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What you can expect:

We will discuss

• Ordinary Linear Models (Regression Analysis)

• Generalized Linear Models

• Maximum Likelihood Estimation & Goodness-of-Fit, Deviance

• Overdispersion

• Quasi-Likelihood Models

• Random Effects Models
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Linear Models: Motivation

Suppose that we are interested in the average weight of male PhD

students at University of Ljubljana. We put each guy’s name

(population) in a hat and randomly select 100 (sample).

Here they are: y1, y2, . . . , y100.

Suppose, in addition, we also measure their heights and ask for the

number of cats owned by their parents.

Here they are: h1, h2, . . . , h100 and c1, c2, . . . , c100.
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Linear Models: Motivation
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Linear Models: Motivation

Questions:

How would you use this data to estimate the average weight of:

1. male PhD?

2. male PhD whose height is between 1.75 and 1.80 m?

3. male PhD whose parents own 3 cats?
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Linear Models: Motivation

Answers:

1. ȳ = 1
100

∑100
i=1 yi, the sample mean

2. average the yi’s for guys whose his are between 1.75 and 1.80 m

3. average the yi’s for guys whose cis are 3?

No! Same as in 1., because the body weight certainly does not

depend on the number of cats!

Intuitive description of regression:

(weight) y = variable of interest = response = dependent variable

(height) x = explanatory variable = predictor = indep. variable
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Linear Models: Motivation

Fundamental assumption in regression

1. For each particular value of the predictor variable x, the response

variable y is a random variable whose mean E(y) (expected value)

depends on x.

2. The mean of y, E(y), can be written as a deterministic function

of x.
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Linear Models: Motivation
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Linear Models, LMs

Three-Part Specification:

1. Random Component: y1, . . . , yn independent normal distributed

with E(yi) = µi, i = 1, . . . , n, and constant variance var(yi) = σ2.

2. Systematic Component: Fixed covariates xi0, xi1, . . . , xi,p−1
(intercept xi0 = 1) define a linear predictor

ηi =

p−1∑
j=0

xijβj = xtiβ

3. Link Function: between random and systematic components,

here µi = ηi (identity function).
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Linear Models, LMs

When is the model called simple linear regression?

simple: only one predictor xi,

linear: regression function E(y) = β0+β1x is linear in parameters.

Why do we care about a regression model?

If a model is realistic and if we have reasonable estimates of β0, β1
we have:

1. the ability to predict new yi’s given a new xi,

2. an understanding of how the mean E(yi) changes with xi.
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Linear Models, LMs

Goal: Find the set of all relevant covariates (explanatory variables)

By applying statistical tests, identify those xj’s that are responsible

for different means of the responses Thus, we check if a model like

E(yi) = xtiβ = β0 + β1xi1 + β2xi2 + · · ·+ βp−1xi,p−1

holds, i.e. if

E(y) = Xβ .

A covariate xj is called relevant, if its associated parameter βj 6= 0.
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Typical Simple Linear Model:

x1 x2 x3 x4 x5

µ
µ̂

Assumptions on yi:

• normal distribution

• constant variance

• linear relationship

Goal Find a “suitable” estimate

β̂ for µ = xtβ.

Problem Assumptions are very

restrictive!
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Linear Models, LMs

How to estimate β?

Minimize Least Squares Criterion (Sum of Squared Errors):

SSE(β) =

n∑
i=1

(yi − µi)2 =

n∑
i=1

(yi − xtiβ)2 .

This gives the Maximum Likelihood Estimator (MLE) β̂ under a

normal model. Thus,

min
β∈Rp

SSE(β) = SSE(β̂) and β̂ = (XtX)−1Xty .
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Linear Models, LMs

How to estimate σ2?

It can be shown that the MLE of σ2 is

σ̂2 =
1

n

n∑
i=1

(yi − xtiβ̂)2 =
1

n
SSE(β̂) .

However, since σ̂2 is biased, we will always use its unbiased version

(degrees of freedom corrected)

S2 =
1

n− p
SSE(β̂) .
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Generalized Linear Models, GLMs

Linear Model

• normal distribution

• constant variance

• linear relationship between

µi and xi0, xi1, . . . , xi,p−1

=⇒ Generalized Linear Model

• any distribution from the

linear exponential family

• variance proportional to a

function of the mean

• linear relationship between

a function of µi and

xi0, xi1, . . . , xi,p−1
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Generalized Linear Models: Literature

Modelling concept first introduced in 1972 by John A. Nelder
(1924 - 2010) and Robert W.M. Wedderburn (1947 - 1975).

Peter McCullagh and

John A. Nelder (1983):

Generalized Linear Models,

London:Chapman & Hall.
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Generalized Linear Models, GLMs

1. Random Component: y1, . . . , yn independent distributed from

any member of the Linear Exponential Family (LEF) with

E(yi) = µi and variance var(yi) = φV (µi), i = 1, . . . , n.

2. Systematic Component: Fixed covariates xi0, xi1, . . . , xi,p−1
(intercept xi0 = 1) define a linear predictor

ηi =

p−1∑
j=0

xijβj = xtiβ

3. Link Function: between random and systematic components

g(µi) = ηi.
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Generalized Linear Models, GLMs

Generalization of the Linear Model: Properties of the GLM

• particular choice of the distribution from the LEF determines the

variance function V (µ)

• the dispersion parameter φ allows for additional flexibility in the

variance

• the LM is a special case of the GLM

– constant variance function V (µ) = constant

– identical link function g(µ) = µ = η
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Generalized Linear Models, GLMs

x1 x2 x3 x4 x5

µ
µ̂

Assumptions

• distribution from the LEF

• variance as a function of µ:

var(y) = φV (µ) with disper-

sion parameter φ

• linear relationship with the link

function g(µ)

Goal Find a “suitable” estimate

β̂ for g(µ) = Xβ.
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Generalized Linear Models, GLMs

x1 x2 x3 x4 x5

µ
µ̂

x1 x2 x3 x4 x5

µ
µ̂
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Generalized Linear Models, GLMs

Limits of the GLM

To obtain estimates for the parameters in a GLM one has to choose

a distribution from the one-parameter Linear Exponential Family

f(yi|θi) = exp

{
yiθi − c(θi)

φ
+ h(yi, φ)

}
,

where θi is a specific function in µi and thus in β.

Normal, Gamma, Binomial, Poisson, . . . are well known members.
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Generalized Linear Models, GLMs

Characteristics of some common members:

Distribution φ µ(θ) V (µ)

Normal(µ, σ2) σ2 θ 1

Gamma(µ, ν) 1/ν −1/θ µ2

Poisson(µ) 1 exp(θ) µ

Binomial(m,µ)/m 1/m× 1 eθ/(1 + eθ) µ(1− µ)

A LEF member is characterized by its variance function.
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Generalized Linear Models, Estimates

How to find the MLEs?

The MLE µ̂i is defined as the zero of the score function (1st

derivative of the log-likelihood function)

∂

∂µi
log f(yi|θi) =

yi − µi
φV (µi)

Thus, the MLE of µ only depends on the first two moments of

the assumed distribution (E(yi) = µi, var(yi) = φV (µi)).
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Generalized Linear Models, Estimates

To find the MLE β̂ we apply the chain rule (g(µ) = Xβ), giving

∂

∂β
log f(y|θ) =

n∑
i=1

yi − µi
φV (µi)

· ∂µi
∂β

,

which of course also only depend on the first two moments of the

assumed distribution and the assumed link function.

Notice that the score function is highly nonlinear in β and therefore

the zeros β̂ have to be found numerically (by iteration, IWLS).
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Generalized Linear Models, Example

Example 1: n = 31 Black Cherry Trees, V volume of useful wood

in feet3, H height of tree in feet, D diameter of tree in inches.

65 70 75 80 85

1
0

2
0

3
0

4
0

5
0

6
0

7
0

height of tree

vo
lu

m
e

 o
f 

w
o

o
d

8 10 12 14 16 18 20
1

0
2

0
3

0
4

0
5

0
6

0
7

0

diameter of tree

v
o

lu
m

e
 o

f 
w

o
o

d

24



Generalized Linear Models, Example

We assume that Vi
ind∼ Normal(µi, σ

2) with a cone like behavior
of the mean volume (after converting D from inches to feet), i.e.

E(Vi) =
π

12
·Hi ·

(
Di

12

)2

This is equivalent to

log(E(Vi)) = log
π

12
+ 1 · log(Hi) + 2 · log

Di

12

log(µi) = β0 + β1 log(Hi) + β2 log
Di

12
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Generalized Linear Models, Example

We use the statistic software package to do the calculation:

> glm(V ~ log(H) + log(D/12), family = gaussian(link=log))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.57484 1.04613 -1.505 0.143422 ***

log(H) 1.08765 0.24216 4.491 0.000111 ***

log(D/12) 1.99692 0.08208 24.330 < 2e-16 ***

---

(Dispersion parameter for gaussian family taken to be 6.41642)

Null deviance: 8106.08 on 30 degrees of freedom

Residual deviance: 179.66 on 28 degrees of freedom

AIC: 150.44

Number of Fisher Scoring iterations: 4
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Generalized Linear Models, Example

Remember our cone model:

log(E(Vi)) = log
π

12
+ 1 · log(Hi) + 2 · log

Di

12

log(µi) = β0 + β1 log(Hi) + β2 log
Di

12

We’ve got β̂0 = −1.575, nicely comparing to log(π/12) = −1.340.

Also β̂1 = 1.088 and β̂2 = 1.997 are both close to the respective

theoretical quantities 1 and 2.

What is meant by the term deviance?
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Generalized Linear Models, Deviance

We need a measure to assess the goodness-of-fit of our model.

One approach is to compare our model with the best available

model. The best model allows one parameter for every single mean

µi, thus consists of n parameters in the linear predictor. Such

models are called saturated.

Under this setting, the MLE is µ̂ = y.

The scaled deviance compares the maximum of the log-likelihood

under our model with its maximum under the best model, i.e.

1

φ
D(y; µ̂) = 2

(
log f(y|y)− log f(y|µ̂)

)
.
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Generalized Linear Models, Deviance

1

φ
D(y; µ̂) = 2

(
log f(y|y)− log f(y|µ̂)

)
.

Under certain regularity conditions it can be shown that the deviance

follows asymptotically a χ2
n−p distribution (with n − p degrees of

freedom).

Since the mean of a χ2
n−p variate is its degrees of freedom, we often

compare the scaled deviance D(y; µ̂)/φ with n− p.

We are happy with the model fit, if D(y; µ̂)/φ ≈ n− p.

We will have to improve the model, if D(y; µ̂)/φ >> n− p.
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Generalized Linear Models, Deviance

The simplest (worst fitting) model is called the null model (intercept

only model, i.i.d.) and assumes that all the means are the same.

The respective null deviance is

1

φ
D(y; ȳ) = 2

(
log f(y|y)− log f(y|ȳ)

)
.

What to do, if the dispersion parameter φ is unknown?
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Generalized Linear Models, Deviance

Consider the ratios (i = 1, . . . , n)

1 =
E(yi − µi)2

var(yi)
=

E(yi − µi)2

φ · V (µi)
⇒ φ =

E(yi − µi)2

V (µi)
, i = 1, . . . , n .

Averaging (df corrected) over its estimated versions results in the

mean Pearson statistic

φ̂ =
1

n− p

n∑
i=1

(yi − µ̂i)2

V (µ̂i)
.
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Generalized Linear Models, Deviance

For Gaussian responses (constant variances) the mean Pearson
statistic equals the mean sum of squared errors

φ̂ = S2 =
1

n− p
SSE(β̂)

and the scaled deviance equals the scaled sum of squared errors

1

φ
D(y; µ̂) =

1

σ2
SSE(β̂) .
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Generalized Linear Models, Example Revisited

> glm(V ~ log(H) + log(D/12), family = gaussian(link=log))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.57484 1.04613 -1.505 0.143422 ***

log(H) 1.08765 0.24216 4.491 0.000111 ***

log(D/12) 1.99692 0.08208 24.330 < 2e-16 ***

---

(Dispersion parameter for gaussian family taken to be 6.41642)

Null deviance: 8106.08 on 30 degrees of freedom

Residual deviance: 179.66 on 28 degrees of freedom

AIC: 150.44

Number of Fisher Scoring iterations: 4
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Generalized Linear Models, Example

Example 2: Fabric data. Faults f in rolls of material of length l.
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Generalized Linear Models, Example

We consider a Poisson model for counts

fi
ind∼ Poisson(µi = exp(β0 + β1 log li)),

i.e. µi > 0 and

logµi = β0 + β1 log li

Question: Mean number of faults proportional to length (β1 = 1)?

µi = exp(β0) · lβ1i

35



Generalized Linear Models, Example

> glm(f ~ log(l), family=poisson(link=log))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.1730 1.1352 -3.676 0.000237 ***

log(l) 0.9969 0.1759 5.668 1.45e-08 ***

---

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 103.714 on 31 degrees of freedom

Residual deviance: 64.537 on 30 degrees of freedom

AIC: 191.84

Number of Fisher Scoring iterations: 4

β̂1 ≈ 1 but Deviance is more than twice the degrees of freedom!
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Generalized Linear Models, Example

0 5 10 15 20 25 30

2
4

6
8

1
0

1
2

1
4

number of faults

fi
tt

e
d

 v
a

lu
e

s

Model fit is not really bad but

variance seems to be larger
than assumed under the Pois-

son model!

We say that there is some

overdispersion w.r.t. the Pois-

son variance.

What now?
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Generalized Linear Models, Example

Limits of the GLM

To obtain estimates for the parameters in a GLM one has to choose

a distribution from the exponential family.

Normal, Gamma, Binomial, Poisson, . . . are well known members.

New Approach

Choose variance function V (µ) which does not necessarily belong

to a distribution from the exponential family ⇒ quasi-likelihood
approach.
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Quasi-Likelihood Estimation

Remember: the MLE µ̂ is defined as the zero of the score function

∂

∂µi
log f(yi|θi) =

yi − µi
φV (µi)

.

Thus, the MLE µ̂ only depends on the first two moments.

Instead of an exponential family distribution we now only assume

E(y) = µ and an arbitrary variance model var(y) = φV (µ).

Thus, the above function is no longer a score function from a

likelihood model! However, we still use it to define µ̂.
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Quasi-Likelihood Estimation

Define the Maximum Quasi-Likelihood Estimator (MQLE) µ̂ as

the zero of
∂

∂µi
log q(yi|µi) =

yi − µi
φV (µi)

.

This quasi-score function has many properties in common with a

log-likelihood derivative (Wedderburn, 1974, 1976). Therefore, the

integral

log q(y|µ) =

∫ µ y − t
φV (t)

dt

should behave like a log-likelihood of y for µ. Wedderburn showed

the equivalence of f(·) and q(·) for linear, one-parameter exponential

families.
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Quasi-Likelihood Estimation

We refer to log q(y|µ) as the (log) quasi-likelihood which is only

based on a mean-variance relation.

For the entire sample, the quasi-deviance is defined as

D(y; µ̂) = 2φ
(

log q(y|y)− log q(y|µ̂)
)

= 2
n∑
i=1

∫ yi

µ̂i

y − t
V (t)

dt .
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Quasi-Likelihood Estimation

related to V (µ) log q(y|µ)

Normal 1 −1
2(y − µ)2

Poisson µ y logµ− µ

Gamma µ2 −y/µ− logµ

— µξ µ−ξ
(
µy
1−ξ −

µ2

2−ξ

)
Binomial µ(1− µ) y log µ

1−µ + log(1− µ)

— µ2(1− µ)2 (2y − 1) log µ
1−µ −

y
µ −

1−y
1−µ

NegBin µ+ µ2/k y log µ
k+µ + k log k

k+µ
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Quasi-Likelihood Approach:

x1 x2 x3

µ
µ̂

t4

N(1, 2)
Γ(2, 1)

Assumptions for yi:

• the distribution is not speci-

fied explicitly

• variance as a function of µ:

var(y) = φ · V (µ)

• linear relationship between

the explanatory variables and

the link function g(µ)

Advantage Distribution need

not to be specified completely,

the knowledge of V (µ) suffices.
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Quasi-Likelihood Estimation, Example 2 Revisited

Example 2: Fabric data. Faults f in rolls of material of length l.

> glm(f ~ log(l), family=poisson(link=log))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.1730 1.1352 -3.676 0.000237 ***

log(l) 0.9969 0.1759 5.668 1.45e-08 ***

---

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 103.714 on 31 degrees of freedom

Residual deviance: 64.537 on 30 degrees of freedom

Overdispersion: Try a quasi-Poisson variance model and assume

var(yi) = φ · V (µi), φ > 0. (For the Poisson variance φ = 1.)
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Quasi-Likelihood Estimation, Example 2 Revisited

Can be easily fitted in :

> glm(f ~ log(l), family=quasipoisson(link=log)))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.1730 1.7094 -2.441 0.020752 *

log(l) 0.9969 0.2649 3.764 0.000727 ***

---

(Dispersion parameter for quasipoisson family taken to be 2.267506)

Null deviance: 103.714 on 31 degrees of freedom

Residual deviance: 64.537 on 30 degrees of freedom

Now, D(y; µ̂)/φ̂ = 64.537/2.267 = 28.468 is close to its df of 30.
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Quasi-Likelihood Estimation, Example

Example 3: Vital capacity (lung volume) in liter of n = 277 girls

aged from 7 to 14 years. Denote the observed VC values by yi.

7 8 9 10 11 12 13 14

2
3

4
5

Age in years

V
C

 i
n

 l
it
e

r

−9 9−10 10−11 11−12 12−13 13−14

2
3

4
5

age group

V
C

 i
n

 l
it
e

r

46



Quasi-Likelihood Estimation, Example

Assumption: The VC-mean growths exponentially in age, i.e.

E(yi) = µi = exp(β0 + β1agei)

Age-group specific means and variances:

Age –9 9–10 10–11 11–12 12–13 13–

n 38 47 45 47 51 49

y 1.99 2.19 2.42 2.70 3.16 3.60

S2 0.04 0.10 0.14 0.23 0.35 0.39
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Quasi-Likelihood Estimation, Example

How to find a suitable variance model?
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Evidence:
Age-group specific variances
seem to increase linearly in
the means but with a shift to

the right.

This implies

var(yi) = φ · (µi + α).
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Quasi-Likelihood Estimation, Example

Since µ + α = E(y + α) we estimate α by −min(yi) = −1.7 and

define

y∗i = yi − 1.7

for which E(y∗i ) = µ∗i = µi − 1.7 and var(y∗i ) = φ · µ∗i .

Age –9 9–10 10–11 11–12 12–13 13–

y∗ 0.29 0.49 0.72 1.00 1.46 1.90

S∗2 0.04 0.10 0.14 0.23 0.35 0.39

S∗2/y∗ 0.13 0.20 0.19 0.23 0.24 0.20

The average of all S∗2/y∗ terms is 0.198, which roughly estimates

the dispersion φ.
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Quasi-Likelihood Estimation, Example

Thus, we fit a loglinear quasi-Poisson model for the shifted

responses y∗i , i.e. we use the link

g(µ∗i ) = log(µ∗i ) = β0 + β1agei .

> glm(I(vc-1.7) ~ age, family=quasipoisson(link=log))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.9053 0.2089 -18.70 <2e-16 ***

age 0.3382 0.0172 19.66 <2e-16 ***

---

(Dispersion parameter for quasipoisson family taken to be 0.201)
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Quasi-Likelihood Estimation, Example
> glm(I(vc-1.7) ~ age, family=quasipoisson(link=log))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.9053 0.2089 -18.70 <2e-16 ***

age 0.3382 0.0172 19.66 <2e-16 ***

---

(Dispersion parameter for quasipoisson family taken to be 0.201)

Null deviance: 142.818 on 276 degrees of freedom

Residual deviance: 56.889 on 275 degrees of freedom

The scaled deviance is now 56.889/0.201 = 282.71 (comp. with

df= 275), and the mean Pearson statistic 0.201 estimates the

dispersion well (comp. with mean deviance 56.889/275 = 0.207).
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Summary I

Linear Model

• normal distribution

• constant variance

• mean is a linear combination

of some explanatory variables

Generalized Linear Model

• distribution from the expo-

nential family

• variance is a function of the

mean

• additional link function
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Summary II

Generalized Linear Model

• distribution from the expo-

nential family

• variance is a function of the

mean

• additional link function

QL Approach

• define only V (µ)

• complete specification of the

distribution is not necessary

What about modelling dependent responses?
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Random Effect Models for Overdispersion

General problem of overdispersion in Poisson and binomial models:

Deviance from the model is much larger than the residual df.

Interpret this situation as evidence that there are other factors

varying which are not accounted for in the model, but which are

associated with the response:
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Random Effect Models for Overdispersion

A simple way of representing the extra variation is by including a

random effect in the linear predictor:

g(µi) = xtiβ + zi ,

where the random effects zi are an (iid) random sample from some

distribution G(z).

Here µi denotes the conditional mean given the random effect.
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Random Effect Models for Overdispersion

Example 2: Fabric data reconsidered.

yi
ind∼ Poisson(exp(β0 + β1 log li)),

i.e.

logµi = β1 + β2 log li

Revise model:

yi|zi
ind∼ Poisson(exp(β1 + β2 log li + zi)), zi

iid∼ G(z).

What now ?
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Random Effect Models for Overdispersion

Let us first assume that the random effects zi are iid unit mean

gamma variables with shape α (conjugate distribution).

The counts are then marginally negative binomial variables with

E(yi) = µi and var(y) = µ+ µ2/α.

Here, α quantifies the amount of overdispersion.

The special case α =∞ corresponds to no overdispersion (Poisson).
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Random Effect Models for Overdispersion

Again, offers a function to estimate this model:

> glm.nb(f ~ log(l))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.7951 1.4577 -2.603 0.00923 **

log(l) 0.9378 0.2280 4.114 3.89e-05 ***

---

(Dispersion parameter for NegBin(8.667) family taken to be 1)

Null deviance: 50.28 on 31 degrees of freedom

Residual deviance: 30.67 on 30 degrees of freedom

Theta: 8.67

Std. Err.: 4.17
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Random Effect Models for Overdispersion

Could we also handle models like

yi|zi
ind∼ Poisson(µi), zi

iid∼ N(0, 1)

logµi = β1 + β2 log li + σzzi

Yes!

The EM algorithm has to be applied to get the MLEs.
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Now what? Interested in details?

Generalized Linear Models:
(A series of blocked lectures with some practicals)
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