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Introduction

� This course will provide an introduction into the concepts of

the class of generalized linear models (GLM's).

� This class extends the class of linear models (LM's) to

regression models for non-normal data.

� Special interest will be on binary data (logistic regression)

and count data (log-linear models).

� All models will be handled by using functions like lm,

anova, or glm.
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Plan

� Linear Models (LM's): Recap of Results

� Box-Cox Transformation Family: Extending the LM

� Generalized Linear Models (GLM's): An Introduction

� Linear Exponential Family (LEF): Properties and Members

� GLM's: Parameter Estimates

� GLM's: glm(.) Function

� Gamma Models

� Logistic Models (Binomial Frequencies)

� Log-linear Models (Poisson Counts)

� (Poisson Models for Contingency Tables)
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Recap Linear Models

Goal of regression models is to �nd out how a response variable

depends on covariates (explanatory variables).

A special class of regression models are linear models. The

general setup is given by

� Data (yi ; xi1; : : : ; xi ;p�1), i = 1; : : : ; n

� Response y = (y1; : : : ; yn)> (random variable)

� Covariates xi = (xi1; : : : ; xi ;p�1)> (�xed, known)
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Recap Linear Models

Data Example: Life Expectancies

Data source: The World Bank makes available data from the

World Development Indicators. To search/download within :

> install.packages('WDI'); library(WDI)

> WDIsearch('gdp') # gives a list of available data on gdp

> d <- WDI(indicator='NY.GDP.PCAP.KD', country=c('AT', 'US'),

+ start=1960, end=2013)

> head(d)

iso2c country NY.GDP.PCAP.KD year

1 AT Austria 47901.37 2013

2 AT Austria 48172.24 2012

3 AT Austria 48065.32 2011

4 AT Austria 46858.04 2010

5 AT Austria 46123.49 2009

6 AT Austria 48053.48 2008
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Recap Linear Models

Data Example: Life Expectancies

Data on temperature are available at The World Bank, Climate

Change Knowledge Portal: Historical Data

> install.packages('gdata')

> library(gdata)

> f.name<-"http://databank.worldbank.org/data/download/catalog/

+ cckp_historical_data_0.xls"

> myperl <- "c:/Strawberry/perl/bin/perl.exe"

> sheetCount(f.name, perl=myperl)

Downloading...

trying URL 'http://databank.worldbank.org/data/.../*.xls'

Content type 'application/vnd.ms-excel' length 378368 bytes

opened URL

downloaded 369 Kb

Done.

[1] 5
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Recap Linear Models

Data Example: Life Expectancies

> temp <- read.xls(f.name, sheet="Country_temperatureCRU",

+ perl=myperl)

> temp.data <- temp[ , c("ISO_3DIGIT", "Annual_temp")]

> colnames(temp.data) <- c("iso3c", "temp")

> head(temp.data)

iso3c temp

1 AFG 12.92

2 AGO 21.51

3 ALB 11.27

4 ARE 26.83

5 ARG 14.22

6 ARM 6.37
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Recap Linear Models

Data Example: Life Expectancies

Data we are interested in (from 2010):

� life.exp at birth, total (years)

� urban population (percent)

� physicians (per 1,000 people)

� temp annual mean (Celsius)

Which is the response and which are covariates?
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Recap Linear Models

Gaussian Linear Model:

yi = �0 + �1xi1 + � � �+ �p�1xi ;p�1 + �i ; �i
iid� Normal(0; �2) ;

with unknown regression parameters �0; �1; : : : ; �p�1 (intercept

�0, slopes �j , j = 1; : : : ; p � 1) and unknown (homogenous) error

variance �2.

This is equivalent with yi
ind� Normal(E(yi); var(yi)), where

E(yi) = �i = �0 + �1xi1 + � � �+ �p�1xi ;p�1

is a linear function in the parameters and

var(yi) = �2 ; i = 1; : : : ; n

describes a homoscedastic scenario.
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Recap Linear Models

Matrix Notation: we de�ne

y = (y1; : : : ; yn)> ; � = (�1; : : : ; �n)> ;

� = (�0; �1; : : : ; �p�1)> ; xi = (1; xi1; : : : ; xi ;p�1)> ;

X = (x1; : : : ; xn)>

and write a Gaussian regression models as

y = X� + �

with

E(y) = � = X�

and

var(y) = �2In :

Here In denotes the (n � n) identity matrix, and the (n � p)
matrix X is also called Design Matrix.
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Recap Linear Models

Exploratory Data Analysis (EDA):

� Check out the ranges of the response and covariates. For

discrete covariates (with sparse factor levels) we consider

grouping the levels.

� Plot covariates against response. Scatter plot should reect

linear relationships otherwise we consider transformations.

� To check if the constant variance assumption is reasonable, the

points of the scatter plot of covariates against the responses

should be contained in a band of constant width.
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Recap Linear Models

Data Example: Life Expectancies (EDA)

> summary(mydata[, c(5, 6, 8, 10)])

life.expectancy urban physicians temperature

Min. :45.10 Min. :0.1064 Min. :0.0080 Min. :-7.14

1st Qu.:62.19 1st Qu.:0.3890 1st Qu.:0.2318 1st Qu.:10.40

Median :72.04 Median :0.5683 Median :1.4567 Median :21.90

Mean :69.48 Mean :0.5648 Mean :1.6678 Mean :18.24

3rd Qu.:76.03 3rd Qu.:0.7496 3rd Qu.:2.8146 3rd Qu.:25.06

Max. :82.84 Max. :1.0000 Max. :6.8152 Max. :28.30

NA's :23
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Recap Linear Models

Data Example: Life Expectancies (EDA)

> plot(mydata[, c(5, 6, 8, 10)])
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Recap Linear Models

Data Example: Life Expectancies (Transformations)

plot(physicians, life.expectancy)

plot(log(physicians), life.expectancy)
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Recap Linear Models

Parameter Estimation: �

Idea of Least Squares: minimize the sum of squared errors, i.e.

SSE(�) =

n∑
i=1

(yi � x>i �)2

Equivalent with Maximum Likelihood: maximize the sample

log-likelihood function

`(�jy) =

n∑
i=1

(
log

1p
2��2

� 1

2�2
(yi � x>i �)2

)

LSE/MLE Solution: �̂ = (X>X)�1X>y

For yi
ind� Normal(x>i �; �

2) we have

�̂ � Normal(�; �2(X>X)�1)
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Recap Linear Models

Parameter Estimation: �2

Maximum Likelihood Estimator:

�̂2 =
1

n
SSE(�̂) =

1

n

n∑
i=1

(yi � x>i �̂)2; E(�̂2) =
(
1� p

n

)
�2

is biased. An unbiased variance estimator is (df corrected)

S2 =
1

n � p
SSE(�̂)

For yi
ind� Normal(x>i �; �

2) we get

SSE(�̂)=�2 � �2

n�p

and SSE(�̂) is stochastically independent of �̂.
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Recap Linear Models

ANalysis Of VAriance (ANOVA): let �̂i = x>i �̂, then

n∑
i=1

(yi � ȳ)2︸ ︷︷ ︸
SST

=

n∑
i=1

(�̂i � ȳ)2︸ ︷︷ ︸
SSR(�̂)

+

n∑
i=1

(yi � �̂i)2︸ ︷︷ ︸
SSE(�̂)

Total SS equals (maxim.) Regression SS plus (minim.) Error SS

Thus, the proportion of variability explained by the regression

model is described by the coe�cient of determination

R2 =
SSR(�̂)

SST
= 1� SSE(�̂)

SST
2 (0; 1)

To penalize for model complexity p we use its adjusted version

R2

adj = 1� SSE(�̂)=(n � p)

SST =(n � 1)
62 (0; 1)
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Recap Linear Models

Hypothesis Tests: t-Test

If the model is correctly stated then

�̂ � Normal(�; �2(X>X)�1)

Thus, for each slope parameter �j , j = 1; : : : ; p � 1, we have

�̂j � Normal(�j ; �
2(X>X)�1j+1;j+1

)

and therefore

�̂j � �j√
�2(X>X)�1j+1;j+1

� Normal(0; 1)

Since S2 and �̂ are independent, replacing �2 by S2 results in

�̂j � �j√
S2(X>X)�1j+1;j+1

� tn�p
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Recap Linear Models

Hypothesis Tests: t-Test

�̂j � �j√
S2(X>X)�1j+1;j+1

� tn�p

Therefore, we can test the relevance of a single predictor xj by

H0 : �j = 0 vs H1 : �j 6= 0

and use the well-known test statistic

Estimate

Std. Error
=

�̂j√
S2(X>X)�1j+1;j+1

H0� tn�p
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Recap Linear Models

Hypothesis Tests: F-Test

If a predictor is a factor with k levels (e.g., continent: Europe,

Africa, America, Asia), then we usually de�ne a baseline category

(e.g. Europe) and consider the model

� = �0 + �Af I (Africa) + �AmI (America) + �As I (Asia)

To check if the predictor continent is irrelevant we have to

simultaneously test k � 1 parameters

H0 : �Af = �Am = �As = 0 vs H1 : not H0

Fitting the model twice, under H0 and under H1, results in

SSR(�̂0) and SSR(�̂1) and we get the test statistic(
SSR(�̂1)� SSR(�̂0)

)
=(k � 1)

SSE(�̂1)=(n � p)

H0� Fk�1;n�p:
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Recap Linear Models

Weighted Least Squares in case of heteroscedastic errors, i.e.

y = X� + �; � � Normal(0; �2W); W = diag(w1; : : : ;wn)

The MLE (weighted LSE) of � is given by

�̂ = (X>W�1X)�1X>W�1y

with

E(�̂) = � and var(�̂) = �2(X>W�1X)�1

The MLE of �2 is

�̂2 =
1

n

n∑
i=1

(yi � �̂i)2
wi

=
1

n
r>W�1r

with the vector of raw residuals r = y � �̂.
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Recap Linear Models

Data Example: Life Expectancies

> mod <- lm(life.expectancy ~ urban + physicians + temperature)

> summary(mod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 58.61188 2.01497 29.088 < 2e-16 ***

urban 14.66519 2.72913 5.374 3.09e-07 ***

physicians 2.72412 0.50569 5.387 2.90e-07 ***

temperature -0.07181 0.06758 -1.063 0.29

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 5.459 on 142 degrees of freedom

(23 observations deleted due to missingness)

Multiple R-squared: 0.6191, Adjusted R-squared: 0.611

F-statistic: 76.93 on 3 and 142 DF, p-value: < 2.2e-16
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Recap Linear Models

Data Example: Life Expectancies

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 58.61188 2.01497 29.088 < 2e-16 ***

urban 14.66519 2.72913 5.374 3.09e-07 ***

physicians 2.72412 0.50569 5.387 2.90e-07 ***

temperature -0.07181 0.06758 -1.063 0.29

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

The predictors urban and physicians are signi�cant. Only

temperature has a negative e�ect and is also not signi�cant.
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Recap Linear Models

Data Example: Life Expectancies

Residual standard error: 5.459 on 142 degrees of freedom

(23 observations deleted due to missingness)

Multiple R-squared: 0.6191, Adjusted R-squared: 0.611

F-statistic: 76.93 on 3 and 142 DF, p-value: < 2.2e-16

Under the model, the estimated standard error of the response is

5.5 (years). We have n � p = 142 and p � 1 = 3 predictors.

Almost 62% of the total variability is explained by this model.

The adjusted version of R2 is 61.1%.

We �nally test that all three predictors are irrelevant. The

associated F-test clearly rejects this hypothesis.
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Recap Linear Models

Data Example: Life Expectancies (log(physicians))

> mod.log <- update(mod, .~. -physicians+log(physicians))

> summary(mod.log)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.70367 1.79065 37.251 < 2e-16 ***

urban 8.76445 2.53243 3.461 0.000711 ***

temperature -0.03008 0.05668 -0.531 0.596408

log(physicians) 3.51370 0.39341 8.931 1.97e-15 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Predictor log(physicians) is now highly signi�cant but

temperature lost it's signi�cance!
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Recap Linear Models

Data Example: Life Expectancies (log(physicians))

Residual standard error: 4.794 on 142 degrees of freedom

(23 observations deleted due to missingness)

Multiple R-squared: 0.7063, Adjusted R-squared: 0.7001

F-statistic: 113.8 on 3 and 142 DF, p-value: < 2.2e-16

Standard error is much smaller now than before (�4:8 years)!

Even 70% of the total variability is now explained by this model.

Same conclusion based on global F-test as in previous model.
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Recap Linear Models

Data Example: Life Expectancies (ANOVA)

> anova(mod.log)

Analysis of Variance Table

Response: life.expectancy

Df Sum Sq Mean Sq F value Pr(>F)

urban 1 5359.7 5359.7 233.219 < 2.2e-16 ***

temperature 1 653.2 653.2 28.424 3.747e-07 ***

log(physicians) 1 1833.3 1833.3 79.771 1.973e-15 ***

Residuals 142 3263.4 23.0

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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Recap Linear Models

ANOVA

Remember the SST decomposition under the Model � = X�:

SST = SSR(�̂) + SSE(�̂)

Information about this is contained in the ANOVA Table:

Source df Sum of Sq. MSS F

Regression p � 1 SSR(�̂) MSR(�̂) =

SSR(�̂)=(p � 1)
MSR(�̂)

MSE(�̂)

Error n � p SSE(�̂) MSE(�̂) =

SSE(�̂)=(n � p)

Total n � 1 SST
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Recap Linear Models

ANOVA

Null Model: assuming an iid random sample (E(yi) = �0),

results in SSE(�̂0) =
∑

i(yi � �̂0)2 with �̂0 = ȳ . Thus,

SSE(�̂0) =
∑

i(yi � ȳ)2 � SST in this case.

Nested Model: we assume that

y = X� + � = X1�1 + X2�2 + �; and test on H0 : �2 = 0

with dim(�1) = p1 (including the intercept) and dim(�2) = p2
(additional slopes). The corresponding SSR and SSE terms are

SSR(�̂1) =

n∑
i=1

(x>i �̂1 � ȳ)2; SSE(�̂1) =

n∑
i=1

(yi � x>i �̂1)2



30/203

Recap Linear Models

ANOVA

Sequentially adding the term X2 in the model where X1 is already

included results in

Source df Sum of Squares/SS MSS F

X1 p1 � 1 SSR(�̂1) MSR(�̂1) =

SSR(�̂1)
p1 � 1

MSR(�̂1)

MSE(�̂)

X2jX1 p2 SSR(�̂2j�̂1) = MSR(�̂2j�̂1) =

SSR(�̂)� SSR(�̂1)
SSR(�̂2j�̂1)

p2
MSR(�̂2j�̂1)

MSE(�̂)

Error n � p SSE(�̂) MSE(�̂) =

SSE(�̂)=(n � p)

Total n � 1 SST
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Recap Linear Models

ANOVA

We now assume that the model y = �0 +X1�1 +X2�2 + � holds.

Test 1: test statistic

F =
MSR(�̂1j�̂0)

MSE(�̂)

tests the model improvement when adding the predictors in X1 to

the iid model based on �0 only.

Test 2: test statistic

F =
MSR(�̂2j�̂1; �̂0)

MSE(�̂)

tests the model improvement when adding the predictors in X2 to

the model with X1 and �0 already contained.
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Recap Linear Models

Data Example: Life Expectancies (ANOVA)

> anova(mod.log)

Analysis of Variance Table

Response: life.expectancy

Df Sum Sq Mean Sq F value Pr(>F)

urban 1 5359.7 5359.7 233.219 < 2.2e-16 ***

temperature 1 653.2 653.2 28.424 3.747e-07 ***

log(physicians) 1 1833.3 1833.3 79.771 1.973e-15 ***

Residuals 142 3263.4 23.0

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Each further predictor that enters the model signi�cantly

improves the model �t.
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Linear Models: Restrictions

Problems:

� yi 6� Normal(E(yi); var(yi))

� E(yi) 6= x>i � 2 R
� var(yi) 6= �2 equal (homoscedastic) for all i = 1; : : : ; n

Remedies:

� transform yi such that g(yi)
ind� Normal(x>i �; �

2)

� utilize a GLM where yi
ind� LEF(g�1(x>i �); �V (�i))
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Box-Cox Transformation

For positive Responses (y > 0) de�ne

y(�) =


y� � 1

�
; if � 6= 0;

log y ; if � = 0;

y(�) ! log y for �! 0, such that y(�) is continuous in �.

Assumption: there is a value � for which

yi(�)
ind� Normal

(
�i(�) = x>i �(�); �2(�)

)
Compute MLEs with respect to the sample density of the

untransformed (original) response y .
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Box-Cox Transformation

Density Transformation Theorem: If g(Y ) � Fg(Y )(y) holds for
a continuous r.v. and g(�) is a monotone function, then the

untransformed r.v. Y has cdf

FY (y) = Pr(Y � y) = Pr(g(Y ) � g(y)) = Fg(Y )(g(y)):

Thus, the density of Y is

fY (y) =
@Fg(Y )(g(y))

@y
= fg(Y )(g(y)) �

∣∣∣∣@g(y)

@y

∣∣∣∣
with Jacobian

∣∣∣@g(y)
@y

∣∣∣.
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Box-Cox Transformation

Density of untransformed y is

f (y j�; �(�); �2(�)) =


1√

2��2(�)
exp

�

(
(y��1)

�
� �(�)

)
2

2�2(�)

 y��1; � 6= 0;

1√
2��2(�)

exp

(
� (log y � �(�))2

2�2(�)

)
y�1; � = 0:

� If � 6= 0 and �(�) = x>�(�) then

f (y j�; �(�); �2(�)) =
1√

2��2�2(�)
exp

(
�
(
y� � 1� �x>�(�)

)
2

2�2�2(�)

)
j�jy��1:
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Box-Cox Transformation

Using �0 = 1 + ��0(�), �j = ��j(�), j = 1; : : : ; p � 1, and
�2 = �2�2(�) then

f (y j�; �(�); �2(�)) =
1√

2��2�2(�)
exp

(
�
(
y� � 1� �x>�(�)

)
2

2�2�2(�)

)
j�jy��1

f (y j�;�; �2) =
1p
2��2

exp

(
� (y� � x

>�)2

2�2

)
j�jy��1:

� If � = 0, let �j = �j(�), j = 0; : : : ; p � 1, and �2 = �2(�)

f (y j0;�; �2) =
1p
2��2

exp

(
� (log y � x

>�)2

2�2

)
y�1 :

If � would be known, then the MLE could be easily computed!
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Box-Cox Transformation

Relevant part of the sample log-likelihood function is

� � 6= 0:

`(�;�; �2jy) = �n

2
log�2� 1

2�2

n∑
i=1

(
y�i � x

>

i �
)2

+n log j�j+(��1)

n∑
i=1

log yi

� � = 0:

`(0;�; �2jy) = �n

2
log�2 � 1

2�2

n∑
i=1

(
log yi � x

>

i �
)2 � n∑

i=1

log yi
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Box-Cox Transformation: MLE's

If � would be known, then the MLEs would be

�̂� =

{
(X>X)�1X>y�; � 6= 0;

(X>X)�1X> log y; � = 0;

�̂2� =
1

n
SSE�(�̂�) =


1

n

n∑
i=1

(y�i � x>i �̂�)2; � 6= 0;

1

n

n∑
i=1

(log yi � x>i �̂�)2; � = 0:
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Box-Cox Transformation: Pro�le-Likelihood

Pro�le (log-) likelihood function p`(�jy) = `(�; �̂�; �̂
2

�jy) =

=


�n

2
log SSE�(�̂�) + n log j�j+ (�� 1)

n∑
i=1

log yi ; � 6= 0;

�n

2
log SSE0(�̂0)�

n∑
i=1

log yi ; � = 0:

This is the sample log-likelihood function that has been already

maximized with respect to � and �2.

It only depends on the transformation parameter �.

Find the maximum in � by simply using a grid search strategy.
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Box-Cox Transformation: Pro�le-Likelihood

Likelihood Ratio Test (LRT): H0 : � = �0 versus H1 : � 6= �0.

For the LRT statistic it holds that

�2
(
p`(�0jy)� p`(�̂jy)

)
D! �2

1:

If �2(p`(�0jy)� p`(�̂jy)) � �2
1
, a (1� �) con�dence interval

contains all values �0, for which

�(p`(�0jy)� p`(�̂jy)
)
<

1

2
�2

1;1��

(notice that �2
1;0:95 = 3:841, �2

1;0:99 = 6:635).
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Box-Cox Transformation: Properties

Log-Transformation (� = 0): if log yi � Normal(x>i �; �
2) then

median(log yi) = x>i �;

E(log yi) = x>i �;

var(log yi) = �2:

Untransformed response yi follows a log-normal distribution with

median(yi) = exp(x>i �);

E(yi) = exp(x>i � + �2=2) = exp(x>i �) exp(�2=2);

var(yi) =
(
exp(�2)� 1

)
exp(2x>i � + �2):

� Additive model for mean and median of log yi corresponds to a

multiplicative model for mean and median of yi .

� E(yi) is 1 < exp(�2=2) times its median(yi).
� var(yi) is no longer constant for i = 1; : : : ; n.
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Box-Cox Transformation: Properties

Power-Transformation (� 6= 0): if y�i � Normal(x>i �; �
2) then

median(y�i ) = x>i �;

E(y�i ) = x>i �;

var(y�i ) = �2:

Untransformed response yi follows a distribution with

median(yi) = �
1=�
i ;

E(yi) � �1=�i

(
1 + �2(1� �)=(2�2�2i )

)
;

var(yi) � �2=�i �2=(�2�2i ):
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Box-Cox Transformation: Example

Girth (diameter), Height and Volume for n = 31 Black Cherry

Trees available in .
Relationship between volume V in feet3, height H in feet and
diameter D in inches (1 inch = 2.54 cm, 12 inches = 1 foot).

> H <- trees$Height; D <- trees$Girth; V <- trees$Volume

> plot(D, V); lines(lowess(D, V)) # curvature (wrong scale?)

> plot(H, V) # increasing variance?
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Box-Cox Transformation: Example

> (mod <- lm(V ~ H + D)) # still fit a linear model for volume

Coefficients:

(Intercept) H D

-57.9877 0.3393 4.7082

> plot(D, residuals(mod), ylab="residuals"); abline(0, 0)

> lines(lowess(D, residuals(mod))) # sink in the middle
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Box-Cox Transformation: Example
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Box-Cox Transformation: Example

> library(MASS)

> bc<-boxcox(V~H+D,lambda=seq(0.0,0.6,length=100),plotit=FALSE)

> ml.index <- which(bc$y == max(bc$y))

> bc$x[ml.index]

[1] 0.3090909

> boxcox(V~H+D, lambda = seq(0.0, 0.6,len = 18)) # plot it now
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Box-Cox Transformation: Example
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Box-Cox Transformation: Example

Is volume cubic in height and diameter?

> plot(D, V^(1/3), ylab=expression(V^{1/3}))

> lines(lowess(D, V^(1/3))) # curvature almost gone

> (mod1 <- lm(V^(1/3) ~ H + D))

Coefficients:

(Intercept) H D

-0.08539 0.01447 0.15152

For �xed � = 1=3 we have \median(V ) = �̂3
1=3 where

E(V 1=3) = �1=3. Ê(V ) = �̂3
1=3(1 + 3�̂2

1=3=�̂
2

1=3). Compare

responses with estimated medians

> mu <- fitted(mod1)

> plot(mu^3, V) # fitted median modell
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Box-Cox Transformation: Example
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Box-Cox Transformation: Example

Alternative strategy:

Remove curvature by a log-transform of all predictors (i.e.,

regress on log(D) and log(H)).
Should we also consider log(V ) as response?

> plot(log(D), log(V)) # shows nice linear relationship

> lm(log(V) ~ log(H) + log(D)) # response log(V) or still V?

Coefficients:

(Intercept) log(H) log(D)

-6.632 1.117 1.983

> boxcox(V~log(H)+log(D), lambda=seq(-0.35,0.25,length=100))
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Box-Cox Transformation: Example
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Box-Cox Transformation: Example

Which of the models is better? Comparison by LRT. Both models

are members of the model family

V � � Normal(�0 + �1H
� + �2D

�; �2)

V � = (V �V � 1)=�V

H� = (H�H � 1)=�H

D� = (D�D � 1)=�D

Compare Pro�le-Likelihood function in �V = 1=3, �H = �D = 1

(E(V 1=3) = �0 + �1H + �2D), with that in �V = �H = �D = 0

(E(log(V )) = �0 + �1 log(H) + �2 log(D)).
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Box-Cox Transformation: Example

> bc1 <- boxcox(V ~ H + D, lambda = 1/3, plotit=FALSE)

> bc1$y

[1] 25.33313

> bc2 <- boxcox(V ~ log(H) + log(D), lambda = 0, plotit=FALSE)

> bc2$y

[1] 26.11592

LRT Statistic: �2(25:333� 26:116) = 1:566 (not signi�cant).
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Box-Cox Transformation: Example

Remark: Coe�cient of log(H) close to 1 (�̂1 = 1:117) and

coe�cient of log(D) close to 2 (�̂2 = 1:983).

Tree can be represented by a cylinder or a cone. Volume is

�hd2=4 (cylinder) or �hd2=12 (cone), i.e.

E(log(V )) = c + 1 log(H) + 2 log(D)

with c = log(�=4) (cylinder) or c = log(�=12) (cone).

Attention: D has to be converted from inches to feet ) D=12

as predictor.
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Box-Cox Transformation: Example

> lm(log(V) ~ log(H) + log(D/12))

Coefficients:

(Intercept) log(H) log(D/12)

-1.705 1.117 1.983

Conversion only inuences intercept!

Fix slopes (�1; �2) to (1, 2) and estimate only intercept �0, i.e.

consider the model

E(log(V )) = �0 + 1 log(H) + 2 log(D=12) :

Term 1 logH + 2 log(D=12) is called o�set (predictor with �xed

parameter 1).
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Box-Cox Transformation: Example

> (mod3 <- lm(log(V) ~ 1 + offset(log(H) + 2*log(D/12))))

Coefficients:

(Intercept)

-1.199

> log(pi/4)

[1] -0.2415645

> log(pi/12)

[1] -1.340177

Volume can be better described by a cone than by a cylinder.

However, its volume is slightly larger than the one of a cone.
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Introduction to GLM's

� In generalized linear models (GLM's) we again have

independent response variables with covariates.

� While a linear model combines additivity of the covariate

e�ects with the normality of the errors, including variance

homogeneity, GLM's don't need to satisfy these

requirements. GLM's allow also to handle nonnormal

responses such as binomial, Poisson and Gamma.

� Regression parameters are estimated using maximum

likelihood.

� Standard reference on GLM's is McCullagh & Nelder (1989).
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Introduction to GLM's: Components of a GLM

Response yi and covariables xi = (1; xi1; : : : ; xi ;p�1)>.

1 Random Component:

yi , i = 1; : : : ; n, independent with density from the linear

exponential family (LEF), i.e.

f (y j�; �) = exp

{
y� � b(�)

�
+ c(y ; �)

}
� > 0 is a dispersion parameter and b(�) and c(�; �) are
known functions.

2 Systematic Component:

�i = �i(�) = x>i � is called linear predictor,

� = (�0; : : : ; �p�1)> are unknown regression parameters

3 Parametric Link Component:

The link function g(�i) = �i combines the linear predictor

with the mean of yi . Canonical link function if � = �.
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Introduction to GLM's: LM as GLM

yi � Normal(x>i �; �
2), independent, i = 1; : : : ; n. Density has

LEF form, since

f (y j�; �2) =
1p
2��2

exp

{
� 1

2�2
(y � �)2

}
= exp

{
y�� �2

2

�2
� 1

2

[
log(2��2) +

y2

�2

]}

De�ning � = � and � = �2 results in

b(�) =
�2

2
and c(y ; �) = �1

2

[
log(2��2) +

y2

�2

]
Since � = �, the canonical link g(�) = � is used in a LM.
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Introduction to GLM's: Moments

It can be shown that for the LEF

E(y) = b0(�) = �

var(y) = �b00(�) = �V (�);

where V (�) = b00(�) is called the variance function.

Thus, we generally consider the model

g(�) = g(b0(�)):

Thus, the canonical link is de�ned as

g = (b0)�1

) g(�) = � = x>�:
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Introduction to GLM's: Estimating parameters

A single algorithm can be used to estimate the parameters of an

LEM glm using maximum likelihood.

The log-likelihood of the sample y1; : : : ; yn is

`(�jy) =

n∑
i=1

{
yi�i � b(�i)

�
+ c(yi ; �)

}
The maximum likelihood estimator �̂ is obtained by solving the

score function (chain rule)

s(�) =
@

@�
`(�jy) =

@

@�
`(�jy)

@�

@�
=

(
y1 � �1
�V (�1)

; : : : ;
yn � �n
�V (�n)

)
that only depends on a mean/variance relationship.
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Introduction to GLM's: Estimating parameters

Because of � = �(�) the score function for the parameter � is

(chain rule again)

s(�) =
@

@�
`(�jy) =

@

@�
`(�jy)

@�

@�

@�

@�

@�

@�
=

n∑
i=1

yi � �i
�V (�i)

1

g0(�i)
xi

which depends again only on the mean/variance relationship.

For the sample y1; : : : ; yn we assumed that there is only one

global dispersion parameter �, i.e. E(yi) = �i , var(yi) = �V (�i).
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Introduction to GLM's: Estimating parameters

The score equation to be solved for the MLE �̂ is

n∑
i=1

yi � �̂i
V (�̂i)

1

g0(�̂i)
xi = 0

which doesn't depend on � and where g(�̂i) = x>i �̂.

Notice, if a canonical link (g(�) = �) is used, we have

g0(�) =
@�

@�
=

1

@�=@�
=

1

@b0(�)=@�
=

1

b00(�)
=

1

V (�)

and the above score equation simpli�es to

n∑
i=1

(yi � �̂i)xi = 0
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Introduction to GLM's: Estimating parameters

A general method to solve the score equation is the iterative

algorithm Fisher's Method of Scoring (derived from a Taylor

expansion of s(�)).
In the t-th iteration, the new estimate �(t+1) is obtained from

the previous one �(t) by

�(t+1) = �(t) + s(�(t))

[
E

(
@s(�)

@�

)∣∣∣∣
�=�(t)

]�1

Therefore, the speciality is the usage of the expected instead of

the observed Hessian matrix.
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Introduction to GLM's: Estimating parameters

It could be shown that this iteration can be rewritten as

�(t+1) =
(
X>W(t)X

)�1
X>W(t)z(t)

with the vector of pseudo-observations z = (z1; : : : ; zn)> and

diagonal weight matrix W de�ned as

zi = g(�i) + g0(�i)(yi � �i)
wi =

1

V (�i)(g0(�i))2
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Introduction to GLM's: Estimating parameters

Since

�(t+1) =
(
X>W(t)X

)�1
X>W(t)z(t)

the estimate �̂ is calculated using an Iteratively (Re-)Weighted

Least Squares (IWLS) algorithm:

1 start with initial guesses �
(0)
i (e.g. �

(0)
i = yi or �

(0)
i = yi + c)

2 calculate working responses z
(t)
i and weights w

(t)
i

3 calculate �(t+1) by weighted least squares

4 repeat steps 2 and 3 till convergence.
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Introduction to GLM's: Standard errors

For the MLE �̂ it holds that (asymptotically)

�̂ � Normal(�; �(X>WX)�1)

Thus, standard errors of the estimators �̂j are the respective

diagonal elements of the estimated variance/covariance matrix

\var(�̂) = �(X>ŴX)�1

with Ŵ = W(�̂). Note that (X>ŴX)�1 is a by-product of the

last IWLS iteration. If � is unknown, an estimator is required.
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Introduction to GLM's: Dispersion estimator

There are practical di�culties when estimating � by ML.

A method-of-moments like estimator is developed considering

the ratios

� =
E(yi � �i)2

V (�i)
; for all i = 1; : : : ; n

Averaging over all these ratios and assuming that the �i 's are

known results in the estimator

1

n

n∑
i=1

(yi � �i)2
V (�i)

However, since � is unknown we better use the bias-corrected

version (also known as the mean generalized Pearson's chi-square

statistic)

�̂ =
1

n � p

n∑
i=1

(yi � �̂i)2
V (�̂i)

=
1

n � p
X 2
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The glm Function

Generalized linear models can be �tted in using the glm

function, which is similar to lm for �tting linear models.
The arguments to a glm call are as follows:

glm(formula, family = gaussian, data, weights, subset,

na.action, start = NULL, etastart, mustart, offset,

control = glm.control(...), model = TRUE,

method = "glm.fit", x = FALSE, y = TRUE,

contrasts = NULL, ...)
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The glm Function

Formula argument:

The formula is speci�ed for a glm as e.g.

y ~ x1 + x2

where x1 and x2 are the names of

� numeric vectors (continuous predictors)

� factors (categorial predictors)

All the variables used in the formula must be in the workspace or

in the data frame passed to the data argument.
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The glm Function

Formula argument:

Other symbols that can be used in the formula are:

� a:b for the interaction between a and b

� a*b which expands to 1 + a + b + a:b

� . �rst order terms of all variables in data

� - to exclude a term (or terms)

� 1 intercept (default)

� -1 without intercept
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The glm Function

Family argument:

The family argument de�nes the response distribution (variance

function) and the link function. The exponential family functions

available in are e.g.

� gaussian(link = "identity")

� binomial(link = "logit")

� poisson(link = "log")

� Gamma(link = "inverse")
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The glm Function

Extractor functions:

The glm function returns an object of class c("glm", "lm").

There are several methods available to access or display

components of a glm object, e.g.

� residuals()

� fitted()

� predict()

� coef()

� deviance()

� summary()

� plot()
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The glm Function: Example

Re�t life expectancies model using glm().
The �rst part contains the same information as from lm()

> mod<-glm(life.expectancy ~ urban+log(physicians)+temperature)

> summary(mod)

Call:

glm(formula=life.expectancy ~ urban+log(physicians)+temperature)

Deviance Residuals:

Min 1Q Median 3Q Max

-14.033 -3.089 0.379 3.328 12.144

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.70367 1.79065 37.251 < 2e-16 ***

urban 8.76445 2.53243 3.461 0.000711 ***

log(physicians) 3.51370 0.39341 8.931 1.97e-15 ***

temperature -0.03008 0.05668 -0.531 0.596408
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The glm Function: Example

Since the default family="gaussian", deviance residuals

corresponds to ordinary residuals as in a linear model.

A �ve-number summary of those raw residuals is given.



77/203

Wald tests

Remember that for the MLE it asymptotically holds that

�̂ � Normal(�; �(X>WX)�1)

Thus, we can utilize this to construct a test statistic on the

signi�cance of a coe�cient, say �j for j = 1; : : : ; p � 1.

If we test

H0 : �j = 0 versus H1 : �j 6= 0

we can use the test statistic

t =
�̂j√

�̂(X>ŴX)�1j+1;j+1

which under H0 asymptotically follows a t distribution with n � p

degrees of freedom.
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The glm Function: Example

The second part contains some new information on estimated

dispersion and goodness-of-�t aspects which we will discuss

later in detail.

First the dispersion estimate (if necessary) �̂ is provided

(Dispersion parameter for gaussian family taken to be 22.9815)

This estimate is simply the squared residual standard error (that

was 4.794 in the summary(lm())).
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(Scaled) Deviance

Next there is the deviance of two models and the number of
missing observations:

Null deviance: 11109.6 on 145 degrees of freedom

Residual deviance: 3263.4 on 142 degrees of freedom

(23 observations deleted due to missingness)

The �rst refers to the null model which corresponds to a model

with intercept only (the iid assumption, no explanatory variables).

The associated degrees of freedom are n � 1.

The second refers to our �tted model with p � 1 explanatory

variables in the predictor and, thus, with associated degrees of

freedom n � p.
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(Scaled) Deviance

The deviance of a model is de�ned as the distance of

log-likelihoods, i.e.

D(y; �̂) = �2� (`(�̂jy)� `(yjy))

Here, �̂ are the �tted values under the considered model

(maximizing the log-likelihood under the given parametrization),

and y denote the estimated means under a model without any

restriction at all (thus �̂ = y in such a saturated model).
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(Scaled) Deviance

For any member of the LEF the deviance equals

D(y; �̂) = �2�
n∑
i=1

(yi �̂i � yi �̃i)� (b(�̂i)� b(�̃i))

�

= �2
n∑
i=1

{
(yi �̂i � yi �̃i)� (b(�̂i)� b(�̃i))

}
where �̃i denotes the estimate of �i under the saturated model.

Under the saturated model, there are as many mean parameters

�i allowed as observations yi .

Note that for LEF members the deviance

D(y; �̂) = �2
n∑
i=1

{
(yi �̂i � yi �̃i)� (b(�̂i)� b(�̃i))

}
doesn't depend on the dispersion!
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(Scaled) Deviance

Example: Gaussian responses (� = �2) with identity link (LM)

`(�̂jy) = �n

2
log(2��2)� 1

2

n∑
i=1

(yi � �̂i)2
�2

`(yjy) = �n

2
log(2��2)

Therefore the deviance equals the sum of squared errors, i.e.

D(y; �̂) = �2� (`(�̂jy)� `(yjy)) =

n∑
i=1

(yi � �̂i)2 = SSE(�̂)
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(Scaled) Deviance

Finally we have

AIC: 877.94

Number of Fisher Scoring iterations: 2

The Akaike Information Criterion (AIC) also assess the �t

penalizing for the total number of parameters p + 1 (linear

predictor and dispersion in this case) and is de�ned as

AIC = �2`(�̂jy) + 2(p + 1)

The smaller the AIC value the better the �t. Use AIC only to

compare di�erent models (not necessarily nested).

Sometimes, the term �2`(�̂jy) is called disparity.
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Residuals

Several di�erent ways to de�ne residuals in a GLM:

residuals(object, type = c("deviance", "pearson", "working",

"response", "partial"), ...)

� deviance: write deviance as
∑n

i=1
d(yi ; �̂i)

2

� pearson: rPi = (yi � �̂i)=
√
V (�̂i)

� working: rWi = ẑi � �̂i = (yi � �̂i)g0(�̂i) (remember that
g0(�̂i) = 1=V (�̂i) for canonical link models)

� response: yi � �̂i
� partial: rPi + �̂jxij is the partial residual for the j-th

covariate

Except the partial residuals, these types are all equivalent for

LM's.
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Residuals

Deviance residuals are the default used in since they reect the

same criterion as used in the �tting.

Plot deviance residuals against �tted values:

> plot(residuals(mod) ~ fitted(mod),

+ xlab = expression(hat(mu)[i]),

+ ylab = expression(r[i]))

> abline(0, 0, lty = 2)
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Residuals

Deviance/Pearson/response/working residuals vs. �tted values:



87/203

The glm Function: Plot

The plot() function gives the following sequence of plots:

� deviance residuals vs. �tted values

� Normal Q-Q plot of deviance residuals standardized to unit

variance

� scale-location plot of standardized deviance residuals

� standardized deviance residuals vs. leverage with Cook's

distance contours

> plot(mod)
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The glm Function: Plot
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Black Cherry Trees Revisited

So far we considered (Box-Cox transformation) models like

� V 1=3
i

ind� Normal(�i ; �
2), E(V 1=3) = � = H + D

� log(Vi)
ind� Normal(�i ; �

2), E(log(V )) = � = log(H) + log(D)

In what follows we will assume that a GLM holds with

� Vi
ind� Normal(�i ; �

2) and g(E(V )) = �.

More speci�cally, we like to check out the models:

� �1=3 = H + D

� log(�) = log(H) + log(D).

These models on the observations scale can be easily �tted

using glm().
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Black Cherry Trees Revisited

Vi
ind� Normal(�i ; �

2), �1=3 = H + D

> pmodel <- glm(V ~ H + D, family = gaussian(link=power(1/3)))

> summary(pmodel)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.051322 0.224095 -0.229 0.820518

H 0.014287 0.003342 4.274 0.000201 ***

D 0.150331 0.005838 25.749 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for gaussian family taken to be 6.577063)

Null deviance: 8106.08 on 30 degrees of freedom

Residual deviance: 184.16 on 28 degrees of freedom

AIC: 151.21

Number of Fisher Scoring iterations: 4
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Black Cherry Trees Revisited

Vi
ind� Normal(�i ; �

2), �1=3 = H + D

> AIC(pmodel)

[1] 151.2102

> -2*logLik(pmodel) + 2*4

'log Lik.' 151.2102 (df=4)

> logLik(pmodel)

'log Lik.' -71.60508 (df=4)

> sum(log(dnorm(V,pmodel$fit,sqrt(summary(pmodel)$disp*28/31))))

[1] -71.60508

> sum(residuals(pmodel)^2)

[1] 184.1577

> deviance(pmodel)

[1] 184.1577

> sum((V-mean(V))^2) # Null Deviance

[1] 8106.084
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Black Cherry Trees Revisited

Vi
ind� Normal(�i ; �

2), log(�) = log(H) + log(D)

> summary(glm(V ~ log(H) + log(D), family = gaussian(link=log)))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.53700 0.94352 -6.928 1.57e-07 ***

log(H) 1.08765 0.24216 4.491 0.000111 ***

log(D) 1.99692 0.08208 24.330 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for gaussian family taken to be 6.41642)

Null deviance: 8106.08 on 30 degrees of freedom

Residual deviance: 179.66 on 28 degrees of freedom

AIC: 150.44

Number of Fisher Scoring iterations: 4
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Gamma Regression

Gamma responses: y � Gamma(a; �) with density function

f (y ja; �) = exp(��y)�ay a�1
1

Γ(a)
; a; �; y > 0

with E(y) = a=� and var(y) = a=�2.

Mean parametrization needed!
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Gamma Regression

Reparametrization: de�ne � = �=�; � = a

f (y ja; �) = exp(��y)�ay a�1
1

Γ(a)

f (y j�; �) = exp

(
��
�
y

)(
�

�

)�

y��1
1

Γ(�)

= exp

y
(
� 1

�

)
� log�

1=�
+ � log � + (� � 1) log y � log Γ(�)

 :

LEF member with:

� = �1=�, b(�) = log� = � log(��), and � = 1=�.



95/203

Gamma Regression

Gamma(�; �) belongs to the LEF with

� = �1=�; b(�) = log� = � log(��); � = 1=�:

Thus,

E(y) = b0(�) = ��1�� = �1

�
= �

var(y) = �b00(�) = �
1

�2
= ��2

with dispersion � = 1=� and variance function V (�) = �2.

Coe�cient of variation:√
var(yi)

E(yi)
=

√
��2i

�i
=
√
� = constant for all i = 1; : : : ; n.
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Gamma Regression

Form of the Gamma(�; �) density function is determined by �.
Functions in are based on shape (= 1=�) and scale (= ��)

> y <- (1:400)/100

> shape <- 0.9

> scale <- 1.5

> plot(y, dgamma(y, shape=shape, scale=scale))

> mean(rgamma(10000, shape=shape, scale=scale)); shape*scale

[1] 1.374609

[1] 1.35

> var(rgamma(10000, shape=shape, scale=scale)); shape*(scale)^2

[1] 2.001009

[1] 2.025
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Gamma Regression

Gamma distributions are generally skewed to the right.

shape < 1 (0.9 left) shape > 1 (1.5 right)

Special cases: � = 1=� = 1 (exponential) and � !1 (normal)
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Gamma Regression: Link Function

What's an appropriate link function?

� Canonical link function: � = � = � 1

� (inverse-link).

Since we need � > 0 we need � < 0 giving complicated

restriction on �.

� Thus, the log-link is often used without restrictions on �, i.e.

log� = �
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Gamma Regression: Deviance

Assume that yi � Gamma(�i ; �) (independent) and log�i = �i .

Then

`(�̂; �jy) =

n∑
i=1

yi

(
� 1

�̂i

)
� log �̂i

�
+ c(yi ; �)


`(y; �jy) =

n∑
i=1

yi

(
� 1

yi

)
� log yi

�
+ c(yi ; �)


and thus the scaled deviance equals

1

�
D(y; �̂) = �2

�

n∑
i=1

{(
� yi

�̂i
� log �̂i

)
� (�1� log yi)

}

= �2

�

n∑
i=1

{
log

yi

�̂i
� yi � �̂i

�̂i

}
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Gamma Regression: Dispersion

Method of moments is used to estimate the dispersion

parameter. We have a sample y1; : : : ; yn with

E(yi) = �i and var(yi) = ��2i ; i = 1; : : : ; n

Consider zi = yi=�i with E(zi) = 1 and var(zi) = � (zi are iid).

Thus,

�̂ =
1

n � p

n∑
i=1

(
yi

�̂i
� 1

)2

=
1

n � p

n∑
i=1

(
yi � �̂i
�̂i

)2

which is equivalent to the mean Pearson statistic.
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The glm Function: Example Life Expectancy

We now assume that life expectancy follows a gamma model.

> gmod<-glm(life.expectancy~urban+log(physicians)+temperature,

+ family=Gamma(link="log"))

> summary(gmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.2020227 0.0269393 155.981 < 2e-16 ***

urban 0.1110928 0.0380990 2.916 0.00412 **

log(physicians) 0.0543425 0.0059186 9.182 4.61e-16 ***

temperature -0.0002702 0.0008527 -0.317 0.75180

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Given urban and log(physicians) are already in the model,

temperature seems to be again irrelevant as an additional

predictor.



102/203

The glm Function: Example Life Expectancy

The next part of the output contains information about:

(Dispersion parameter for Gamma family taken to be 0.005201521)

The dispersion estimate �̂ is the mean Pearson statistic

> # direct from summary(.)

> summary(gmod)$dispersion

[1] 0.005201521

> # or explicitly calculated as

> sum(residuals(gmod, type="pearson")^2)/gmod$df.resid

[1] 0.005201521

giving the estimated response variance as v̂ar(yi) = 0:0052V (�̂i).
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The glm Function: Example Life Expectancy

(Dispersion parameter for Gamma family taken to be 0.005201521)

Null deviance: 2.42969 on 145 degrees of freedom

Residual deviance: 0.76096 on 142 degrees of freedom

(23 observations deleted due to missingness)

AIC: 896.14

Number of Fisher Scoring iterations: 4

For the scaled deviance we get

1

�̂
D(y; �̂) =

0:76096

0:00520
= 146:2957

which is pretty close its associated degrees of freedom 142.
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The glm Function: Example Life Expectancy

Residual Deviance Test:

Model (�): yi ind� Gamma(�i = exp(�i); �), i = 1; : : : ; n.

Reject model (�) at level � if

1

�
D(y; �̂) > �2

1��;n�p

Since the dispersion � is unknown, we use its estimate �̂ instead

and reject model (�) if
1

�̂
D(y; �̂) > �2

1��;n�p

> 1-pchisq(deviance(gmod)/summary(gmod)$disp, gmod$df.resid)

[1] 0.3852 # p-value
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The glm Function: Example Life Expectancy

Partial Deviance Test:

Consider the model g(�) = X1�1 + X2�2 with dim(�1) = p1,

dim(�2) = p2 and p = p1 + p2. Now calculate

� �̂1 = g�1(X1�̂1): the �tted means under the reduced model

with design X1 only (corresponds to H0 : �2 = 0)

� �̂2 = g�1(X1�̂1 + X2�̂2): the �tted means under the full

model with design X1 and X2

� �̂ = X 2=(n � p): dispersion estimate under the full model

Reject H0 at level � if

(D(y; �̂1)�D(y; �̂2))=p2

�̂
> F1��;p2;n�p



106/203

The glm Function: Example Life Expectancy

Reject H0 : �temp = 0 if

(D(y; �̂1)�D(y; �̂2))=1

�̂
> F1��;1;n�p

> (dev2 <- deviance(gmod))

[1] 0.7609569

> (hatphi <- sum(residuals(gmod, type="pearson")^2)/gmod$df.r)

[1] 0.005201521

> gmod1 <- glm(life.exp ~ urban + log(physicians),

+ family=Gamma(link="log"))

> (dev1 <- deviance(gmod1))

[1] 0.761484

> (F <- ((dev1-dev2)/1)/hatphi)

[1] 0.1013431

> 1-pf(F, 1, gmod$df.r)

[1] 0.7506915
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The glm Function: Example Life Expectancy

ANalysis Of deViAnce (ANOVA):
Much easier to use again anova():

> anova(gmod, test="F")

Analysis of Deviance Table

Model: Gamma, link: log

Response: life.expectancy

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr(>F)

NULL 145 2.42969

urban 1 1.09627 144 1.33342 210.76 <2e-16 ***

log(physicians) 1 0.57194 143 0.76148 109.96 <2e-16 ***

temperature 1 0.00053 142 0.76096 0.10 0.7507

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` '
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The glm Function: Example Life Expectancy

Some Diagnostic Plots:

> plot(gmod1$y, fitted(gmod1), xlim=c(45,85), ylim=c(45,85))

> abline(0,1)

> plot(fitted(gmod1), residuals(gmod1))
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The glm Function: Example Life Expectancy

Something about the usage of predict()

predict(object, newdata = NULL,

type = c("link", "response", "terms"),

se.fit = FALSE, dispersion = NULL, ...)

� newdata: data frame with predictor values for which to

predict.

� type: default is on the scale of the linear predictors. The

"terms" option returns a matrix giving the �tted values of

each term in the model formula on the linear predictor scale.

� se.fit: logical indicator if standard errors are required.

� dispersion: parameter value used in computing standard

errors (if omitted, that returned by summary).
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The glm Function: Example Life Expectancy

Predict life expectancy for urbanization rates of 37, 56, and 74 %
(the empirical 25, 50, and 75 % data quartiles).

> u.q <- quantile(urban, probs = seq(0.25, 0.75, 0.25),

+ na.rm="TRUE")

> new <- expand.grid(physicians=seq(0.5, 8, 0.2), urban = u.q)

> p <- predict(gmod1, newdata=new, type="response")

> plot(new$physicians, p, xlab="Physicians/1000 people",

+ ylab="Life Expectancy in Years")
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The glm Function: Example Life Expectancy



112/203

The glm Function: Example Life Expectancy

Remarks about other predictions:

> # predict linear predictor \hat\eta_i

> pl <- predict(gmod1, newdata=new, type="link")

1 2 3 ...

4.202555 4.221124 4.234993 ...

> # predict each term in the linear predictor separately

> pt <- predict(gmod1, newdata=new, type="terms")

urban log(physicians)

1 -0.01994721 -0.023863823

2 -0.01994721 -0.005295193

3 -0.01994721 0.008573900

:

attr(,"constant")

[1] 4.246366

> attr(pt, "const") + pt[ ,"urban"] + pt[ ,"log(physicians)"]

1 2 3 ...

4.202555 4.221124 4.234993 ...
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Logistic Regression

Response Variables yi , i = 1; : : : ; n:

� ungrouped: each variable yi can take one of two values, say

success/failure (or 0/1),

� grouped: the variable miyi is the number of successes in a

given number of mi trials; yi is the relative success

frequency, miyi denotes the absolute success frequency.

Both situations correspond to a Binomial(mi ; �i) model, where in

the ungrouped case we have mi = 1.

Question: Is the binomial distribution also a member of the linear

exponential family (LEF)?
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Logistic Regression: LEF Member

Standardized Binomial: my � Binomial(m; �) (m known)

f (y jm; �) = Pr(Y = y) = Pr(mY = my) =

(
m

my

)
�my (1� �)m�my

= exp

(
log

(
m

my

)
+ my log� + m(1� y) log(1� �)

)
= exp

(
y log �

1��
� log 1

1��

1=m
+ log

(
m

my

))
; y = 0;

1

m
;
2

m
; : : : ; 1:

If m is another unknown parameter, this is no longer a LEF

member!
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Logistic Regression: LEF Member

Standardized Binomial: my � Binomial(m; �) (m known)

f (y jm; �) = exp

(
y log �

1��
� log 1

1��

1=m
+ log

(
m

my

))
; y = 0;

1

m
;
2

m
; : : : ; 1:

Let � = log �
1�� , (� = e�=(1 + e�)) and � = 1 then we have

identi�ed another LEF member with

a =
1

m
; b(�) = log

1

1� � = log(1 + exp(�)); c(y ; �) = log

(
m

my

)
:

Notice: the dispersion parameter � = 1 is known in this case

and a = 1=m is a weight and considered to be �xed!
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Logistic Regression: Link

For a sample miyi
ind� Binomial(mi ; �i), yi = 0; 1=mi ; : : : ; 1, we

have E(miyi) = mi�i and var(miyi) = mi�i(1� �i) and thus

E(yi) = �i =: �i and var(yi) =
1

mi

�i(1� �i)

with restriction 0 < �i < 1.

Canonical link g(�i) = b0�1(�i) = �i is the logit link

logit(�i) = log
�i

1� �i = log
mi�i

mi �mi�i
= �i = �i

) �i =
exp(�i)

1 + exp(�i)
:

However, in principal any inverse of a continuous distribution

function can be used as g(�).
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Logistic Regression: Link

The name logit refers to the distribution function of a logistic

distributed random variable with density function

f (y j�; �) =
exp((y � �)=�)

�
(
1 + exp((y � �)=�)

)2 ; � 2 R; � > 0 ;

for which E(y) = � and var(y) = �2�2=3 holds.

The density and the cdf of its standard form (� = 0, � = 1) is

f (y j0; 1) =
exp(y)(

1 + exp(y)
)2 ; y 2 R; F (y j0; 1) =

exp(y)

1 + exp(y)

for which E(y) = 0 and var(y) = �2=3 holds.

F (y j0; 1) corresponds to the inverse logit link.
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Logistic Regression: Links

With g�1(�) = Φ(�) we refer to a probit model. Logit- and

probit link are both symmetric links.

Extreme value distribution:

Maximum

Fmax (y) = exp(� exp(�y)) ; y 2 R

with E(y) =  (Euler constant  = 0:577216) and var(y) = �2=6.

The inverse of Fmax (�) results in the log-log link and equals

g(�) = � log(� log(�)):
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Logistic Regression: Links

Minimum

Fmin(y) = 1� Fmax (�y) = 1� exp(� exp(y)) ; y 2 R

with E(y) = � and var(y) = �2=6.

The inverse of Fmin(�) is called complementary log-log link and

equals g(�) = log(� log(1� �)).

Both extreme value distribution functions give asymmetric links.
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Logistic Regression: Links

R allows for family=binomial to use several speci�cations of the

link function: logit, probit, cauchit, as also log and cloglog.

> euler <- 0.577216

> mu.logit <-function(eta) 1/(1 + exp(-eta))

> mu.probit <-function(eta) pnorm(eta, 0, pi/sqrt(3))

> mu.cloglog<-function(eta) 1-exp(-exp(-euler+eta/sqrt(2)))

> plot(mu.logit, (-4): 4, xlim = c(-4, 4), ylim = c(0,1),

+ xlab = expression(eta),

�+ ylab = expression(mu == g^-1 * (eta)), lwd=2)

> curve(mu.probit, (-4):4, add = TRUE, lty = 2, lwd=2)

> curve(mu.cloglog, (-4):4, add = TRUE, lty = 3, lwd=2)

> legend(-4, 1, c("logit", "probit", "complementary log-log"),

+ lty = 1:3, lwd=2)
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Logistic Regression: Links
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Logistic Regression: Deviance

For miyi � Binomial(mi ; �i) (mi known) we write the ith

log-likelihood contribution as

log f (yi jmi ; �i) = miyi log
�i

1� �i �mi log
1

1� �i + log

(
mi

miyi

)
to get the sample (model and saturated) log-likelihood functions

`(�̂jy) =

n∑
i=1

{
miyi log

�̂i
1� �̂i �mi log

1

1� �̂i + log

(
mi

miyi

)}

`(yjy) =

n∑
i=1

{
miyi log

yi

1� yi
�mi log

1

1� yi
+ log

(
mi

miyi

)}
:
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Logistic Regression: Deviance

`(�̂jy) =

n∑
i=1

{
miyi log

�̂i
1� �̂i �mi log

1

1� �̂i + log

(
mi

miyi

)}

`(yjy) =

n∑
i=1

{
miyi log

yi

1� yi
�mi log

1

1� yi
+ log

(
mi

miyi

)}
:

Because of � = 1 and ai = 1=mi the resulting (scaled) deviance is

1

�
D(y; �̂) = �2

n∑
i=1

{
miyi

(
log

�̂i
yi

+ log
1� yi

1� �̂i

)
�mi log

1� yi

1� �̂i

}

= 2

n∑
i=1

mi

{
(1� yi) log

1� yi

1� �̂i + yi log
yi

�̂i

}
:

Notice: for yi = 0 or 1 independent of �̂i (because x log x = 0 for

x = 0) the respective term in the deviance component disappears.
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Logistic Regression: Deviance

For binary data yi 2 f0; 1g (mi = 1 for all i) we get

`(�i jyi) =

{
log(1� �i) if yi = 0 ;

log�i if yi = 1

and

d(yi ; �̂i) =

{�2 log(1� �̂i) if yi = 0 ;

�2 log �̂i if yi = 1 :

The deviance increment d(yi ; �̂i) describes the fraction of a

binary response of the maximized sample log-likelihood function

`(�̂jy) =

n∑
i=1

`(�̂i jyi) = �1

2

n∑
i=1

d(yi ; �̂i) :
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Logistic Regression: Tolerance Distribution

Bioassay: experimental study based on binary responses, e.g.

testing the e�ect of various concentrations in animal experiments.

Number of animals responding is considered as binomial response.

Example: Insecticide applied on groups (batches) of insects of

known sizes. When applying a low dose to a group, then no

insect will probably fall out. If a high dose is given to another

group, many insects of this group will die.

If an insect dies or not when receiving a certain dosage depends

on the tolerance of the animal. Insects with a low tolerance will

rather die on a certain dose than any other with a high tolerance.
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Logistic Regression: Tolerance Distribution

Assumption: the tolerance U of an insect is a random variable

with density f (u). Insects with tolerance U < di will die.

Probability that an animal dies when receiving dose di is

pi = Pr(U < di) =

∫ di

�1

f (u) du :

If U � Normal(�; �2), then

pi = Φ

(
di � �
�

)
:

With �0 = ��=� and �1 = 1=� this gives

pi = Φ (�0 + �1di) or probit(pi) = Φ�1(pi) = �0 + �1di ;

i.e. a probit model for mortality pi depending on the dose di .
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Logistic Regression: Tolerance Distribution

If U follows a logistic(�; �) model then

pi = Pr(U � di) =

∫ di

�1

exp((u � �)=�)

�
(
1 + exp((u � �)=�)

)2 du

=
exp((di � �)=�)

1 + exp((di � �)=�)
:

With �0 = ��=� and �1 = 1=� we get

pi =
exp(�0 + �1di)

1 + exp(�0 + �1di)
or logit(pi) = �0 + �1di

giving a logistic link model for pi .
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Logistic Regression: Tolerance Distribution

Example: E�ect of poison given to the Tobacco Budworm.

Groups of 20 moths of both sex are exposed to various doses of

a poison and the number of killed animals has been recorded.

Dose in �g

sex 1 2 4 8 16 32

male 1 4 9 13 18 20

female 0 2 6 10 12 16
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Logistic Regression: Tolerance Distribution

Doses are powers of 2. Thus, we use ldose = log2(dose) as
predictor variable.

> (ldose <- rep(0:5, 2))

[1] 0 1 2 3 4 5 0 1 2 3 4 5

> (sex <- factor(rep(c("M", "F"), c(6, 6))))

[1] M M M M M M F F F F F F

Levels: F M

> (dead <- c(1,4,9,13,18,20,0,2,6,10,12,16))

[1] 1 4 9 13 18 20 0 2 6 10 12 16
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Logistic Regression: Tolerance Distribution

� Speci�cation of binomial responses in R by means of a matrix

SF (success/failure), in which the �rst (second) column contains

the number of successes (failures).

� Model describes the probability of success (the number of
killed animals in our case) at a certain dosage.

> (SF <- cbind(dead, alive = 20-dead))

dead alive

[1,] 1 19

[2,] 4 16

:

[12,] 16 4



131/203

Logistic Regression: Tolerance Distribution

> summary(budworm.lg <- glm(SF ~ sex*ldose, family = binomial))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.9935 0.5527 -5.416 6.09e-08 ***

sexM 0.1750 0.7783 0.225 0.822

ldose 0.9060 0.1671 5.422 5.89e-08 ***

sexM:ldose 0.3529 0.2700 1.307 0.191

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 124.8756 on 11 degrees of freedom

Residual deviance: 4.9937 on 8 degrees of freedom

AIC: 43.104
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Logistic Regression: Tolerance Distribution

> summary(budworm.lg <- glm(SF ~ sex*ldose, family = binomial))

Here, sex*ldose expands to 1 + sex + ldose + sex:ldose

Thus, it speci�es sex-speci�c submodels of the form:

If sex=female: � = �0 + �ldoseldose

If sex=male: � =
(
�0 + �sexM

)
+
(
�ldose + �sexM:ldose

)
ldose

Therefore, this interaction term in the model additionally allows

for sex-speci�c slopes.
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Logistic Regression: Tolerance Distribution

Alternative model speci�cation by numerical vector with elements
si=mi , where mi is the number of trials and si the number of
successes. The values mi are speci�ed using weights.

> summary(glm(dead/20 ~ sex*ldose, family = binomial,

+ weights=rep(20,12)))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.9935 0.5527 -5.416 6.09e-08 ***

sexM 0.1750 0.7783 0.225 0.822

ldose 0.9060 0.1671 5.422 5.89e-08 ***

sexM:ldose 0.3529 0.2700 1.307 0.191

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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Logistic Regression: Tolerance Distribution

Result indicates a signi�cant slope of ldose for females.

sexM:ldose represents (not signi�cant) a larger slope for males.

First level of sex relates to female moths ("F" before "M")

described by the intercept.

sexM is the (not signi�cant) di�erence of the sex-speci�c
intercepts.

> plot(c(1,32), c(0,1), type="n", xlab="dose", log="x")

> text(2^ldose, dead/20, as.character(sex))

> ld <- seq(0, 5, 0.1), l <- length(ld)

> lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

+ sex=factor(rep("M",l,levels=levels(sex))),type="response"))

> lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

+ sex=factor(rep("F",l,levels=levels(sex))),type="response"))
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Logistic Regression: Tolerance Distribution
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Logistic Regression: Tolerance Distribution

sexM describes the di�erence at dose 1�g (log2(Dose) = 0) and

seems to be irrelevant.

If we are interested in di�erence at dose 8�g (log2(Dose) = 3),
we get

> summary(budworm.lg8 <- update(budworm.lg, .~sex*I(ldose-3)))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2754 0.2305 -1.195 0.23215

sexM 1.2337 0.3770 3.273 0.00107 **

I(ldose - 3) 0.9060 0.1671 5.422 5.89e-08 ***

sexM:I(ldose - 3) 0.3529 0.2700 1.307 0.19117

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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Logistic Regression: Tolerance Distribution

> anova(budworm.lg, test = "Chisq")

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 11 124.876

sex 1 6.077 10 118.799 0.0137 *

ldose 1 112.042 9 6.757 <2e-16 ***

sex:ldose 1 1.763 8 4.994 0.1842

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Signi�cant sex-di�erence at dose 8�g.

Model �ts nicely (deviance 5 at df = 8).

Con�rmed by the analysis of deviance.

We resign interactions.
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Logistic Regression: Tolerance Distribution

Quadratic ldose term not necessary.

> anova(update(budworm.lg, .~.+ sex*I(ldose^2)), test="Chisq")

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 11 124.876

sex 1 6.077 10 118.799 0.0137 *

ldose 1 112.042 9 6.757 <2e-16 ***

I(ldose^2) 1 0.907 8 5.851 0.3410

sex:ldose 1 1.240 7 4.611 0.2655

sex:I(ldose^2) 1 1.439 6 3.172 0.2303

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Analysis recommends a model with 2 parallel lines on the

predictor- (logit)-axis (1 for each sex).
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Logistic Regression: Tolerance Distribution

Estimate dose that guarantees a certain mortality: �rst

reparameterize model, such that each sex has its own intercept.

> summary(budworm.lg0<-glm(SF~sex+ldose-1, family=binomial))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

sexF -3.4732 0.4685 -7.413 1.23e-13 ***

sexM -2.3724 0.3855 -6.154 7.56e-10 ***

ldose 1.0642 0.1311 8.119 4.70e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Null deviance: 126.2269 on 12 degrees of freedom

Residual deviance: 6.7571 on 9 degrees of freedom

AIC: 42.867
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Logistic Regression: Tolerance Distribution

�p is the value of log2(dose) inducing mortality p.

2�0:5 is the 50% lethal dose (LD50) and using a link

g(p) = �0 + �1�p we get

�p =
g(p)� �0

�1
:

Dose �p depends on � = (�0; �1)>, thus �p = �p(�).

Replace � by �̂ yields estimator �̂p = �p(�̂) with property (linear

approximation)

�̂p � �p + (�̂ � �)>
@�p(�)

@�
:

Because E(�̂) � �, we have E(�̂p) � �p.
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Logistic Regression: Tolerance Distribution

Moreover, the delta method gives

var(�̂p) =
@�p(�)

@�>
var(�̂)

@�p(�)

@�
;

where

@�p

@�0
= � 1

�1
;

@�p

@�1
= �g(p)� �0

�2
1

= � �p
�1
:

Function dose.p from MASS gives for female moths:

> require(MASS)

> dose.p(budworm.lg0, cf = c(1,3), p = (1:3)/4) # females

Dose SE

p = 0.25: 2.231 0.2499

p = 0.50: 3.264 0.2298

p = 0.75: 4.296 0.2747
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Logistic Regression: Tolerance Distribution

For male moths we get:

> dose.p(budworm.lg0, cf = c(2,3), p = (1:3)/4) # males

Dose SE

p = 0.25: 1.197 0.2635

p = 0.50: 2.229 0.2260

p = 0.75: 3.262 0.2550

An estimated dose of log2(dose) = 3:264, or dose = 9:60, is

necessary to kill 50% of the female moths, but only dose = 4:69

for 50% of the male moths.
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Logistic Regression: Tolerance Distribution

Alternative probit model: gives very similar results.

E.g., for female moths we get

> dose.p(update(budworm.lg0, family=binomial(link=probit)),

+ cf=c(1,3), p=(1:3)/4)

Dose SE

p = 0.25: 2.191 0.2384

p = 0.50: 3.258 0.2241

p = 0.75: 4.324 0.2669
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Logistic Regression: Parameter Interpretation

Assume that the mean of a binary response depends on a

two-level factor x 2 f0; 1g.
Cell probabilities:

x = 1 x = 0

y = 1 �1 �0
y = 0 1� �1 1� �0

For x = 1, the odds that y = 1 occurs and not y = 0 is

�1=(1� �1):

Its log-transformation

log
�1

1� �1 = logit(�1)

is called log-odds or Logit.
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Logistic Regression: Parameter Interpretation

The ratio of the odds for x = 1 and the one for x = 0 is called

odds-ratio

 =
�1=(1� �1)

�0=(1� �0)
;

Its log-transformation is the log-odds ratio or the logit

di�erence

log = log
�1=(1� �1)

�0=(1� �0)
= logit(�1)� logit(�0) :
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Logistic Regression: Parameter Interpretation

Let �(x) = Pr(y = 1jx) and 1� �(x) = Pr(y = 0jx), x 2 f0; 1g.
The model

log
�(x)

1� �(x)
= �0 + �1x

gives probabilities

x = 1 x = 0

y = 1 �(1) =
exp(�0 + �1)

1 + exp(�0 + �1)
�(0) =

exp(�0)

1 + exp(�0)

y = 0 1� �(1) =
1

1 + exp(�0 + �1)
1� �(0) =

1

1 + exp(�0)

As log-odds ratio we get

log = log
�(1)=(1� �(1))

�(0)=(1� �(0))
= log

exp(�0 + �1)

exp(�0)
= �1 :
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Logistic Regression: Parameter Interpretation

For a general predictor x with a respective model, the odds are

Pr(y = 1jx)

Pr(y = 0jx)
=

�(x)

1� �(x)
= exp(�0 + �1x) = exp(�0) exp(�1)x :

Interpretation: for a unit change in x , the odds of y = 1 multiply

by exp(�1).
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Logistic Regression: Parameter Interpretation

Remission Example: Injection treatment of 27 cancer patients

should decay the carcinoma. The response measures whether a

patient achieved remission.

Most important explanatory variable LI (labeling index) describes

the cell activity after treatment.

For n = 14 di�erent LI values, the response miyi is the number

of successful remissions at mi patients all with labeling index LIi :

LIi mi miyi LIi mi miyi LIi mi miyi
8 2 0 18 1 1 28 1 1

10 2 0 20 3 2 32 1 0

12 3 0 22 2 1 34 1 1

14 3 0 24 1 0 38 3 2

16 3 0 26 1 1
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Logistic Regression: Parameter Interpretation

Assumption: mi patients in the LIi group are homogenous, i.e.

miyi
ind� Binomial(mi ; �i) ; with log

�i
1� �i = �0 + �1LIi :

> li <- c(seq(8, 28, 2), 32, 34, 38)

> total <-c(2, 2, 3, 3, 3, 1, 3, 2, 1, 1, 1, 1, 1, 3)

> back <-c(0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 1, 0, 1, 2)

> SF <- cbind(back, nonback = total - back)

> summary(carcinoma <- glm(SF ~ li, family=binomial))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.7771 1.3786 -2.74 0.0061 **

li 0.1449 0.0593 2.44 0.0146 *

---

Null deviance: 23.961 on 13 degrees of freedom

Residual deviance: 15.662 on 12 degrees of freedom

AIC: 24.29
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Logistic Regression: Parameter Interpretation

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.7771 1.3786 -2.74 0.0061 **

li 0.1449 0.0593 2.44 0.0146 *

---

Interpretation:

� If LI increases by 1 unit, the odds for remission multiplies with

exp(0:145) = 1:156 (increases by 15.6%).

� Remission prob. is 1=2 if �̂ = 0, i.e. if LI = ��̂0=�̂1 = 26:07.

� At the mean LI-value,
∑

i LIimi=
∑

i mi = 20:07, the linear

predictor is �̂0 + �̂120:07 = �0:8691 (corresponds with 29.54%).

There are 9 successes from 27 patients observed, i.e. 33.33%.
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Logistic Regression: Parameter Interpretation

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.7771 1.3786 -2.74 0.0061 **

li 0.1449 0.0593 2.44 0.0146 *

---

Interpretation:

� Logistic regression curve: �(�) = e�=(1 + e�) thus
@�(x)=@x = �1�(x)(1� �(x)). Largest ascent in �(x) = 1=2, i.e.

in LI = 26:07, which is �̂1=4 = 0:0362.

� Question: does remission signi�cantly depend on the LI-value?

The p-value of 1.46% (Wald test) shows evidence for this.
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Logistic Regression: Parameter Interpretation

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.7771 1.3786 -2.74 0.0061 **

li 0.1449 0.0593 2.44 0.0146 *

---

Null deviance: 23.961 on 13 degrees of freedom

Residual deviance: 15.662 on 12 degrees of freedom

AIC: 24.29

Interpretation:

� For an iid random sample model the (NULL) Deviance is 23.96

with df = 13. The deviance di�erence is 8.30 with associated

loss of df = 1 corresponds to �2
1;1�� quantile with � = 0:004

(even more signi�cant as Wald test).

Signi�cant (positive) association between LI and remission.
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Logistic Regression: Parameter Interpretation

Simpler with :

> anova(carcinoma, test="Chisq")

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 13 23.96

li 1 8.299 12 15.66 0.00397 **

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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Logistic Regression: Parameter Interpretation

Model with each patient remission as Bernoulli variable yields the
same coe�cients, but di�erent values for the deviance and the
degrees of freedom.

> index <- rep.int(li, times=total)

> B<-c(0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,1,0,1,1,1,0)

> summary(carcinomaB <- glm(B ~ index, family=binomial))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.7771 1.3786 -2.74 0.0061 **

index 0.1449 0.0593 2.44 0.0146 *

---

Null deviance: 34.372 on 26 degrees of freedom

Residual deviance: 26.073 on 25 degrees of freedom

AIC: 30.07



155/203

Logistic Regression: Parameter Interpretation

Again, the deviance di�erence is the same as before:

> anova(carcinomaB, test="Chisq")

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 26 34.37

index 1 8.299 25 26.07 0.00397 **

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Notice that the probability of remission (y = 1) is modeled again.

Because all mi = 1 in case of Bernoullis, we do not need to

explicitly specify weights.
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Poisson Regression: Counts

Binomial responses: relative or absolute frequencies.

Poisson responses: counts.

Assumption: mean equals variance, i.e. E(yi) = �i = var(yi).

Is the Poisson probability function a member of the linear

exponential family (LEF)?
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Poisson Regression: Counts

y � Poisson(�), y = 0; 1; 2; : : : , mean � > 0:

f (y j�) =
�y

y !
e�� = exp (y log�� �� log y !) :

Let � = log� and � = 1, then this is a member of the LEF with

(weight a = 1)

b(�) = exp(�) ; c(y ; �) = � log y ! :

Canonical link is the log-link. Dispersion is known (� = 1).

Moreover,

E(y) = b0(�) = exp(�) = �

var(y) = b00(�) = exp(�) = �:
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Poisson Regression: Counts

Log-linear model for counts:

yi
ind� Poisson(�i) with log(�i) = �i :

The (scaled) deviance equals (� = 1)

D(y; �̂) = 2

n∑
i=1

{
yi log

yi

�̂i
� (yi � �̂i)

}
:

If the model contains an intercept, this deviance simpli�es to

D(y; �̂) = 2

n∑
i=1

yi log
yi

�̂i
:

Deviance contribution is zero for yi = 0 (independent of �̂i).
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Poisson Regression: Counts

Example: Storing microorganisms (deep-frozen �70oC).
Bacterial concentration (counts in a �xed area) measured at

initial freezing and then at 1, 2, 6, and 12 months afterwards.

time 0 1 2 6 12

count 31 26 19 15 20

Aim: model from which fractional recovery rates at speci�ed

times after freezing can be predicted.

Guess: some sort of exponential decay curve.

> time <- c( 0, 1, 2, 6,12)

> count <- c(31,26,19,15,20)

> plot(time, count, type="b", ylim=c(0, 40))

> plot(time, log(count), type="b", ylim=c(2, 4))
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Poisson Regression: Counts
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Poisson Regression: Counts

We have expected exponential decay (but last observation is even

larger than the two before).

Probably some measurement error causes this behavior.

Possibly log(concentration) depends linearly on time?

Test, if observed curvature is relevant, by allowing the quadratic

term time2 in the model.

First assumption, counts follow a normal distribution and satisfy a

linear model in time and time2.
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Poisson Regression: Counts

> summary(mo.lm <- lm(count ~ time + I(time^2)))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 29.80042 1.88294 15.827 0.00397 **

time -4.61601 1.00878 -4.576 0.04459 *

I(time^2) 0.31856 0.08049 3.958 0.05832 .

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 2.438 on 2 degrees of freedom

Multiple R-squared: 0.9252, Adjusted R-squared: 0.8503

F-statistic: 12.36 on 2 and 2 DF, p-value: 0.07483

> qqnorm(residuals(mo.lm), ylab="residuals", xlim=c(-3,2),

+ ylim=c(-3,2), main="")

> qqline(residuals(mo.lm))
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Poisson Regression: Counts
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Poisson Regression: Counts

Quadratic term seems relevant (p-value 0.058).

Q-Q Plot: points deviate from straight line

) normal assumptions seems unrealistic.

) try Poisson model.

Usually Poisson-means are modeled on log-scale .

Is quadratic time e�ect still necessary in the model?
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Poisson Regression: Counts

> summary(mo.P0 <- glm(count ~ time+I(time^2), family=poisson))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.423818 0.149027 22.975 <2e-16 ***

time -0.221389 0.095623 -2.315 0.0206 *

I(time^2) 0.015527 0.007731 2.008 0.0446 *

---

Null deviance: 7.0672 on 4 degrees of freedom

Residual deviance: 0.2793 on 2 degrees of freedom

AIC: 30.849

> r <- residuals(mo.P0, type="pearson"); sum(r^2)

[1] 0.2745424

Under true model, deviance (0.2793) and X 2 = 0:2745 should

correspond to about df = n � p = 2 (test on goodness{of{�t).

Since both values are small, this does not argue against the

Poisson assumption (var(yi) = �i).
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Poisson Regression: Counts

> f <- fitted(mo.P0)

> plot(f, r, ylab="residuals", xlab="fitted", ylim=c(-1,1))

> abline(0,0)

> plot(time, count, ylim=c(0,40))

> time.new <- seq(0, 12, 0.5)

> lines(time.new, predict(mo.P0, data.frame(time=time.new),

+ type="response"))
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Poisson Regression: Counts
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Poisson Regression: Counts

Residual plot: if variances equal means, the Pearson residual is

ri =
yi � �̂i√

�̂i
:

If we replace �̂i with �i , then ri should reect mean zero and

variance one.

Residual plot is relatively (n = 5) unremarkable. Poisson

assumption seems applicable.

To validate the model quality (exploratively), we plot observed

and �tted values against time. Of course, such a 3 parameter

model has to �t well the 5 observations.
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Poisson Regression: Counts

Measurement errors can also result in growing counts (but this is

impossible in reality).

The Wald statistic indicated that time2 seems to be signi�cant in

the predictor (p-value 0.0446).

Possibly we get a more realistic model using log(time) instead of

time.
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Poisson Regression: Counts

If time has a multiplicative e�ect (� / time), then the model

should be based on log(time) as predictor.
But then the starting time log(0) is problematic.
Therefore we consider the transformation log(time + c) with
unknown positive shift c .

To determine c , we minimize the deviance in c , i.e.

> c <- d <- 1:100

> for (i in 1:100) {

+ c[i] <- i/200

+ d[i] <- deviance(glm(count ~ log(time+c[i]),

+ family=poisson))

+ }

> plot(c, d, type="l", ylab="deviance")

> c[d==min(d)]

[1] 0.105
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Poisson Regression: Counts
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Poisson Regression: Counts

Optimal value of c under model 1 + log(time + c) is c = 0:105

and log(time + 0:105) will be used from now on as predictor.

> time.c <- time + 0.105

> summary(mo.P3 <- glm(count ~ log(time.c), family=poisson))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.15110 0.09565 32.945 <2e-16 ***

log(time.c) -0.12751 0.05493 -2.321 0.0203 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 7.0672 on 4 degrees of freedom

Residual deviance: 1.8335 on 3 degrees of freedom

AIC: 30.403
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Poisson Regression: Counts

It is again advisable to consider also a model with quadratic time

e�ect in order to check if there is still some curvature left.

> mo.P2 <- glm(count ~ log(time.c)+I(log(time.c)^2),

+ family=poisson)

> anova(mo.P3, mo.P2, test="Chisq")

Analysis of Deviance Table

Model 1: count ~ log(time.c)

Model 2: count ~ log(time.c) + I(log(time.c)^2)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 3 1.8335

2 2 1.7925 1 0.04109 0.8394

Quadratic e�ect is no longer necessary. It seems that when using

the log-transformed shifted time, this linear e�ect su�ces in the

predictor.



174/203

Poisson Regression: Counts

Wanted: approximative pointwise CIV for �0 = exp(�0).

Idea 1: use �̂0 = x>
0
�̂ with ŝ:e:(�̂0). The transformed 95%

interval is

CIV (�0) =
(
exp

(
�̂0 � 1:96� ŝ:e:(�̂0)

))
:

Idea 2: Delta method yields

log �̂ � log�+ (�̂� �)
@ log�

@�
;

giving approximative variance, resp. standard error

var(log �̂) � var(�̂)
1

�2

v̂ar(�̂) � �̂2 var(�̂) ) ŝ:e:(�̂0) � �̂0ŝ:e:(�̂0) :

As 95% CIV we get

CIV∆(�0) =
(
�̂0 � 1:96� �̂0ŝ:e:(�̂0)

)
:
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Poisson Regression: Counts

> # Delta-Method

> t.new <- data.frame(time.c = seq(0,12,.005) + 0.105)

> r.pred<-predict(mo.P3,newdata=t.new,type="response",se.fit=T)

> fit <- r.pred$fit

> upper <- fit + qnorm(0.975)*r.pred$se.fit

> lower <- fit - qnorm(0.975)*r.pred$se.fit

> plot(time, count, type="p", xlab="time", ylab="count")

> lines(time.c.new[,1], upper)

> lines(time.c.new[,1], fit)

> lines(time.c.new[,1], lower)

> # using prediction of type="link"

> l.pred <- predict(mo.P3, newdata=t.new, type="link", se.fit=T)

> fit <- exp(l.pred$fit)

> upper <- exp(l.pred$fit + qnorm(0.975)*l.pred$se.fit)

> lower <- exp(l.pred$fit - qnorm(0.975)*l.pred$se.fit)

> lines(time.c.new[,1], upper, col=2)

> lines(time.c.new[,1], lower, col=2)
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Poisson Regression: Counts
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Poisson Regression: Contingency Tables

Log-linear models to analyze if 2 factors are stochastically

independent.

None of the 2 factors will be de�ned as response { we call them

both classi�cators.

Example: Habitat of Lizards: counts on how many lizards have

chosen what kind of perch, characterized by two-level factors:

height (� 4:75, < 4:75) and diameter (� 4:0, > 4:0). The

following counts have been observed:

Perch diameter

� 4:0 > 4:0 total

� 4:75 61 41 102

height < 4:75 73 70 143

total 134 111 245
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Poisson Regression: Contingency Tables

Question: are diameter and height classi�cations independent?

Association is measurable by odds-ratios. In case of

independence, the odds-ratio is 1. We get as estimate

 ̂ =
61=41

73=70
=

61=73

41=70
= 1:43 :

Does this indicate that for the true parameter  6= 1 holds?

We introduce a log-linear model for 2� 2 tables and de�ne the

following observed counts:

B

A 1 2 total

1 y11 y12 y1�
2 y21 y21 y2�

total y�1 y�2 y��

with y�� = n, the sample size.
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Poisson Regression: Contingency Tables

If ykl are Poisson counts and we use a log-link function and A and

B as explanatory predictors, this would correspond to a log-linear

model.

Distributions of A and of B (marginals) are not of interest.

We consider the next two models

1 A + B (independence),

2 A � B � A + B + A : B (dependence, saturated model).
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Poisson Regression: Contingency Tables

Independence Model:

Assumption: for all pairs (ai ; bi), i = 1; : : : ; n, the probability to

fall in cell (k ; l) is �kl . Then

E(ykl) = �kl = n � �kl ; k ; l 2 f1; 2g :

In case of stochastic independence, i.e. if

�kl = Pr(A = k ;B = l) = Pr(A = k)Pr(B = l) = �Ak �
B
l ;

then the associated log-linear model is

log�kl = log n + log�Ak + log�Bl :

The logarithm of the expected count in cell (k ; l) is an additive

function of the k-th row e�ect and the l-th column e�ect. Thus

log�kl = �+ �Ak + �Bl ; k ; l 2 f1; 2g :
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Poisson Regression: Contingency Tables

log�kl = �+ �Ak + �Bl ; k ; l 2 f1; 2g :
How to de�ne the parameters, and how many are identi�able?

If a contrast parametrization is of interest, we de�ne

�Ak = log�Ak �
1

2

2∑
h=1

log�Ah

�Bl = log�Bl �
1

2

2∑
h=1

log�Bh

� = log n +
1

2

2∑
h=1

log�Ah +
1

2

2∑
h=1

log�Bh :

With this parametrization (deviation from the means) we have

2∑
k=1

�Ak =

2∑
k=1

{
log�Ak �

1

2

2∑
h=1

log�Ah

}
= 0 =

2∑
l=1

�Bl :
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2∑
k=1

�Ak =

2∑
k=1

{
log�Ak �

1

2

2∑
h=1

log�Ah

}
= 0 =

2∑
l=1

�Bl :

Besides � there is only 1 row and 1 column parameter

identi�able. For both others �A
2

= ��A
1
, �B

2
= ��B

1
hold.

This model is called log-linear independence model.

The respective predictors are

B

A 1 2

1 �+ �A
1

+ �B
1

�+ �A
1
� �B

1

2 �� �A
1

+ �B
1

�� �A
1
� �B

1
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Alternative parametrization: reference cell instead of contrasts.

Characterize an arbitrary cell as reference and de�ne parameters,

that describe the deviations from this reference cell.

If e.g. cell (1; 1) is the reference, this gives

�Ak = log�Ak � log�A1

�Bl = log�Bl � log�B1

� = log n + log�A1 + log�B1

with identi�ability constraints

�A1 = �B1 = 0 :

The respective predictors are

B

A 1 2

1 � �+ �B
2

2 �+ �A
2

�+ �A
2

+ �B
2
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Notice that this (reference cell) parametrization results in

log = log
�11=�12

�21=�22
= log�11 � log�12 � log�21 + log�22

= �� (�+ �B2 )� (�+ �A2 ) + (�+ �A2 + �B2 )

= 0 :

Thus, an odds-ratio of  = 1 is equivalent with independence.

This holds independently of the choice of the reference cell.



185/203

Poisson Regression: Contingency Tables

Saturated (full) Model:

If no independence can be assumed we de�ne

log�kl = �+ �Ak + �Bl + �ABkl ; k ; l 2 f1; 2g :

The interaction parameters �ABkl describe the discrepancies from

the independence model.

If contrasts should be used, then the parameters are based on the

linear predictors �kl = log�kl .Let

�k� =
1

2

2∑
l=1

�kl ; ��l =
1

2

2∑
k=1

�kl ; ��� = � =
1

2

1

2

2∑
k=1

2∑
l=1

�kl :
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De�ne row e�ects �Ak , column e�ects �Bl , and interaction e�ects

�ABkl as deviations from the mean predictor

�Ak = �k� � ���
�Bl = ��l � ���
�ABkl = �kl � �k� � ��l + ��� = (�kl � ���)︸ ︷︷ ︸

�kl��

� (�k� � ���)︸ ︷︷ ︸
�A
k

� (��l � ���)︸ ︷︷ ︸
�B
l

:

�Ak , �
B
l denote deviations from the predictor mean �.

�ABkl are cell e�ects that are adjusted for row and column e�ects.

Since all parameters are centered around their means we have

2∑
k=1

�Ak =

2∑
l=1

�Bl = 0 :

Thus, again only 1 free row and 1 free column parameter.
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For the interactions we get

2∑
k=1

�ABkl =

2∑
k=1

�kl �
2∑

k=1

�k� � 2��l + 2���

= 2��l � 2��� � 2��l + 2��� = 0 =

2∑
l=1

�ABkl :

Because of this, the sum of all interactions in each row and in

each column is 0.

In case of a 2� 2 table there is only 1 free interaction parameter!
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The independence model is a special case of the full model with

�ABkl = 0 for all (k ; l).

The additional parameters �ABkl are association parameters,

describing the deviations from independence between A and B.

The total number of free parameters is 3 under the independence

model and 4 in case of the dependence model.

Default approach in is to use a treatment parametrization,
i.e. a reference cell (1; 1). If a sum parametrization should be
used, then (for unordered and ordered factors)

> options(contrasts=c("contr.sum", "contr.poly"))

We can change back to the treatment parametrization through

> options(contrasts=c("contr.treatment", "contr.poly"))
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It's again simpler to work with a reference cell, e.g. cell (1; 1).
Setting � = �11 gives

�Ak = �k1 � �11
�Bl = �1l � �11
�ABkl = �kl � �k1 � �1l + �11 = (�kl � �11)︸ ︷︷ ︸

�kl��

� (�k1 � �11)︸ ︷︷ ︸
�A
k

� (�1l � �11)︸ ︷︷ ︸
�B
l

:

Thus �A
1

= �B
1

= 0. Moreover all interactions in the �rst row and

in the �rst column are 0 and we get

B

A 1 2

1 � �+ �B
2

2 �+ �A
2

�+ �A
2

+ �B
2

+ �AB
22
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What are the MLEs of these parameters?

log �̂11 = �̂ = log y11

log �̂21 = �̂+ �̂A2 = log y21 ) �̂A2 = log y21 � log y11 = log
y21

y11

log �̂12 = �̂+ �̂B2 = log y12 ) �̂B2 = log y12 � log y11 = log
y12

y11

log �̂22 = �̂+ �̂A2 + �̂B2 + �̂AB22 = log y22

) �̂AB22 = log y22 � log y11 � log
y21

y11
� log

y12

y11
= log

y11y22

y12y21
:

MLE of the interaction e�ect is the observed log-odds-ratio, that

estimates the deviation from the independence model.
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Example: Habitat of Lizards

To use cell (1; 1) as reference in , we need e.g.

> count <- c(61, 41, 73, 70)

> (hei <- factor(c(">4.75", ">4.75", "<4.75", "<4.75")))

[1] >4.75 >4.75 <4.75 <4.75

Levels: <4.75 >4.75

> (height <- relevel(hei, ref = ">4.75"))

[1] >4.75 >4.75 <4.75 <4.75

Levels: >4.75 <4.75

> diameter <- factor(c("<4.0", ">4.0", "<4.0", ">4.0"))
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> summary(dep<-glm(count ~ height * diameter, family=poisson))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.1109 0.1280 32.107 <2e-16 ***

height<4.75 0.1796 0.1735 1.035 0.3006

diameter>4.0 -0.3973 0.2019 -1.967 0.0491 *

height<4.75:diameter>4.0 0.3553 0.2622 1.355 0.1754

---

Null deviance: 1.0904e+01 on 3 degrees of freedom

Residual deviance: -8.8818e-16 on 0 degrees of freedom

AIC: 31.726
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Deviance = 0 on df = 0. Model reproduces the data exactly.

Estimated odds-ratio is

> exp(dep$coef[4])

height<4.75:diameter>4.0

1.426662

Under the independence model we get

> summary(ind<-glm(count ~ height + diameter, family=poisson))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.0216 0.1148 35.023 < 2e-16 ***

height<4.75 0.3379 0.1296 2.607 0.00913 **

diameter>4.0 -0.1883 0.1283 -1.467 0.14231

---

Null deviance: 10.9036 on 3 degrees of freedom

Residual deviance: 1.8477 on 1 degrees of freedom

AIC: 31.574



194/203

Poisson Regression: Contingency Tables

Odds-ratio is 0 now and the deviance increases by 1.85. This can

be used as test statistic on H0 :  = 1 giving a p-value of

> pchisq(ind$deviance, 1, lower.tail = FALSE)

[1] 0.174055

Evidence for a non-signi�cant improvement (compare with

p-value 0.1754 of the respective Wald statistic). Thus we cannot

reject H0 :  = 1 and diameter and height seem to classify

independently!
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More than two-level factors:

Results can be generalized for multi-level classifying factors. Let

A be a K -level and B a L-level factor. The independence model

is

log�kl = �+ �Ak + �Bl ; k = 1; : : : ;K ; l = 1; : : : ;L :

With cell (1; 1) as reference we de�ne

�Ak = log�Ak � log�A1

�Bl = log�Bl � log�B1

� = log n + log�A1 + log�B1

and the same set of identi�ability conditions hold, i.e.

�A1 = �B1 = 0 :

There are 1 + (K � 1) + (L� 1) parameter freely estimable.
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Respective predictors are

B

A 1 2 � � � l � � � L

1 � �+ �B
2

� � � �+ �Bl � � � �+ �BL
2 �+ �A

2
�+ �A

2
+ �B

2
� � � �+ �A

2
+ �Bl � � � �+ �A

2
+ �BL

...

k �+ �Ak �+ �Ak + �B
2
� � � �+ �Ak + �Bl � � � �+ �Ak + �BL

...

K �+ �AK �+ �AK + �B
2
� � � �+ �AK + �Bl � � � �+ �AK + �BL



197/203

Poisson Regression: Contingency Tables

MLEs are now for k = 1; : : : ;K and l = 1; : : : ;L

log �̂11 = �̂ = log
y1�y�1

y��

log �̂k1 = �̂+�̂Ak = log
yk�y�1

y��
) �̂Ak = log

yk�y�1

y��
�log y1�y�1

y��
= log

yk�

y1�

log �̂1l = �̂+�̂Bl = log
y1�y�l

y��
) �̂Bl = log

y1�y�l

y��
�log y1�y�1

y��
= log

y�l

y�1
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The saturated model for a K � L table is

log�kl = �+ �Ak + �Bl + �ABkl ; k = 1; : : : ;K ; l = 1; : : : ;L :

With reference cell (1; 1) we get for all k = 1; : : : ;K , l = 1; : : : ;L

�Ak = �k1 � �11
�Bl = �1l � �11
�ABkl = �kl � �k1 � �1l + �11 = (�kl � �11)︸ ︷︷ ︸

�kl��

� (�k1 � �11)︸ ︷︷ ︸
�A
k

� (�1l � �11)︸ ︷︷ ︸
�B
l

;

where �A
1

= �B
1

= 0.

Again, all interactions in row 1 and in column 1 are 0.

Thus, the total number of estimable parameters is

1 + (K � 1) + (L� 1) + (K � 1)(L� 1) = K � L.
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The predictors are de�ned as:

B

A 1 2 � � � l � � � L

1 � � + �B
2

� � � � + �Bl � � � � + �BL
2 � + �A

2
� + �A

2
+ �B

2
+ �AB

22
� � � � + �A

2
+ �Bl + �AB

2l � � � � + �A
2

+ �BL + �AB
2L

...

k � + �Ak � + �Ak + �B
2

+ �ABk2 � � � � + �Ak + �Bl + �ABkl � � � � + �Ak + �BL + �ABkL
...

K � + �AK � + �AK + �B
2

+ �ABK2
� � � � + �AK + �Bl + �ABKl � � � � + �AK + �BL + �ABKL

Saturated model allows for (K � 1)(L� 1) additional parameters
than the independence model.
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Example: Recurrences of Cervical Cancer

Are the predictive factors border zone (BZ) involvement and

number a�ected lymph node (LN) stations classifying

independently?

Consider the following counts:

LN stations

0 1 2 � 3

BZ not involved 124 21 16 13

BZ involved 58 12 7 5

more than BZ inv. 14 19 12 12

We �rst �t the saturated model to the data and then test on

necessary interactions.
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> anova(glm(total ~ B*L, family=poisson), test="Chisq")

Analysis of Deviance Table

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 11 316.184

B 2 69.569 9 246.615 7.821e-16 ***

L 3 203.594 6 43.021 < 2.2e-16 ***

B:L 6 43.021 0 0.000 1.155e-07 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

There is evidence, that the 6 interaction parameter are unequal 0

and thus the independence hypothesis can be rejected.
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Alternatively, we consider the Pearson statistic under the

independence model, i.e.

X 2 =

3∑
i=1

4∑
j=1

(yij � �̂ij)2
�̂ij

with log�ij = �+ �Bi + �Lj . Its realization is

> ind <- glm(total ~ B+L, family=poisson)

> r <- residuals(ind, type="pearson")

> sum(r^2)

[1] 43.83645

and equals the �2 test statistic in the analysis of contingency

tables.
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Pearson statistic can be also directly calculated as

> (N <- matrix(total, 3, 4, byrow=TRUE))

[,1] [,2] [,3] [,4]

[1,] 124 21 16 13

[2,] 58 12 7 5

[3,] 14 19 12 12

> chisq.test(N)

Pearson's Chi-squared test

data: N

X-squared = 43.8365, df = 6, p-value = 7.965e-08


