu_{i}}{1-\mu_{i}}-m_{i} \log \frac{1}{1-\mu_{i}}+\log \binom{m_{i}}{m_{i} y_{i}}
$$

to get the sample (model and saturated) log-likelihood functions

$$
\begin{aligned}
& \ell(\hat{\boldsymbol{\mu}} \mid \mathbf{y})=\sum_{i=1}^{n}\left\{m_{i} y_{i} \log \frac{\hat{\mu}_{i}}{1-\hat{\mu}_{i}}-m_{i} \log \frac{1}{1-\hat{\mu}_{i}}+\log \binom{m_{i}}{m_{i} y_{i}}\right\} \\
& \ell(\mathbf{y} \mid \mathbf{y})=\sum_{i=1}^{n}\left\{m_{i} y_{i} \log \frac{y_{i}}{1-y_{i}}-m_{i} \log \frac{1}{1-y_{i}}+\log \binom{m_{i}}{m_{i} y_{i}}\right\} .
\end{aligned}
$$

Logistic Regression: Deviance

$$
\begin{aligned}
& \ell(\hat{\mu} \mid \mathbf{y})=\sum_{i=1}^{n}\left\{m_{i} y_{i} \log \frac{\hat{\mu}_{i}}{1-\hat{\mu}_{i}}-m_{i} \log \frac{1}{1-\hat{\mu}_{i}}+\log \binom{m_{i}}{m_{i} y_{i}}\right\} \\
& \ell(\mathbf{y} \mid \mathbf{y})=\sum_{i=1}^{n}\left\{m_{i} y_{i} \log \frac{y_{i}}{1-y_{i}}-m_{i} \log \frac{1}{1-y_{i}}+\log \binom{m_{i}}{m_{i} y_{i}}\right\} .
\end{aligned}
$$

Because of $\phi=1$ and $a_{i}=1 / m_{i}$ the resulting (scaled) deviance is

$$
\begin{aligned}
\frac{1}{\phi} D(\mathbf{y}, \hat{\mu}) & =-2 \sum_{i=1}^{n}\left\{m_{i} y_{i}\left(\log \frac{\hat{\mu}_{i}}{y_{i}}+\log \frac{1-y_{i}}{1-\hat{\mu}_{i}}\right)-m_{i} \log \frac{1-y_{i}}{1-\hat{\mu}_{i}}\right\} \\
& =2 \sum_{i=1}^{n} m_{i}\left\{\left(1-y_{i}\right) \log \frac{1-y_{i}}{1-\hat{\mu}_{i}}+y_{i} \log \frac{y_{i}}{\hat{\mu}_{i}}\right\}
\end{aligned}
$$

Notice: for $y_{i}=0$ or 1 independent of $\hat{\mu}_{i}$ (because $x \log x=0$ for $x=0)$ the respective term in the deviance component disappears.

Logistic Regression: Deviance

For binary data $y_{i} \in\{0,1\}\left(m_{i}=1\right.$ for all $\left.i\right)$ we get

$$
\ell\left(\mu_{i} \mid y_{i}\right)= \begin{cases}\log \left(1-\mu_{i}\right) & \text { if } y_{i}=0 \\ \log \mu_{i} & \text { if } y_{i}=1\end{cases}
$$

and

$$
d\left(y_{i}, \hat{\mu}_{i}\right)= \begin{cases}-2 \log \left(1-\hat{\mu}_{i}\right) & \text { if } y_{i}=0, \\ -2 \log \hat{\mu}_{i} & \text { if } y_{i}=1 .\end{cases}
$$

The deviance increment $d\left(y_{i}, \hat{\mu}_{i}\right)$ describes the fraction of a binary response of the maximized sample log-likelihood function

$$
\ell(\hat{\mu} \mid \mathbf{y})=\sum_{i=1}^{n} \ell\left(\hat{\mu}_{i} \mid y_{i}\right)=-\frac{1}{2} \sum_{i=1}^{n} d\left(y_{i}, \hat{\mu}_{i}\right) .
$$

Logistic Regression: Tolerance Distribution

Bioassay: experimental study based on binary responses, e.g. testing the effect of various concentrations in animal experiments.
Number of animals responding is considered as binomial response.
Example: Insecticide applied on groups (batches) of insects of known sizes. When applying a low dose to a group, then no insect will probably fall out. If a high dose is given to another group, many insects of this group will die.

If an insect dies or not when receiving a certain dosage depends on the tolerance of the animal. Insects with a low tolerance will rather die on a certain dose than any other with a high tolerance.

Logistic Regression: Tolerance Distribution

Assumption: the tolerance U of an insect is a random variable with density $f(u)$. Insects with tolerance $U<d_{i}$ will die.

Probability that an animal dies when receiving dose d_{i} is

$$
p_{i}=\operatorname{Pr}\left(U<d_{i}\right)=\int_{-\infty}^{d_{i}} f(u) d u .
$$

If $U \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, then

$$
p_{i}=\Phi\left(\frac{d_{i}-\mu}{\sigma}\right)
$$

With $\beta_{0}=-\mu / \sigma$ and $\beta_{1}=1 / \sigma$ this gives

$$
p_{i}=\Phi\left(\beta_{0}+\beta_{1} d_{i}\right) \quad \text { or } \quad \operatorname{probit}\left(p_{i}\right)=\Phi^{-1}\left(p_{i}\right)=\beta_{0}+\beta_{1} d_{i}
$$

i.e. a probit model for mortality p_{i} depending on the dose d_{i}.

Logistic Regression: Tolerance Distribution

If U follows a logistic (μ, τ) model then

$$
\begin{aligned}
p_{i} & =\operatorname{Pr}\left(U \leq d_{i}\right)=\int_{-\infty}^{d_{i}} \frac{\exp ((u-\mu) / \tau)}{\tau(1+\exp ((u-\mu) / \tau))^{2}} d u \\
& =\frac{\exp \left(\left(d_{i}-\mu\right) / \tau\right)}{1+\exp \left(\left(d_{i}-\mu\right) / \tau\right)} .
\end{aligned}
$$

With $\beta_{0}=-\mu / \tau$ and $\beta_{1}=1 / \tau$ we get

$$
p_{i}=\frac{\exp \left(\beta_{0}+\beta_{1} d_{i}\right)}{1+\exp \left(\beta_{0}+\beta_{1} d_{i}\right)} \quad \text { or } \quad \operatorname{logit}\left(p_{i}\right)=\beta_{0}+\beta_{1} d_{i}
$$

giving a logistic link model for p_{i}.

Logistic Regression: Tolerance Distribution

Example: Effect of poison given to the Tobacco Budworm.
Groups of 20 moths of both sex are exposed to various doses of a poison and the number of killed animals has been recorded.

UGA1435150

	Dose in $\mu \mathrm{g}$					
sex	1	2	4	8	16	32
male	1	4	9	13	18	20
female	0	2	6	10	12	16

Logistic Regression: Tolerance Distribution

Doses are powers of 2 . Thus, we use ldose $=\log _{2}$ (dose) as predictor variable.
> (ldose <- rep(0:5, 2)) [1] 012345012345
> (sex <- factor (rep(c("M", "F"), c(6, 6)))) [1] M M M M M M F F F F F F
Levels: F M
$>$ (dead $<-c(1,4,9,13,18,20,0,2,6,10,12,16))$
$[1]$
1 4

Logistic Regression: Tolerance Distribution

- Specification of binomial responses in R by means of a matrix SF (success/failure), in which the first (second) column contains the number of successes (failures).
- Model describes the probability of success (the number of killed animals in our case) at a certain dosage.
$>(S F<-$ cbind(dead, alive = 20-dead))
dead alive
[1,] 19
$[2] \quad$,
$[12] \quad 16 \quad$,

Logistic Regression: Tolerance Distribution

> summary (budworm.lg <- glm(SF ~ sex*ldose, family = binomial))

Coefficients:

	Estimate	Std. Error z value $\operatorname{Pr}(>\|z\|)$			
(Intercept)	-2.9935	0.5527	-5.416	$6.09 \mathrm{e}-08$	$* * *$
sexM	0.1750	0.7783	0.225	0.822	
ldose	0.9060	0.1671	5.422	$5.89 \mathrm{e}-08$	$* * *$
sexM:ldose	0.3529	0.2700	1.307	0.191	

Signif. codes: $0{ }^{\prime} * * *$ ' $0.001^{\prime} * *$ ’ $0.01^{\prime} *$ ' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 124.8756 on 11 degrees of freedom Residual deviance: 4.9937 on 8 degrees of freedom AIC: 43.104

Logistic Regression: Tolerance Distribution

> summary (budworm.lg <- glm(SF ~ sex*ldose, family = binomial))
Here, sex*ldose expands to $1+$ sex + ldose + sex:ldose
Thus, it specifies sex-specific submodels of the form:
If sex=female: $\eta=\beta_{0}+\beta_{\text {Idose }}$ ldose
If sex=male: $\eta=\left(\beta_{0}+\beta_{\text {sexM }}\right)+\left(\beta_{\text {Idose }}+\beta_{\text {sexM:Idose }}\right)$ ldose
Therefore, this interaction term in the model additionally allows for sex-specific slopes.

Logistic Regression: Tolerance Distribution

Alternative model specification by numerical vector with elements s_{i} / m_{i}, where m_{i} is the number of trials and s_{i} the number of successes. The values m_{i} are specified using weights.
> summary (glm(dead/20 ~ sex*ldose, family = binomial,
$+\quad$ weights=rep $(20,12))$)
Coefficients:

	Estimate	Std. Error z value $\operatorname{Pr}(>\|\mathrm{z}\|)$			
(Intercept)	-2.9935	0.5527	-5.416	$6.09 \mathrm{e}-08$	$* * *$
sexM	0.1750	0.7783	0.225	0.822	
ldose	0.9060	0.1671	5.422	$5.89 \mathrm{e}-08$	$* * *$
sexM: ldose	0.3529	0.2700	1.307	0.191	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Logistic Regression: Tolerance Distribution

Result indicates a significant slope of ldose for females.
sexM:ldose represents (not significant) a larger slope for males.
First level of sex relates to female moths ("F" before "M") described by the intercept.
sexM is the (not significant) difference of the sex-specific intercepts.

```
> plot(c(1,32), c(0,1), type="n", xlab="dose", log="x")
> text(2^ldose, dead/20, as.character(sex))
> ld <- seq(0, 5, 0.1), l <- length(ld)
> lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,
+ sex=factor(rep("M",l,levels=levels(sex))),type="response"))
> lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,
+ sex=factor(rep("F",l,levels=levels(sex))),type="response"))
```


Logistic Regression: Tolerance Distribution

Logistic Regression: Tolerance Distribution

sexM describes the difference at dose $1 \mu \mathrm{~g}\left(\log _{2}(\right.$ Dose $\left.)=0\right)$ and seems to be irrelevant.
If we are interested in difference at dose $8 \mu \mathrm{~g}\left(\log _{2}(\right.$ Dose $\left.)=3\right)$, we get
> summary(budworm.lg8 <- update(budworm.lg, .~sex*I(ldose-3)))
Coefficients:

Estimate Std. Error	z value	$\operatorname{Pr}(>\|z\|)$		
-0.2754	0.2305	-1.195	0.23215	
1.2337	0.3770	3.273	0.00107	$* *$
0.9060	0.1671	5.422	$5.89 \mathrm{e}-08$	$* * *$
0.3529	0.2700	1.307	0.19117	

Signif. codes: $0{ }^{(* * * '} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' 1

Logistic Regression: Tolerance Distribution

> anova(budworm.lg, test = "Chisq")

NULL			11	124.876		
sex	1	6.077	10	118.799	0.0137	*
ldose	1	112.042	9	6.757	<2e-16	***
sex:ldose	1	1.763	8	4.994	0.1842	

Signif. codes: $0{ }^{\prime} * *$				0.01 '*'	0.05	0.1

Significant sex-difference at dose $8 \mu \mathrm{~g}$. Model fits nicely (deviance 5 at $\mathrm{df}=8$).
Confirmed by the analysis of deviance.
We resign interactions.

Logistic Regression: Tolerance Distribution

Quadratic ldose term not necessary.
> anova(update(budworm.lg, .~.+ sex*I(ldose^2)), test="Chisq")

	Df	Deviance Resid.	Df	Resid. Dev	$\operatorname{Pr}(>C h i)$
NULL			11	124.876	
sex	1	6.077	10	118.799	$0.0137 *$
ldose	1	112.042	9	6.757	$<2 e-16 * * *$
I(ldose^2)	1	0.907	8	5.851	0.3410
sex:ldose	1	1.240	7	4.611	0.2655
sex:I(ldose^2)	1	1.439	6	3.172	0.2303

Signif. codes: $0{ }^{(* * * '} 0.001$ '**' 0.01 ' $*$ ' 0.05 '.' 0.1 ' ' 1
Analysis recommends a model with 2 parallel lines on the predictor- (logit)-axis (1 for each sex).

Logistic Regression: Tolerance Distribution

Estimate dose that guarantees a certain mortality: first reparameterize model, such that each sex has its own intercept.
> summary(budworm.lg0<-glm(SF~sex+ldose-1, family=binomial))
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

sexF	-3.4732	0.4685	-7.413	$1.23 \mathrm{e}-13$	$* * *$
sexM	-2.3724	0.3855	-6.154	$7.56 \mathrm{e}-10$	$* * *$
ldose	1.0642	0.1311	8.119	$4.70 \mathrm{e}-16$	$* * *$

Signif. codes: $0{ }^{(* * * '} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' 1
Null deviance: 126.2269 on 12 degrees of freedom Residual deviance: 6.7571 on 9 degrees of freedom AIC: 42.867

Logistic Regression: Tolerance Distribution

ξ_{p} is the value of $\log _{2}$ (dose) inducing mortality p.
$2^{\xi_{0} .5}$ is the $\mathbf{5 0 \%}$ lethal dose (LD50) and using a link $g(p)=\beta_{0}+\beta_{1} \xi_{p}$ we get

$$
\xi_{p}=\frac{g(p)-\beta_{0}}{\beta_{1}} .
$$

Dose ξ_{p} depends on $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}\right)^{\top}$, thus $\xi_{p}=\xi_{p}(\boldsymbol{\beta})$.
Replace $\boldsymbol{\beta}$ by $\hat{\boldsymbol{\beta}}$ yields estimator $\hat{\xi}_{p}=\xi_{p}(\hat{\boldsymbol{\beta}})$ with property (linear approximation)

$$
\hat{\xi}_{p} \approx \xi_{p}+(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\top} \frac{\partial \xi_{p}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} .
$$

Because $\mathrm{E}(\hat{\boldsymbol{\beta}}) \approx \boldsymbol{\beta}$, we have $\mathrm{E}\left(\hat{\xi}_{p}\right) \approx \xi_{p}$.

Logistic Regression: Tolerance Distribution

Moreover, the delta method gives

$$
\operatorname{var}\left(\hat{\xi}_{p}\right)=\frac{\partial \xi_{p}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}^{\top}} \operatorname{var}(\hat{\boldsymbol{\beta}}) \frac{\partial \xi_{p}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}
$$

where

$$
\frac{\partial \xi_{p}}{\partial \beta_{0}}=-\frac{1}{\beta_{1}}, \quad \frac{\partial \xi_{p}}{\partial \beta_{1}}=-\frac{g(p)-\beta_{0}}{\beta_{1}^{2}}=-\frac{\xi_{p}}{\beta_{1}} .
$$

Function dose.p from MASS gives for female moths:
> require(MASS)
> dose.p(budworm.lg0, $c f=c(1,3), p=(1: 3) / 4)$ \# females Dose SE

$$
\begin{aligned}
& p=0.25: 2.231
\end{aligned} 0.2499
$$

Logistic Regression: Tolerance Distribution

For male moths we get:
> dose.p(budworm.lg0, cf $=c(2,3), \mathrm{p}=(1: 3) / 4)$ \# males Dose SE
$\mathrm{p}=0.25: 1.1970 .2635$
$\mathrm{p}=0.50: 2.2290 .2260$
$\mathrm{p}=0.75$: 3.2620 .2550
An estimated dose of $\log _{2}($ dose $)=3.264$, or dose $=9.60$, is necessary to kill 50% of the female moths, but only dose $=4.69$ for 50% of the male moths.

Logistic Regression: Tolerance Distribution

Alternative probit model: gives very similar results.
E.g., for female moths we get
> dose.p(update(budworm.lg0, family=binomial(link=probit)),
$+\quad c f=c(1,3), p=(1: 3) / 4)$
Dose SE
$p=0.25: 2.1910 .2384$
$p=0.50: 3.2580 .2241$
$p=0.75: 4.3240 .2669$

Logistic Regression: Parameter Interpretation

Assume that the mean of a binary response depends on a two-level factor $x \in\{0,1\}$.

Cell probabilities:

$$
\begin{array}{c|cc}
& x=1 & x=0 \\
\hline y=1 & \pi_{1} & \pi_{0} \\
y=0 & 1-\pi_{1} & 1-\pi_{0}
\end{array}
$$

For $x=1$, the odds that $y=1$ occurs and not $y=0$ is

$$
\pi_{1} /\left(1-\pi_{1}\right)
$$

Its log-transformation

$$
\log \frac{\pi_{1}}{1-\pi_{1}}=\operatorname{logit}\left(\pi_{1}\right)
$$

is called log-odds or Logit.

Logistic Regression: Parameter Interpretation

The ratio of the odds for $x=1$ and the one for $x=0$ is called odds-ratio

$$
\psi=\frac{\pi_{1} /\left(1-\pi_{1}\right)}{\pi_{0} /\left(1-\pi_{0}\right)}
$$

Its log-transformation is the log-odds ratio or the logit difference

$$
\log \psi=\log \frac{\pi_{1} /\left(1-\pi_{1}\right)}{\pi_{0} /\left(1-\pi_{0}\right)}=\operatorname{logit}\left(\pi_{1}\right)-\operatorname{logit}\left(\pi_{0}\right)
$$

Logistic Regression: Parameter Interpretation

Let $\mu(x)=\operatorname{Pr}(y=1 \mid x)$ and $1-\mu(x)=\operatorname{Pr}(y=0 \mid x), x \in\{0,1\}$. The model

$$
\log \frac{\mu(x)}{1-\mu(x)}=\beta_{0}+\beta_{1} x
$$

gives probabilities

	$x=1$	$x=0$
$y=1$	$\mu(1)=\frac{\exp \left(\beta_{0}+\beta_{1}\right)}{1+\exp \left(\beta_{0}+\beta_{1}\right)}$	$\mu(0)=\frac{\exp \left(\beta_{0}\right)}{1+\exp \left(\beta_{0}\right)}$
$y=0$	$1-\mu(1)=\frac{1}{1+\exp \left(\beta_{0}+\beta_{1}\right)}$	$1-\mu(0)=\frac{1}{1+\exp \left(\beta_{0}\right)}$

As log-odds ratio we get

$$
\log \psi=\log \frac{\mu(1) /(1-\mu(1))}{\mu(0) /(1-\mu(0))}=\log \frac{\exp \left(\beta_{0}+\beta_{1}\right)}{\exp \left(\beta_{0}\right)}=\beta_{1}
$$

Logistic Regression: Parameter Interpretation

For a general predictor x with a respective model, the odds are

$$
\frac{\operatorname{Pr}(y=1 \mid x)}{\operatorname{Pr}(y=0 \mid x)}=\frac{\mu(x)}{1-\mu(x)}=\exp \left(\beta_{0}+\beta_{1} x\right)=\exp \left(\beta_{0}\right) \exp \left(\beta_{1}\right)^{x} .
$$

Interpretation: for a unit change in x, the odds of $y=1$ multiply by $\exp \left(\beta_{1}\right)$.

Logistic Regression: Parameter Interpretation

Remission Example: Injection treatment of 27 cancer patients should decay the carcinoma. The response measures whether a patient achieved remission.

Most important explanatory variable LI (labeling index) describes the cell activity after treatment.

For $n=14$ different LI values, the response $m_{i} y_{i}$ is the number of successful remissions at m_{i} patients all with labeling index LI_{i} :

LI_{i}	m_{i}	$m_{i} y_{i}$	LI_{i}	m_{i}	$m_{i} y_{i}$	LI_{i}	m_{i}	$m_{i} y_{i}$
8	2	0	18	1	1	28	1	1
10	2	0	20	3	2	32	1	0
12	3	0	22	2	1	34	1	1
14	3	0	24	1	0	38	3	2
16	3	0	26	1	1			

Logistic Regression：Parameter Interpretation

Assumption：m_{i} patients in the LI_{i} group are homogenous，i．e．

```
m}\mp@subsup{y}{i}{}\stackrel{ind}{~}\operatorname{Binomial}(\mp@subsup{m}{i}{},\mp@subsup{\mu}{i}{}),\quad\mathrm{ with }\operatorname{log}\frac{\mp@subsup{\mu}{i}{}}{1-\mp@subsup{\mu}{i}{}}=\mp@subsup{\beta}{0}{}+\mp@subsup{\beta}{1}{}\mp@subsup{\textrm{LI}}{i}{}
> li <- c(seq(8, 28, 2), 32, 34, 38)
> total <-c(2, 2, 3, 3, 3, 1, 3, 2, 1, 1, 1, 1, 1, 3)
> back <-c(0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 1, 0, 1, 2)
> SF <- cbind(back, nonback = total - back)
> summary(carcinoma <- glm(SF ~ li, family=binomial))
```

Coefficients：
Estimate Std．Error z value $\operatorname{Pr}(>|z|)$

（Intercept）	-3.7771	1.3786	-2.74	$0.0061 * *$
li	0.1449	0.0593	2.44	$0.0146 *$

ーーー
Null deviance： 23.961 on 13 degrees of freedom Residual deviance： 15.662 on 12 degrees of freedom AIC： 24.29

Logistic Regression: Parameter Interpretation

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

| (Intercept) | -3.7771 | 1.3786 | -2.74 | 0.0061 |
| :--- | ---: | ---: | ---: | ---: | **

Interpretation:

- If LI increases by 1 unit, the odds for remission multiplies with $\exp (0.145)=1.156$ (increases by $15.6 \%)$.
- Remission prob. is $1 / 2$ if $\hat{\eta}=0$, i.e. if $\mathrm{LI}=-\hat{\beta}_{0} / \hat{\beta}_{1}=26.07$.
- At the mean LI-value, $\sum_{i} \mathrm{LI}_{i} m_{i} / \sum_{i} m_{i}=20.07$, the linear predictor is $\hat{\beta}_{0}+\hat{\beta}_{1} 20.07=-0.8691$ (corresponds with 29.54%). There are 9 successes from 27 patients observed, i.e. 33.33%.

Logistic Regression: Parameter Interpretation

Coefficients:

	Estimate	Std. Error z	value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-3.7771	1.3786	-2.74	0.0061	$* *$
li	0.1449	0.0593	2.44	0.0146	$*$

Interpretation:

- Logistic regression curve: $\mu(\eta)=e^{\eta} /\left(1+e^{\eta}\right)$ thus $\partial \mu(x) / \partial x=\beta_{1} \mu(x)(1-\mu(x))$. Largest ascent in $\mu(x)=1 / 2$, i.e. in $\mathrm{LI}=26.07$, which is $\hat{\beta}_{1} / 4=0.0362$.
- Question: does remission significantly depend on the LI-value? The p-value of 1.46% (Wald test) shows evidence for this.

Logistic Regression: Parameter Interpretation

Coefficients:

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-3.7771	1.3786	-2.74	0.0061	$* *$
li	0.1449	0.0593	2.44	$0.0146 *$	

Null deviance: 23.961 on 13 degrees of freedom Residual deviance: 15.662 on 12 degrees of freedom AIC: 24.29

Interpretation:

- For an iid random sample model the (NULL) Deviance is 23.96 with $d f=13$. The deviance difference is 8.30 with associated loss of $d f=1$ corresponds to $\chi_{1 ; 1-\alpha}^{2}$ quantile with $\alpha=0.004$ (even more significant as Wald test).

Significant (positive) association between LI and remission.

Logistic Regression: Parameter Interpretation

Simpler with:
> anova(carcinoma, test="Chisq")

	Df	Deviance Resid.	Df	Resid. Dev	$\operatorname{Pr}(>\mathrm{Chi})$
NULL			13	23.96	
li	1	8.299	12	15.66	$0.00397 * *$

Signif. codes: $0{ }^{\prime} * * * ’ 0.001$ ' $* *$ ' 0.01 ' $*$ ' 0.05 '.' 0.1 ' ' 1

Logistic Regression: Parameter Interpretation

Model with each patient remission as Bernoulli variable yields the same coefficients, but different values for the deviance and the degrees of freedom.
> index <- rep.int(li, times=total)
$>\mathrm{B}<-\mathrm{C}(0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,1,0,1,1,1,0)$
> summary (carcinomaB <- glm(B ~ index, family=binomial))

Coefficients:

	Estimate	Std. Error z	value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	-3.7771	1.3786	-2.74	0.0061	$* *$
index	0.1449	0.0593	2.44	0.0146	$*$

Null deviance: 34.372 on 26 degrees of freedom Residual deviance: 26.073 on 25 degrees of freedom AIC: 30.07

Logistic Regression: Parameter Interpretation

Again, the deviance difference is the same as before:
> anova(carcinomaB, test="Chisq")

	Df	Deviance Resid.	Df	Resid. Dev	$\operatorname{Pr}(>\mathrm{Chi})$	
NULL			26	34.37		
index	1	8.299	25	26.07	0.00397	$* *$

Signif. codes: $0{ }^{(* * * ’} 0.001$ '**’ 0.01 '*’ 0.05 '.' 0.1 ' ' 1
Notice that the probability of remission $(y=1)$ is modeled again.
Because all $m_{i}=1$ in case of Bernoullis, we do not need to explicitly specify weights.

Poisson Regression: Counts

Binomial responses: relative or absolute frequencies.
Poisson responses: counts.
Assumption: mean equals variance, i.e. $\mathrm{E}\left(y_{i}\right)=\mu_{i}=\operatorname{var}\left(y_{i}\right)$.
Is the Poisson probability function a member of the linear exponential family (LEF)?

Poisson Regression: Counts

$y \sim \operatorname{Poisson}(\mu), y=0,1,2, \ldots$, mean $\mu>0$:

$$
f(y \mid \mu)=\frac{\mu^{y}}{y!} e^{-\mu}=\exp (y \log \mu-\mu-\log y!)
$$

Let $\theta=\log \mu$ and $\phi=1$, then this is a member of the LEF with (weight $a=1$)

$$
b(\theta)=\exp (\theta), \quad c(y, \phi)=-\log y!
$$

Canonical link is the log-link. Dispersion is known $(\phi=1)$. Moreover,

$$
\begin{aligned}
\mathrm{E}(y) & =b^{\prime}(\theta)=\exp (\theta)=\mu \\
\operatorname{var}(y) & =b^{\prime \prime}(\theta)=\exp (\theta)=\mu
\end{aligned}
$$

Poisson Regression: Counts

Log-linear model for counts:

$$
y_{i} \stackrel{\text { ind }}{\sim} \operatorname{Poisson}\left(\mu_{i}\right) \quad \text { with } \quad \log \left(\mu_{i}\right)=\eta_{i}
$$

The (scaled) deviance equals $(\phi=1)$

$$
D(\mathbf{y}, \hat{\boldsymbol{\mu}})=2 \sum_{i=1}^{n}\left\{y_{i} \log \frac{y_{i}}{\hat{\mu}_{i}}-\left(y_{i}-\hat{\mu}_{i}\right)\right\}
$$

If the model contains an intercept, this deviance simplifies to

$$
D(\mathbf{y}, \hat{\mu})=2 \sum_{i=1}^{n} y_{i} \log \frac{y_{i}}{\hat{\mu}_{i}} .
$$

Deviance contribution is zero for $y_{i}=0$ (independent of $\hat{\mu}_{i}$).

Poisson Regression: Counts

Example: Storing microorganisms (deep-frozen $-70^{\circ} \mathrm{C}$).
Bacterial concentration (counts in a fixed area) measured at initial freezing and then at 1, 2, 6, and 12 months afterwards.

time	0	1	2	6	12
count	31	26	19	15	20

Aim: model from which fractional recovery rates at specified times after freezing can be predicted.
Guess: some sort of exponential decay curve.
$>$ time <- $c(0,1,2,6,12)$
$>$ count $<-c(31,26,19,15,20)$
> plot(time, count, type="b", ylim=c(0, 40))
> plot(time, log(count), type="b", ylim=c (2, 4))

Poisson Regression: Counts

Poisson Regression: Counts

We have expected exponential decay (but last observation is even larger than the two before).

Probably some measurement error causes this behavior.
Possibly log(concentration) depends linearly on time?
Test, if observed curvature is relevant, by allowing the quadratic term time ${ }^{2}$ in the model.

First assumption, counts follow a normal distribution and satisfy a linear model in time and time ${ }^{2}$.

Poisson Regression: Counts

> summary (mo.lm <- lm(count ~ time + I(time~2)))

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|t\|)$			
(Intercept)	29.80042	1.88294	15.827	0.00397	$* *$
time	-4.61601	1.00878	-4.576	$0.04459 *$	
I (time 2$)$	0.31856	0.08049	3.958	0.05832.	

Signif. codes: $0{ }^{\prime} * * *$ ' $0.001^{\prime} * * ’ 0.01^{\prime} *$ ’ 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.438 on 2 degrees of freedom Multiple R-squared: 0.9252, Adjusted R-squared: 0.8503 F-statistic: 12.36 on 2 and 2 DF, p-value: 0.07483

```
> qqnorm(residuals(mo.lm), ylab="residuals", xlim=c ( \(-3,2\) ),
\(+\quad y \lim =c(-3,2), \operatorname{main}=" ")\)
> qqline(residuals(mo.lm))
```


Poisson Regression: Counts

Poisson Regression: Counts

Quadratic term seems relevant (p-value 0.058).
Q-Q Plot: points deviate from straight line \Rightarrow normal assumptions seems unrealistic.
\Rightarrow try Poisson model.
Usually Poisson-means are modeled on log-scale .
Is quadratic time effect still necessary in the model?

Poisson Regression: Counts

```
> summary(mo.PO <- glm(count ~ time+I(time^2), family=poisson))
```

Coefficients:

| | Estimate | Std. Error z value | $\operatorname{Pr}(>\|z\|)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 3.423818 | 0.149027 | 22.975 | $<2 \mathrm{e}-16 * * *$ |
| time | -0.221389 | 0.095623 | -2.315 | $0.0206 *$ |
| I (time~2) | 0.015527 | 0.007731 | 2.008 | $0.0446 *$ |

Null deviance: 7.0672 on 4 degrees of freedom
Residual deviance: 0.2793 on 2 degrees of freedom
AIC: 30.849
$>r<-$ residuals(mo.P0, type="pearson"); sum(r^2)
[1] 0.2745424

Under true model, deviance (0.2793) and $X^{2}=0.2745$ should correspond to about $d f=n-p=2$ (test on goodness-of-fit). Since both values are small, this does not argue against the Poisson assumption $\left(\operatorname{var}\left(y_{i}\right)=\mu_{i}\right)$.

Poisson Regression: Counts

> f <- fitted(mo.PO)
> plot(f, r, ylab="residuals", xlab="fitted", ylim=c (-1,1))
> abline (0,0)
> plot(time, count, ylim=c (0,40))
$>$ time.new <- seq(0, 12, 0.5)
> lines(time.new, predict(mo.PO, data.frame(time=time.new),
$+$
type="response"))

Poisson Regression: Counts

Poisson Regression: Counts

Residual plot: if variances equal means, the Pearson residual is

$$
r_{i}=\frac{y_{i}-\hat{\mu}_{i}}{\sqrt{\hat{\mu}_{i}}}
$$

If we replace $\hat{\mu}_{i}$ with μ_{i}, then r_{i} should reflect mean zero and variance one.

Residual plot is relatively $(n=5)$ unremarkable. Poisson assumption seems applicable.

To validate the model quality (exploratively), we plot observed and fitted values against time. Of course, such a 3 parameter model has to fit well the 5 observations.

Poisson Regression: Counts

Measurement errors can also result in growing counts (but this is impossible in reality).
The Wald statistic indicated that time ${ }^{2}$ seems to be significant in the predictor (p-value 0.0446).

Possibly we get a more realistic model using log(time) instead of time.

Poisson Regression: Counts

If time has a multiplicative effect ($\mu \propto$ time $^{\gamma}$), then the model should be based on log(time) as predictor.
But then the starting time $\log (0)$ is problematic.
Therefore we consider the transformation $\log ($ time $+c)$ with unknown positive shift c.
To determine c, we minimize the deviance in c, i.e.

```
> c <- d <- 1:100
> for (i in 1:100) {
+ c[i] <- i/200
+ d[i] <- deviance(glm(count ~ log(time+c[i]),
+ family=poisson))
+ }
> plot(c, d, type="l", ylab="deviance")
> c[d==min(d)]
[1] 0.105
```


Poisson Regression: Counts

Poisson Regression: Counts

Optimal value of c under model $1+\log ($ time $+c)$ is $c=0.105$ and $\log ($ time +0.105$)$ will be used from now on as predictor.
> time.c <- time + 0.105
> summary(mo.P3 <- glm(count ~ log(time.c), family=poisson))
Coefficients:

| | Estimate | Std. Error | z value | $\operatorname{Pr}(>\|z\|)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 3.15110 | 0.09565 | 32.945 | $<2 \mathrm{e}-16 * * *$ |
| \log (time.c) | -0.12751 | 0.05493 | -2.321 | $0.0203 *$ |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 7.0672 on 4 degrees of freedom Residual deviance: 1.8335 on 3 degrees of freedom AIC: 30.403

Poisson Regression: Counts

It is again advisable to consider also a model with quadratic time effect in order to check if there is still some curvature left.

```
> mo.P2 <- glm(count ~ log(time.c)+I(log(time.c)^2),
+ family=poisson)
> anova(mo.P3, mo.P2, test="Chisq")
Analysis of Deviance Table
```

Model 1: count ~ $\log ($ time.c)
Model 2: count ~ $\log ($ time.c) $+I(\log (t i m e . c) ~ へ) ~$
Resid. Df Resid. Dev Df Deviance $\operatorname{Pr}(>\mathrm{Chi})$
$1 \quad 3 \quad 1.8335$
$\begin{array}{llllll}2 & 2 & 1.7925 & 1 & 0.04109 & 0.8394\end{array}$

Quadratic effect is no longer necessary. It seems that when using the log-transformed shifted time, this linear effect suffices in the predictor.

Poisson Regression: Counts

Wanted: approximative pointwise CIV for $\mu_{0}=\exp \left(\eta_{0}\right)$.
Idea 1: use $\hat{\eta}_{0}=\mathbf{x}_{0}^{\top} \hat{\boldsymbol{\beta}}$ with $\widehat{\text { s.e. }}\left(\hat{\eta}_{0}\right)$. The transformed 95% interval is

$$
\operatorname{CIV}\left(\mu_{0}\right)=\left(\exp \left(\hat{\eta}_{0} \pm 1.96 \times \widehat{\text { s.e. }}\left(\hat{\eta}_{0}\right)\right)\right)
$$

Idea 2: Delta method yields

$$
\log \hat{\mu} \approx \log \mu+(\hat{\mu}-\mu) \frac{\partial \log \mu}{\partial \mu}
$$

giving approximative variance, resp. standard error

$$
\begin{aligned}
\operatorname{var}(\log \hat{\mu}) & \approx \operatorname{var}(\hat{\mu}) \frac{1}{\mu^{2}} \\
\widehat{\operatorname{var}}(\hat{\mu}) & \approx \hat{\mu}^{2} \operatorname{var}(\hat{\eta}) \quad \Rightarrow \quad \widehat{\text { s.e. }}\left(\hat{\mu}_{0}\right) \approx \hat{\mu}_{0} \widehat{\text { s.e. }}\left(\hat{\eta}_{0}\right) .
\end{aligned}
$$

As 95\% CIV we get

$$
\operatorname{CI}_{\Delta}\left(\mu_{0}\right)=\left(\hat{\mu}_{0} \pm 1.96 \times \hat{\mu}_{0} \widehat{\text { s.e. }}\left(\hat{\eta}_{0}\right)\right)
$$

Poisson Regression: Counts

> \# Delta-Method
$>$ t.new <- data.frame(time.c $=\operatorname{seq}(0,12, .005)+0.105)$
> r.pred<-predict(mo.P3,newdata=t.new,type="response", se.fit=T)
> fit <- r.pred\$fit
> upper <- fit + qnorm(0.975) *r.pred\$se.fit
> lower <- fit - qnorm(0.975)*r.pred\$se.fit
> plot(time, count, type="p", xlab="time", ylab="count")
> lines(time.c.new[,1], upper)
> lines(time.c.new[,1], fit)
> lines(time.c.new[,1], lower)
> \# using prediction of type="link"
> l.pred <- predict(mo.P3, newdata=t.new, type="link", se.fit=T)
> fit <- exp(l.pred\$fit)
> upper <- exp(l.pred\$fit + qnorm(0.975)*l.pred\$se.fit)
> lower <- exp(l.pred\$fit - qnorm(0.975)*l.pred\$se.fit)
> lines(time.c.new[,1], upper, col=2)
> lines(time.c.new[,1], lower, col=2)

Poisson Regression：Counts

Poisson Regression: Contingency Tables

Log-linear models to analyze if 2 factors are stochastically independent.
None of the 2 factors will be defined as response - we call them both classificators.

Example: Habitat of Lizards: counts on how many lizards have chosen what kind of perch, characterized by two-level factors: height ($\geq 4.75,<4.75$) and diameter ($\leq 4.0,>4.0$). The following counts have been observed:

Perch		diameter		
		≤ 4.0	>4.0	total
	≥ 4.75	61	41	102
height	<4.75	73	70	143
total		134	111	245

Poisson Regression: Contingency Tables

Question: are diameter and height classifications independent? Association is measurable by odds-ratios. In case of independence, the odds-ratio is 1 . We get as estimate

$$
\hat{\psi}=\frac{61 / 41}{73 / 70}=\frac{61 / 73}{41 / 70}=1.43
$$

Does this indicate that for the true parameter $\psi \neq 1$ holds?
We introduce a log-linear model for 2×2 tables and define the following observed counts:

	B		
A	1	2	total
1	y_{11}	y_{12}	$y_{1 \bullet}$
2	y_{21}	y_{21}	$y_{2 \bullet}$
total	$y_{\bullet 1}$	$y_{\bullet 2}$	$y_{\bullet \bullet}$

with $y_{\bullet \bullet}=n$, the sample size.

Poisson Regression: Contingency Tables

If $y_{k l}$ are Poisson counts and we use a log-link function and A and B as explanatory predictors, this would correspond to a log-linear model.

Distributions of A and of B (marginals) are not of interest.
We consider the next two models
(1) $A+B$ (independence),
(2) $A * B \equiv A+B+A: B$ (dependence, saturated model).

Poisson Regression: Contingency Tables

Independence Model:

Assumption: for all pairs $\left(a_{i}, b_{i}\right), i=1, \ldots, n$, the probability to fall in cell (k, l) is $\pi_{k l}$. Then

$$
E\left(y_{k l}\right)=\mu_{k l}=n \cdot \pi_{k l}, \quad k, l \in\{1,2\} .
$$

In case of stochastic independence, i.e. if

$$
\pi_{k l}=\operatorname{Pr}(A=k, B=I)=\operatorname{Pr}(A=k) \operatorname{Pr}(B=I)=\pi_{k}^{A} \pi_{l}^{B}
$$

then the associated log-linear model is

$$
\log \mu_{k l}=\log n+\log \pi_{k}^{A}+\log \pi_{l}^{B} .
$$

The logarithm of the expected count in cell (k, l) is an additive function of the k-th row effect and the l-th column effect. Thus

$$
\log \mu_{k l}=\lambda+\lambda_{k}^{A}+\lambda_{l}^{B}, \quad k, l \in\{1,2\} .
$$

Poisson Regression: Contingency Tables

$$
\log \mu_{k l}=\lambda+\lambda_{k}^{A}+\lambda_{l}^{B}, \quad k, l \in\{1,2\} .
$$

How to define the parameters, and how many are identifiable?
If a contrast parametrization is of interest, we define

$$
\begin{aligned}
\lambda_{k}^{A} & =\log \pi_{k}^{A}-\frac{1}{2} \sum_{h=1}^{2} \log \pi_{h}^{A} \\
\lambda_{l}^{B} & =\log \pi_{l}^{B}-\frac{1}{2} \sum_{h=1}^{2} \log \pi_{h}^{B} \\
\lambda & =\log n+\frac{1}{2} \sum_{h=1}^{2} \log \pi_{h}^{A}+\frac{1}{2} \sum_{h=1}^{2} \log \pi_{h}^{B} .
\end{aligned}
$$

With this parametrization (deviation from the means) we have

$$
\sum_{k=1}^{2} \lambda_{k}^{A}=\sum_{k=1}^{2}\left\{\log \pi_{k}^{A}-\frac{1}{2} \sum_{h=1}^{2} \log \pi_{h}^{A}\right\}=0=\sum_{l=1}^{2} \lambda_{l}^{B}
$$

Poisson Regression: Contingency Tables

$$
\sum_{k=1}^{2} \lambda_{k}^{A}=\sum_{k=1}^{2}\left\{\log \pi_{k}^{A}-\frac{1}{2} \sum_{h=1}^{2} \log \pi_{h}^{A}\right\}=0=\sum_{l=1}^{2} \lambda_{l}^{B}
$$

Besides λ there is only 1 row and 1 column parameter identifiable. For both others $\lambda_{2}^{A}=-\lambda_{1}^{A}, \lambda_{2}^{B}=-\lambda_{1}^{B}$ hold.

This model is called log-linear independence model.
The respective predictors are

	B	
A	1	2
1	$\lambda+\lambda_{1}^{A}+\lambda_{1}^{B}$	$\lambda+\lambda_{1}^{A}-\lambda_{1}^{B}$
2	$\lambda-\lambda_{1}^{A}+\lambda_{1}^{B}$	$\lambda-\lambda_{1}^{A}-\lambda_{1}^{B}$

Poisson Regression: Contingency Tables

Alternative parametrization: reference cell instead of contrasts. Characterize an arbitrary cell as reference and define parameters, that describe the deviations from this reference cell.
If e.g. cell $(1,1)$ is the reference, this gives

$$
\begin{aligned}
\lambda_{k}^{A} & =\log \pi_{k}^{A}-\log \pi_{1}^{A} \\
\lambda_{1}^{B} & =\log \pi_{1}^{B}-\log \pi_{1}^{B} \\
\lambda & =\log n+\log \pi_{1}^{A}+\log \pi_{1}^{B}
\end{aligned}
$$

with identifiability constraints

$$
\lambda_{1}^{A}=\lambda_{1}^{B}=0
$$

The respective predictors are

	B	
A	1	2
1	λ	$\lambda+\lambda_{2}^{B}$
2	$\lambda+\lambda_{2}^{A}$	$\lambda+\lambda_{2}^{A}+\lambda_{2}^{B}$

Poisson Regression: Contingency Tables

Notice that this (reference cell) parametrization results in

$$
\begin{aligned}
\log \psi & =\log \frac{\mu_{11} / \mu_{12}}{\mu_{21} / \mu_{22}} \\
& =\log \mu_{11}-\log \mu_{12}-\log \mu_{21}+\log \mu_{22} \\
& =\lambda-\left(\lambda+\lambda_{2}^{B}\right)-\left(\lambda+\lambda_{2}^{A}\right)+\left(\lambda+\lambda_{2}^{A}+\lambda_{2}^{B}\right) \\
& =0
\end{aligned}
$$

Thus, an odds-ratio of $\psi=1$ is equivalent with independence.
This holds independently of the choice of the reference cell.

Poisson Regression: Contingency Tables

Saturated (full) Model:

If no independence can be assumed we define

$$
\log \mu_{k l}=\lambda+\lambda_{k}^{A}+\lambda_{l}^{B}+\lambda_{k l}^{A B}, \quad k, l \in\{1,2\}
$$

The interaction parameters $\lambda_{k l}^{A B}$ describe the discrepancies from the independence model.
If contrasts should be used, then the parameters are based on the linear predictors $\eta_{k l}=\log \mu_{k l}$. Let

$$
\eta_{k \bullet}=\frac{1}{2} \sum_{l=1}^{2} \eta_{k l}, \quad \eta_{\bullet l}=\frac{1}{2} \sum_{k=1}^{2} \eta_{k l}, \quad \eta_{\bullet \bullet}=\lambda=\frac{1}{2} \frac{1}{2} \sum_{k=1}^{2} \sum_{l=1}^{2} \eta_{k l} .
$$

Poisson Regression: Contingency Tables

Define row effects λ_{k}^{A}, column effects λ_{l}^{B}, and interaction effects $\lambda_{k l}^{A B}$ as deviations from the mean predictor

$$
\lambda_{k}^{A}=\eta_{k \bullet}-\eta_{\bullet \bullet}
$$

$$
\lambda_{l}^{B}=\eta_{\bullet}-\eta_{\bullet \bullet}
$$

$$
\lambda_{k l}^{A B}=\eta_{k l}-\eta_{k \bullet}-\eta_{\bullet l}+\eta_{\bullet \bullet}=\underbrace{\left(\eta_{k l}-\eta_{\bullet \bullet}\right)}_{\eta_{k l}-\lambda}-\underbrace{\left(\eta_{k \bullet}-\eta_{\bullet \bullet}\right)}_{\lambda_{k}^{A}}-\underbrace{\left(\eta_{\bullet l}-\eta_{\bullet \bullet}\right)}_{\lambda_{l}^{B}}
$$

$\lambda_{k}^{A}, \lambda_{l}^{B}$ denote deviations from the predictor mean λ.
$\lambda_{k l}^{A B}$ are cell effects that are adjusted for row and column effects.
Since all parameters are centered around their means we have

$$
\sum_{k=1}^{2} \lambda_{k}^{A}=\sum_{l=1}^{2} \lambda_{l}^{B}=0
$$

Thus, again only 1 free row and 1 free column parameter.

Poisson Regression: Contingency Tables

For the interactions we get

$$
\begin{aligned}
\sum_{k=1}^{2} \lambda_{k l}^{A B} & =\sum_{k=1}^{2} \eta_{k l}-\sum_{k=1}^{2} \eta_{k \bullet}-2 \eta_{\bullet l}+2 \eta_{\bullet \bullet} \\
& =2 \eta_{\bullet}-2 \eta_{\bullet \bullet}-2 \eta_{\bullet l}+2 \eta_{\bullet \bullet}=0=\sum_{l=1}^{2} \lambda_{k l}^{A B} .
\end{aligned}
$$

Because of this, the sum of all interactions in each row and in each column is 0 .

In case of a 2×2 table there is only 1 free interaction parameter!

Poisson Regression: Contingency Tables

The independence model is a special case of the full model with $\lambda_{k l}^{A B}=0$ for all (k, l).
The additional parameters $\lambda_{k l}^{A B}$ are association parameters, describing the deviations from independence between A and B.

The total number of free parameters is 3 under the independence model and 4 in case of the dependence model.

Default approach in \mathbb{R} is to use a treatment parametrization, i.e. a reference cell $(1,1)$. If a sum parametrization should be used, then (for unordered and ordered factors)
> options(contrasts=c("contr.sum", "contr.poly"))
We can change back to the treatment parametrization through
> options(contrasts=c("contr.treatment", "contr.poly"))

Poisson Regression: Contingency Tables

It's again simpler to work with a reference cell, e.g. cell $(1,1)$. Setting $\lambda=\eta_{11}$ gives

$$
\begin{aligned}
\lambda_{k}^{A} & =\eta_{k 1}-\eta_{11} \\
\lambda_{l}^{B} & =\eta_{1 /}-\eta_{11} \\
\lambda_{k l}^{A B} & =\eta_{k l}-\eta_{k 1}-\eta_{1 l}+\eta_{11}=\underbrace{\left(\eta_{k l}-\eta_{11}\right)}_{\eta_{k l}-\lambda}-\underbrace{\left(\eta_{k 1}-\eta_{11}\right)}_{\lambda_{k}^{A}}-\underbrace{\left(\eta_{11}-\eta_{11}\right)}_{\lambda_{l}^{B}} .
\end{aligned}
$$

Thus $\lambda_{1}^{A}=\lambda_{1}^{B}=0$. Moreover all interactions in the first row and in the first column are 0 and we get

Poisson Regression: Contingency Tables

What are the MLEs of these parameters?

$$
\begin{gathered}
\log \hat{\mu}_{11}=\hat{\lambda}=\log y_{11} \\
\log \hat{\mu}_{21}=\hat{\lambda}+\hat{\lambda}_{2}^{A}=\log y_{21} \Rightarrow \hat{\lambda}_{2}^{A}=\log y_{21}-\log y_{11}=\log \frac{y_{21}}{y_{11}} \\
\log \hat{\mu}_{12}=\hat{\lambda}+\hat{\lambda}_{2}^{B}=\log y_{12} \Rightarrow \hat{\lambda}_{2}^{B}=\log y_{12}-\log y_{11}=\log \frac{y_{12}}{y_{11}} \\
\log \hat{\mu}_{22}=\hat{\lambda}+\hat{\lambda}_{2}^{A}+\hat{\lambda}_{2}^{B}+\hat{\lambda}_{22}^{A B}=\log y_{22} \\
\Rightarrow \hat{\lambda}_{22}^{A B}=\log y_{22}-\log y_{11}-\log \frac{y_{21}}{y_{11}}-\log \frac{y_{12}}{y_{11}}=\log \frac{y_{11} y_{22}}{y_{12} y_{21}}
\end{gathered}
$$

MLE of the interaction effect is the observed log-odds-ratio, that estimates the deviation from the independence model.

Poisson Regression: Contingency Tables

```
Example: Habitat of Lizards
To use cell (1,1) as reference in \mathbb{R},\mathrm{ we need e.g.}
> count <- c(61, 41, 73, 70)
> (hei <- factor(c(">4.75", ">4.75", "<4.75", "<4.75")))
[1] >4.75 >4.75 <4.75 <4.75
Levels: <4.75 >4.75
> (height <- relevel(hei, ref = ">4.75"))
[1] >4.75 >4.75<4.75 <4.75
Levels: >4.75 <4.75
> diameter <- factor(c("<4.0", ">4.0", "<4.0", ">4.0"))
```


Poisson Regression：Contingency Tables

＞summary（dep＜－glm（count～height＊diameter，family＝poisson））

Coefficients：

（Intercept）	4.1109	0.1280	32.107	$<2 \mathrm{e}-16 * * *$
height＜4．75	0.1796	0.1735	1.035	0.3006
diameter＞4．0	-0.3973	0.2019	-1.967	$0.0491 *$
height＜4．75：diameter＞4．0	0.3553	0.2622	1.355	0.1754

ーーー

Null deviance： $1.0904 \mathrm{e}+01$ on 3 degrees of freedom Residual deviance：$-8.8818 \mathrm{e}-16$ on 0 degrees of freedom AIC： 31.726

Poisson Regression: Contingency Tables

Deviance $=0$ on $d f=0$. Model reproduces the data exactly. Estimated odds-ratio is
> exp(dep\$coef[4])
height<4.75:diameter>4.0
1.426662

Under the independence model we get
> summary(ind<-glm(count ~height + diameter, family=poisson))
Coefficients:

| | Estimate | Std. Error z value $\operatorname{Pr}(>\|z\|)$ | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 4.0216 | 0.1148 | 35.023 | $<2 \mathrm{e}-16 * * *$ |
| height <4.75 | 0.3379 | 0.1296 | 2.607 | 0.00913 ** |
| diameter>4.0 | -0.1883 | 0.1283 | -1.467 | 0.14231 |

Null deviance: 10.9036 on 3 degrees of freedom Residual deviance: 1.8477 on 1 degrees of freedom AIC: 31.574

Poisson Regression: Contingency Tables

Odds-ratio is 0 now and the deviance increases by 1.85. This can be used as test statistic on $H_{0}: \psi=1$ giving a p-value of
> pchisq(ind\$deviance, 1, lower.tail = FALSE)
[1] 0.174055
Evidence for a non-significant improvement (compare with p-value 0.1754 of the respective Wald statistic). Thus we cannot reject $H_{0}: \psi=1$ and diameter and height seem to classify independently!

Poisson Regression: Contingency Tables

More than two-level factors:

Results can be generalized for multi-level classifying factors. Let A be a K-level and B a L-level factor. The independence model is

$$
\log \mu_{k l}=\lambda+\lambda_{k}^{A}+\lambda_{l}^{B}, \quad k=1, \ldots, K, I=1, \ldots, L
$$

With cell $(1,1)$ as reference we define

$$
\begin{aligned}
\lambda_{k}^{A} & =\log \pi_{k}^{A}-\log \pi_{1}^{A} \\
\lambda_{l}^{B} & =\log \pi_{l}^{B}-\log \pi_{1}^{B} \\
\lambda & =\log n+\log \pi_{1}^{A}+\log \pi_{1}^{B}
\end{aligned}
$$

and the same set of identifiability conditions hold, i.e.

$$
\lambda_{1}^{A}=\lambda_{1}^{B}=0
$$

There are $1+(K-1)+(L-1)$ parameter freely estimable.

Poisson Regression: Contingency Tables

Respective predictors are

A	1	2	\cdots	1	\cdots
1	λ	$\lambda+\lambda_{2}^{B}$	\cdots	$\lambda+\lambda_{l}^{B}$	\cdots
2	$\lambda+\lambda_{2}^{A} \lambda+\lambda_{2}^{A}+\lambda_{2}^{B} \cdots$	$\lambda+\lambda_{2}^{A}+\lambda_{l}^{B}$	\cdots	$\lambda+\lambda_{2}^{A}+\lambda_{L}^{B}$	
\vdots					
k	$\lambda+\lambda_{k}^{A} \lambda+\lambda_{k}^{A}+\lambda_{2}^{B} \cdots$	$\cdots+\lambda_{k}^{A}+\lambda_{l}^{B} \cdots$	$\cdots+\lambda_{k}^{A}+\lambda_{L}^{B}$		
\vdots					
K	$\lambda+\lambda_{K}^{A} \lambda+\lambda_{K}^{A}+\lambda_{2}^{B} \cdots \lambda+\lambda_{K}^{A}+\lambda_{l}^{B} \cdots \lambda+\lambda_{K}^{A}+\lambda_{L}^{B}$				

Poisson Regression: Contingency Tables

MLEs are now for $k=1, \ldots, K$ and $I=1, \ldots, L$

$$
\log \hat{\mu}_{11}=\hat{\lambda}=\log \frac{y_{1 \bullet} y_{\bullet 1}}{y_{\bullet \bullet}}
$$

$$
\log \hat{\mu}_{k 1}=\hat{\lambda}+\hat{\lambda}_{k}^{A}=\log \frac{y_{k} \bullet y_{\bullet 1}}{y_{\bullet \bullet}} \Rightarrow \hat{\lambda}_{k}^{A}=\log \frac{y_{k} \cdot y_{\bullet 1}}{y_{\bullet \bullet}}-\log \frac{y_{1 \bullet} y_{\bullet 1}}{y_{\bullet \bullet}}=\log \frac{y_{k \bullet}}{y_{1 \bullet}}
$$

$$
\log \hat{\mu}_{1 l}=\hat{\lambda}+\hat{\lambda}_{l}^{B}=\log \frac{y_{1} \bullet y_{\bullet l}}{y_{\bullet \bullet}} \Rightarrow \hat{\lambda}_{l}^{B}=\log \frac{y_{1 \bullet} y_{\bullet l}}{y_{\bullet \bullet}}-\log \frac{y_{1 \bullet} y_{\bullet 1}}{y_{\bullet \bullet}}=\log \frac{y_{\bullet l}}{y_{\bullet 1}}
$$

Poisson Regression: Contingency Tables

The saturated model for a $K \times L$ table is

$$
\log \mu_{k l}=\lambda+\lambda_{k}^{A}+\lambda_{l}^{B}+\lambda_{k l}^{A B}, \quad k=1, \ldots, K, I=1, \ldots, L
$$

With reference cell $(1,1)$ we get for all $k=1, \ldots, K, I=1, \ldots, L$

$$
\begin{aligned}
\lambda_{k}^{A} & =\eta_{k 1}-\eta_{11} \\
\lambda_{l}^{B} & =\eta_{1 I}-\eta_{11} \\
\lambda_{k l}^{A B} & =\eta_{k l}-\eta_{k 1}-\eta_{1 I}+\eta_{11}=\underbrace{\left(\eta_{k 1}-\eta_{11}\right)}_{\eta_{k 1}-\lambda}-\underbrace{\left(\eta_{k 1}-\eta_{11}\right)}_{\lambda_{k}^{A}}-\underbrace{\left(\eta_{11}-\eta_{11}\right)}_{\lambda_{l}^{B}}
\end{aligned}
$$

where $\lambda_{1}^{A}=\lambda_{1}^{B}=0$.
Again, all interactions in row 1 and in column 1 are 0 .
Thus, the total number of estimable parameters is
$1+(K-1)+(L-1)+(K-1)(L-1)=K \times L$.

Poisson Regression: Contingency Tables

The predictors are defined as:

Saturated model allows for $(K-1)(L-1)$ additional parameters than the independence model.

Poisson Regression: Contingency Tables

Example: Recurrences of Cervical Cancer
Are the predictive factors border zone (BZ) involvement and number affected lymph node (LN) stations classifying independently?
Consider the following counts:

	LN stations			
	0	1	2	≥ 3
BZ not involved	124	21	16	13
BZ involved	58	12	7	5
more than BZ inv.	14	19	12	12

We first fit the saturated model to the data and then test on necessary interactions.

Poisson Regression: Contingency Tables

Signif. codes: $0{ }^{\prime} * * * ’ 0.001^{\prime} * * ’ 0.01^{\prime} *$ ’ 0.05 '.' 0.1 ' ' 1

There is evidence, that the 6 interaction parameter are unequal 0 and thus the independence hypothesis can be rejected.

Poisson Regression: Contingency Tables

Alternatively, we consider the Pearson statistic under the independence model, i.e.

$$
X^{2}=\sum_{i=1}^{3} \sum_{j=1}^{4} \frac{\left(y_{i j}-\hat{\mu}_{i j}\right)^{2}}{\hat{\mu}_{i j}}
$$

with $\log \mu_{i j}=\lambda+\lambda_{i}^{B}+\lambda_{j}^{L}$. Its realization is
> ind <- glm(total ~ B+L, family=poisson)
> r <- residuals(ind, type="pearson")
$>\operatorname{sum}\left(r^{\wedge} 2\right)$
[1] 43.83645
and equals the χ^{2} test statistic in the analysis of contingency tables.

Poisson Regression: Contingency Tables

Pearson statistic can be also directly calculated as

```
> (N <- matrix(total, 3, 4, byrow=TRUE))
    [,1] [,2] [,3] [,4]
[1,] 124 
\begin{tabular}{lllll}
{\([2]\),} & 58 & 12 & 7 & 5
\end{tabular}
[3,]
> chisq.test(N)
```

 Pearson's Chi-squared test
 data: N
X -squared $=43.8365, \mathrm{df}=6, \mathrm{p}$-value $=7.965 \mathrm{e}-08$

