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1. Single Factor – Analysis of Variance

Example: Investigate tensile strength y of new synthetic fiber.

Known: y depends on the weight percent of cotton
(which should range within 10% – 40%).

Decision:
(a) test specimens at 5 levels of cotton weight: 15%, 20%, 25%, 30%, 35%.
(b) test 5 specimens at each level of cotton content.

Single Factor Experiment with a = 5 levels and n = 5 Replicates.

=⇒ 25 runs.

Runs should be in Random Order (prohibit warm up effects of machine ...)

2



Cotton Observation
Weight % 1 2 3 4 5 Total Average

15 7 7 15 11 9 49 9.8
20 12 17 12 18 18 77 15.4
25 14 18 18 19 19 88 17.6
30 19 25 22 19 23 108 21.6
35 7 10 11 15 11 54 10.8

376 15.04

> y <- c( 7, 7, ... , 15, 11); w <- gl(5, 5, labels=c(15, 20, 25, 30, 35))
> tapply(y, w, sum) # total
15 20 25 30 35
49 77 88 108 54

> tapply(y, w, mean) # average
15 20 25 30 35
9.8 15.4 17.6 21.6 10.8

> mean(tapply(y, w, mean)) # mean average
[1] 15.04

3



> boxplot(y~w); plot(as.numeric(w), y); points(tapply(y, w, mean), pch=20)

15 20 25 30 35

0
5

10
15

20
25

30

Cotton Weight Percent

T
en

si
le

 S
tr

en
gt

h

1 2 3 4 5

0
5

10
15

20
25

30

Cotton Weight Percent

T
en

si
le

 S
tr

en
gt

h
We wish to test for differences between the mean strengths at all a = 5 levels of
cotton weight percent ⇒ Analysis of Variance.
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Analysis of Variance (ANOVA)

Use the Linear Regression Model

yij = µ + τi + εij

for treatment i = 1, . . . , a, and replication j = 1, . . . , n.

Observation yij (ith treatment, jth replication)
Parameter µ is common to all treatments (Overall Mean)
Parameter τi is unique to the ith treatment (ith Treatment Effect)
Random variable εij is the Random Error component.

Further assumption: εij
iid∼ N(0, σ2).

Our interest is in the treatment effects.
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Treatment Effects τi:

Fixed: the a treatments are chosen by the experimenter.
(tests and conclusions will only apply to the factor levels considered)
Fixed Effects Model

Random: the a treatments are a random sample from a population of treatments.
(we are able to extend conclusions to all treatments in the population)
Random Effects Model / Components of Variance Model
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Fixed Effects Model

Treatment effects τi are usually defined as the deviations from the overall mean

µ :=
1
a

a∑

i=1

µi =
1
a

a∑

i=1

(µ + τi) = µ +
1
a

a∑

i=1

τi ,

Thus, we have a restriction on these effects, namely

a∑

i=1

τi = 0 .

Here, µi = E(yij) is the mean of all observations yij in the ith treatment (row).
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ANOVA Decomposition

We are interested in testing the equality of the a treatment means

H0: µ1 = µ2 = · · · = µa ⇐⇒ H0: τ1 = τ2 = · · · = τa

which is equivalent to testing the equality of all treatment effects.

The Sum of Squares decomposition in Regression is valid

SST = SSR + SSE

where SSR, the Sum of Squares due to the Regression model, is only related to
the treatment effects τi. Hence, we have

a∑

i=1

n∑

j=1

(yij − µ̂)2 =
a∑

i=1

n∑

j=1

(µ̂i − µ̂)2 +
a∑

i=1

n∑

j=1

(yij − µ̂i)2
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µ̂ estimates the overall mean µ, where we assume that all the yij are from the
same population. Thus, this estimate is given as

µ̂ =
1
N

a∑

i=1

n∑

j=1

yij =: y··

where N = an is the total number of observations.

µ̂i estimates the mean of the yij coming only from the ith row (treatment). This
gives the estimate

µ̂i =
1
n

n∑

j=1

yij =: yi·

Together this gives

a∑

i=1

n∑

j=1

(yij − y··)
2 = n

a∑

i=1

(yi· − y··)
2 +

a∑

i=1

n∑

j=1

(yij − yi·)
2
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Therefore, the total variability in the data can be partitioned into a sum of squares
of the differences between the treatment averages and the grand average, plus
a sum of squares of the differences of observations within treatments from the
treatment average.

ANOVA Table

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F

Between Treatments SSR a− 1 MSR MSR/MSE
Error (within Treatments) SSE N − a MSE

Total SST N − 1
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Tensile Strength Data: Test
H0: µ1 = µ2 = µ3 = µ4 = µ5 against H1: some means are different

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F4,20 p-value

Cotton Weight Percent 475.76 4 118.94 14.76 < 0.001
Error (within Treatments) 161.20 20 8.06

Total 639.96 24

Thus, we reject H0 and conclude that the treatment means differ!

> summary(aov(y~w))
Df Sum Sq Mean Sq F value Pr(>F)

w 4 475.76 118.94 14.757 9.128e-06 ***
Residuals 20 161.20 8.06
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Estimation of the Model Parameters

Remember the model:
yij = µ + τi + εij

with overall mean µ, treatment means µi = µ + τi, and treatment effects τi.
Their estimates are

µ̂ = y·· µ̂i = yi· =⇒ τ̂i = yi· − y··

Because of yij
iid∼ N(µi, σ

2)

yi· =
1
n

n∑

j=1

yij ∼ N

(
µi,

1
n
σ2

)
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Moreover, MSE estimates σ2 and the (1 − α) confidence interval for the ith
treatment mean µi is

[
yi· ± t1−α/2,N−a

√
MSE/n

]

> W <- C(w, treatment); coefficients(aov(y~W)) # default contrast for w
(Intercept) W20 W25 W30 W35

9.8 5.6 7.8 11.8 1.0
> W <- C(w, sum); coefficients(aov(y~W))
(Intercept) W1 W2 W3 W4

15.04 -5.24 0.36 2.56 6.56
> options(contrasts=c("contr.sum", "contr.poly")) # for all factors
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Bartlett’s Test for Equality of Variances: H0: σ2
1 = σ2

2 = · · · = σ2
a

K2 is based on the (pooled) sample variances and approximately χ2
a−1.

> bartlett.test(y~W)

Bartlett test for homogeneity of variances

data: y by W
Bartlett’s K-squared = 0.9331, df = 4, p-value = 0.9198

=⇒ Conclude that all 5 variances are the same!

This test is very sensitive to the normality assumption!
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Variance-Stabilizing Transformation:

Let E(y) = µ be the mean of y and suppose that the standard deviation is
proportional to a power of the mean

σy ∝ µα

Task: find a transformation of y that yields a constant variance. Suppose this is

y∗ = yλ

where λ = 0 implies the log transformation. Then

σy∗ ∝ µλ−(1−α)

Setting λ = 1− α, then the variance of the transformed data is constant.

15



Relationship
b/w σy and µ α λ = 1− α Transformation
σy ∝ const 0 1 no transformation
σy ∝ µ1/2 1/2 1/2 Square Root
σy ∝ µ 1 0 Log
σy ∝ µ3/2 3/2 −1/2 Reciprocal Square Root
σy ∝ µ2 2 −1 Reciprocal

Selection of the Power: If σyi
∝ µα

i = θµα
i then

log σyi
= log θ + α log µi

A plot of log σyi
versus log µi is a straight line with slope α. Substitute σyi

and
µi by their estimates Si and yi· and guess the value of α from the plot.
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Example: 4 different estimation methods of the peak discharge applied to the
same watershed.

Method discharge (cubic feet / second) yi· Si

1 0.34 0.12 1.23 0.70 1.75 0.12 0.71 0.66
2 0.91 2.94 2.14 2.36 2.86 4.55 2.63 1.09
3 6.31 8.37 9.75 6.09 9.82 7.24 7.93 1.66
4 17.15 11.82 10.95 17.20 14.35 16.82 14.72 2.77

> y <- c(0.34, 0.12, ..., 16.82); m <- gl(4, 6, labels=c(1, 2, 3, 4))
> tapply(y, m, mean); tapply(y, m, sd)

1 2 3 4
0.710000 2.626667 7.930000 14.715000

1 2 3 4
0.661090 1.192202 1.647070 2.800891

> summary(aov(y~m))
Df Sum Sq Mean Sq F value Pr(>F)

m 3 708.35 236.12 76.067 4.111e-11 ***
Residuals 20 62.08 3.10
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> r <- residuals(aov(y~m)); f <- fitted(aov(y~m)); plot(f, r)
> ls <- log(tapply(y, m, sd)); lm <- log(tapply(y, m, mean))
> plot(lm, ls); abline(lm(ls~lm)) # gives slope = 0.45
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> bartlett.test(y~m)

Bartlett test for homogeneity of variances

data: y by m
Bartlett’s K-squared = 8.9958, df = 3, p-value = 0.02935

The Bartlett Test rejects Equality of Variances. Thus we analyze y∗ =
√

y.

> ry <- sqrt(y); tapply(ry, m, sd)
1 2 3 4

0.4044534 0.3857295 0.2929908 0.3734610
> summary(aov(ry~m))

Df Sum Sq Mean Sq F value Pr(>F)
m 3 32.684 10.895 81.049 2.296e-11 ***
Residuals 20 2.688 0.134

To account for the use of the data to estimate α we reduce the error degrees of
freedom by one. This gives F = 76.99 again with p-value < 0.001.
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> r <- residuals(aov(ry~m)); f <- fitted(aov(ry~m)); plot(f, r)
> library(mass); boxcox(y~m)
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Practical Interpretation of Results:

So far we assumed that the factor (treatment) involved in the experiment is either
quantitative or qualitative. With a quantitative factor we are usually interested
in the entire range of values (regression analysis).

Example: For the Tensile Strength response y we either assume a quadratic
or cubic model in Cotton Weight Percent x. Previous analysis showed that the
maximal strength is produced for x ≈ 30% (process optimization).

> x <- as.numeric(levels(w)[w])
> m2 <- lm(y ~ x + I(x^2)); m2
Coefficients:
(Intercept) x I(x^2)
-39.98857 4.59257 -0.08857

> m3 <- lm(y ~ x + I(x^2) + I(x^3)); m3
Coefficients:
(Intercept) x I(x^2) I(x^3)

62.6114 -9.0114 0.4814 -0.0076
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> p2 <- predict(m2, data.frame(x=seq(15,35)))
> p3 <- predict(m3, data.frame(x=seq(15,35)))
> plot(x, y); points(seq(15,35,5), tapply(y, w, mean), pch=20)
> lines(15:35, p2); lines(15:35, p3)
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Random Effects Model

We are interested in a factor that has a large number of possible levels. If the
experimenter randomly selects a of these levels from the population of factor
levels, then we say that the factor is random.

Example: A textile company weaves fabric on a large number of looms. The
looms should be homogeneous so that the fabric is of uniform strength. They
select 4 looms at random and make 4 strength determinations.

observations
Loom 1 2 3 4 yi·

1 98 97 99 96 390
2 91 90 93 92 366
3 96 95 97 95 383
4 95 96 99 98 388
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Again the model is
yij = µ + τi + εij

but both, τi and εij are random variables here. If they are independent and
Var(τi) = σ2

τ and Var(εij) = σ2, then the variance of any observation is

Var(yij) = σ2
τ + σ2 .

σ2
τ and σ2 are called variance components. To test hypotheses we also need

τi
iid∼ N(0, σ2

τ) and εij
iid∼ N(0, σ2) .

Hypotheses on individual treatment effects are meaningless. Instead we test

H0: σ2
τ = 0 versus H1: σ2

τ > 0.

σ2
τ = 0: all treatments are identical; σ2

τ > 0: variability exists between treatments.
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The ANOVA decomposition SST = SSR + SSE is still valid. Thus, under the
null hypothesis where σ2

τ = 0 and hence τ1 = τ2 = · · · = τa = 0, the ratio

F =
SSR/(a− 1)
SSE/(N − a)

=
MSR

MSE

is distributed as F with a− 1 and N − a degrees of freedom.

Further calculus results in

E(MSR) = σ2 + nσ2
τ and E(MSE) = σ2 .

Thus under H0 both are unbiased estimators of σ2. But under H1 the expected
numerator is larger than the expected denominator. Thus we reject H0 for values
of F which are too large (if F > F1−α;a−1,N−a).

How to find estimators of the variance components?
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AoV Method: Equating observed and expected mean squares gives

MSR = σ̂2 + nσ̂2
τ and MSE = σ̂2

σ̂2 = MSE and σ̂2
τ =

1
n
(MSR−MSE) .

Notice that σ̂2
τ might be negative!!

Example: Are the looms homogeneous?

> y <- c(98, 97, ..., 98); l <- gl(4, 4, labels=c(1, 2, 3, 4))
> tapply(y, l, sd) # loom-specific standard deviations

1 2 3 4
1.2909944 1.2909944 0.9574271 1.8257419
> summary(aov(y~l))

Df Sum Sq Mean Sq F value Pr(>F)
l 3 89.188 29.729 15.681 0.0001878 ***
Residuals 12 22.750 1.896
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Hence, we reject H0 and conclude that there is variability between the looms.

We also get the estimate σ̂2 = MSE = 1.90 and σ̂2
τ = (MSR−MSE)/4 = 6.96.

The variance of any observation on strength is estimated by σ̂2 + σ̂2
τ = 8.86.

Most of this variability is attributable to differences between looms.

The process engineer must now try to reduce the differences in loom performance
(possibly caused by faulty set-up, poor maintenance, ... ).

If these sources of between-loom variability could be identified and eliminated,
then the variance of the process output (strength of fabric) could be reduced,
perhaps as low as σ̂2 = 1.90. This would greatly increase the quality of the fiber
product.
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More About Single-Factor Experiments

Fitting Response Curves:

Polynomial regression model for the tensile Strength experiment:

> m4 <- lm(y ~ x + I(x^2) + I(x^3) + I(x^4))
> anova(m4)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

x 1 33.62 33.62 4.1712 0.05452 .
I(x^2) 1 343.21 343.21 42.5824 2.326e-06 ***
I(x^3) 1 64.98 64.98 8.0620 0.01013 *
I(x^4) 1 33.95 33.95 4.2116 0.05347 .
Residuals 20 161.20 8.06
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ANOVA and equivalent Linear Regression Model:

Suppose we have a single-factor ANOVA model with a = 3 treatments, so

yij = µ + τi + εij

The equivalent LME is

yij = β0 + β1x1j + β2x2j + εij

with the indicators (reference category is treatment 3)

x1j =
{

1 if yij ∈ treatment 1
0 otherwise

x2j =
{

1 if yij ∈ treatment 2
0 otherwise

How do the parameters (β0, β1, β2) compare to (µ, τ1, τ2, τ3) where
∑a

i=1 τi = 0?
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Treatment ANOVA LRM
1 µ1 = µ + τ1 β0 + β1

2 µ2 = µ + τ2 β0 + β2

3 µ3 = µ− τ1 − τ2 β0

Thus β0 = µ3, β1 = µ1 − µ3, β2 = µ2 − µ3.

Now let us test H0: τ1 = τ2 = τ3 = 0, or equivalently H0: µ1 = µ2 = µ3.

If H0 is true, then the respective LRM parameters has β0 = µ, β1 = 0, β2 = 0.

In general, if there are a treatments, the LRM will have a− 1 variables

yij = β0 + β1x1j + β2x2j + · · ·+ βa−1xa−1,j + εij

with the indicators (reference category is treatment a)

xij =
{

1 if yij ∈ treatment i
0 otherwise
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Kruskal-Wallis rank sum test:

If the normality assumption is unjustified, a nonparametric alternative to the
ANOVA F test should be used to check on differences in a treatment means µi.

The Kruskal-Wallis test tests H0: µ1 = · · · = µa.

For the tensile data we get

> kruskal.test(y~w)

Kruskal-Wallis rank sum test

data: y by w
Kruskal-Wallis chi-squared = 19.0637, df = 4, p-value = 0.0007636

We again reject the null hypothesis and conclude that the treatments differ.

This is the same conclusion as from the usual ANOVA F test.
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Repeated Measures:

Experimental units are often people. Because of differences in their experience,
the responses of different people to the same treatment may be different. Unless
it is controlled, this variability becomes part of the experimental error.

To control it, we use a design in which each of the a treatments is used on each
person (or subject). Such a design is called repeated measures design.

An experiment involves a treatments and every treatment is used exactly once on
each of n subjects. Let yij be the response of subject j to treatment i.

yij = µ + τi + βj + εij ,

where τi is the effect of the ith treatment, and βj is the parameter associated
with the jth subject. We assume that treatments are fixed (so

∑
i τi = 0) but

the subjects employed are a random sample from a large population. Thus we
assume E(βj) = 0 and Var(βj) = σ2

β.
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Subject
Treatment 1 2 · · · n Totals

1 y11 y12 · · · y1n y1·
2 y21 y22 · · · y2n y2·
... ... ... ... ... ...
a ya1 ya2 · · · yan ya·

Totals y·1 y·2 · · · y·n y··

Consider ANOVA partition:

a∑

i=1

n∑

j=1

(yij − y··)
2 = a

n∑

j=1

(y·j − y··)
2 +

a∑

i=1

n∑

j=1

(yij − y·j)
2

Total Sum of Squares is separated into a sum of squares from variation between
subjects and a sum of squares from variation within subjects.
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We write
SStotal = SSbetween + SSwithin

with degrees of freedom

an− 1 = (n− 1) + n(a− 1) .

Differences within subjects depend on both, differences in treatment effects and
uncontrolled variability (noise or error). Thus, we further decompose SSwithin as

a∑

i=1

n∑

j=1

(yij − y·j)
2 = n

a∑

i=1

(yi· − y··)
2 +

a∑

i=1

n∑

j=1

(yij − yi· − y·j + y··)
2

First term measures the contribution of the difference between treatment means
to SSwithin, the second term is the residual variation due to error.
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Thus
SSwithin = SStreatments + SSE

with degrees of freedom

n(a− 1) = (a− 1) + (a− 1)(n− 1) .

To test the hypotheses of no treatment effect, that is

H0 : τ1 = τ2 = · · · = τa = 0

H1 : at least one τ1 6= 0

use the ratio

F =
SSTreatments/(a− 1)
SSE/(a− 1)(n− 1)

=
MSTreatments

MSE
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Analysis of Covariance:

Consider a study performed to determine if there is a difference in the breaking
strength (y, response) of a monofilament fiber produced by three different
machines (discrete factor). This possibly also depends on the diameter (thickness)
of the sample (x, co-variable). A thicker fiber will generally be stronger than a
thinner one.

Machine 1 Machine 2 Machine 3
y x y x y x
36 20 40 22 35 21
41 25 48 28 37 23
39 24 39 22 42 26
42 25 45 30 34 21
49 32 44 28 32 15
207 126 216 130 180 106
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Procedure: We have a single factor experiment with one covariate. An
appropriate statistical model is

yij = µ + τi + β(xij − x··) + εij ,

yij is the jth observation taken under the ith treatment (machine),

xij is the measurement on the covariate corresponding to yij,

x·· is its mean,

µ is the overall mean parameter,

τi is the fixed effect of the ith treatment (
∑

i τi = 0),

β describes the linear dependency of yij on xij.

Notice: the covariate is centered and expressed as (xij − x··) instead of xij so
that the parameter µ is preserved as the overall mean.
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> y <- c(36, 41, ..., 32); x <- c(20, 25, ..., 15); machine <- gl(3, 5)

> mean(y)
[1] 40.2
> options(contrasts=c("contr.treatment", "contr.poly")) # default
> lm(y ~ machine + x))
Coefficients:
(Intercept) machine1 machine2 x

17.360 1.037 -1.584 0.954
> lm(y ~ machine + I(x-mean(x)))
Coefficients:
(Intercept) machine1 machine2 I(x-mean(x))

40.382 1.037 -1.584 0.954
> options(contrasts=c("contr.sum", "contr.poly"))
> lm(y ~ machine + I(x-mean(x)))
Coefficients:
(Intercept) machine1 machine2 I(x-mean(x))

40.200 0.182 1.219 0.954
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To test on the machine effect, machine has to enter the model last.

> anova(lm(y ~ I(x-mean(x)) + machine))
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

I(x - mean(x)) 1 305.130 305.130 119.9330 2.96e-07 ***
machine 2 13.284 6.642 2.6106 0.1181
Residuals 11 27.986 2.544
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Thus, we cannot reject the no machine effect hypotheses!
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How to test if there is a diameter effect?

> summary(lm(y ~ I(x-mean(x)) + machine))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 40.2000 0.4118 97.611 < 2e-16 ***
I(x - mean(x)) 0.9540 0.1140 8.365 4.26e-06 ***
machine1 0.1824 0.5950 0.307 0.765
machine2 1.2192 0.6201 1.966 0.075 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.595 on 11 degrees of freedom
Multiple R-Squared: 0.9192, Adjusted R-squared: 0.8972
F-statistic: 41.72 on 3 and 11 DF, p-value: 2.665e-06

We reject H0:β = 0. There is a linear relationship between breaking strength and
diameter. Thus, the adjustment provided by the ANCOVA was necessary.
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Ignoring a covariate will sometimes cause an incorrect analysis!

> anova(lm(y ~ machine)) # ignoring diameter
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

machine 2 140.400 70.200 4.0893 0.04423 *
Residuals 12 206.000 17.167
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This would gives evidence that there is an significant machine effect.
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With β̂ = 0.954 we can compute adjusted treatment means as

(µ̂ + τ̂i) = yi· − β̂(xi· − x··) , i = 1, . . . , a .

These are much closer together (⇒ ANCOVA was necessary!)

adjusted(y1·) = 41.40− 0.954(25.2− 24.13) = 40.38

adjusted(y2·) = 43.20− 0.954(26.0− 24.13) = 41.42

adjusted(y3·) = 36.00− 0.954(21.2− 24.13) = 38.80
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Checking the model is based on residuals eij = yij − ŷij, with fitted values

ŷij = µ̂ + τ̂i + β̂(xij − x··)

= y·· +
[
yi· − y·· − β̂(xi· − x··)

]
+ β̂(xij − x··)

= yi· + β̂(xij − xi·)

We plot the residuals versus the fitted values, versus the covariate, and versus
the machines. Produce also a normal probability plot of the residuals.

> e <- my.mod$residuals
> f <- my.mod$fitted
> plot(f, e); abline(h=0) # plot residuals vs fitted
> plot(x, e); abline(h=0) # plot residuals vs x
> plot(machine, e); abline(h=0) # plot residuals vs machine
> qqnorm(e); qqline(e) # QQ-plot with reference line
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No major departures from the assumptions are indicated !!
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3. Randomized Blocks & Latin Squares Designs

3.1 The Randomized Complete Block Design

Define a nuisance factor as a design factor that probably has an effect on the
response, but we are not interested in that effect.

• If a nuisance factor is unknown and, hence, uncontrolled, we don’t know that
it exists and it may even change levels during the experiments. Randomization
is the design technique used to guard against such a lurking nuisance factor.

• Often, it is known but uncontrolled. If we are able to observe its value (yarn
thickness), then we compensate for it by using the ANCOVA model.

• When the nuisance factor is known and controllable, then blocking can be
used to systematically eliminate its effect on the statistical comparisons among
treatments.
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Example: Suppose we wish to determine whether or not 4 different tips produce
different readings on a hardness testing machine. The machine operates by
pressing the tip into a metal test coupon (from the depth of the resulting
depressing, the hardness of the coupon is determined). We’ve decided to obtain
4 observations for each tip.

There is only 1 factor (tip type) and a completely randomized single-factor
design would consist of randomly assigning each one of the 4 × 4 runs to an
experimental unit (metal coupon) and observing the resulting hardness. Thus,
16 different test coupons would be required, one for each run in the design.

Potentially serious problem: if the coupons differs slightly in their hardness, then
they will contribute to the variability observed in the hardness data.

⇒ experimental error will reflect random error and variability between coupons.
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We would like to remove this variability from the experimental error. Such a
design would require to test each tip once on each of the 4 coupons. This design
is called a randomized complete block design. Complete indicates that each
block (coupon) contains all the treatments (tips). In this design, the blocks form
a more homogeneous experimental unit on which to compare the tips (eliminates
the variability among the blocks). Within a block, the order in which the 4 tips
are tested is randomly determined.

Test Coupon
Tip 1 2 3 4
1 9.3 9.4 9.6 10.0
2 9.4 9.3 9.8 9.9
3 9.2 9.4 9.5 9.7
4 9.7 9.6 10.0 10.2
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Statistical Analysis:
We have a treatments that are to be compared and b blocks. There is 1
observation per treatment in each block, and the order in which the treatments
are run within each block is determined randomly (blocks represent a restriction
on randomization).

Thus, we apply the model

yij = µ + τi + βj + εij ,

µ is the overall mean,

τi is the effect of the ith treatment,

βj is the effect of the jth block.

Treatments and blocks are fixed factors with
∑

i τi = 0 and
∑

j βj = 0.
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Test equality of treatment means ⇐⇒ no treatment effects

H0 : µ1 = µ2 = · · · = µa ⇐⇒ H0 : τ1 = τ2 = · · · = τa = 0 .

Partition the total sum of squares as

a∑

i=1

b∑

j=1

(yij − y··)
2 = b

a∑

i=1

(yi· − y··)
2 + a

b∑

j=1

(y·j − y··)
2

+
a∑

i=1

b∑

j=1

(yij − yi· − y·j + y··)
2

50



Thus we have
SStotal = SStreatments + SSblocks + SSE

with associated degrees of freedom, df , (N = ab)

(N − 1) = (a− 1) + (b− 1) + (a− 1)(b− 1) .

SS divided by df is a mean square. The expected value of the mean squares are

E(MStreatment) = σ2 +
b

a− 1

a∑

i=1

τ2
i ,

E(MSblocks) = σ2 +
a

b− 1

b∑

j=1

β2
j ,

E(MSE) = σ2

To test equal treatment means, we use the test statistic F = MStreatments/MSE.
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> hard <- c(9.3, 9.4, 9.6, ..., 10.2); tip <- gl(4, 4); coupon <- gl(4,1, 16)
> anova(lm((hard-9.5)*10 ~ tip + coupon))
Analysis of Variance Table

Response: (hard - 9.5) * 10
Df Sum Sq Mean Sq F value Pr(>F)

tip 3 38.500 12.833 14.438 0.0008713 ***
coupon 3 82.500 27.500 30.938 4.523e-05 ***
Residuals 9 8.000 0.889

We conclude that the type of tip affects the mean hardness reading.

Also the coupons (blocks) seem to differ significantly. But since the blocks
represent a restriction on randomization, F = MSblocks/MSE is no longer an
exact F test statistic. However, we can use it at least approximately, indicating
that blocking is necessary also in future experiments.
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What happens, if we ignore the randomized block design?

Suppose we used 4 coupons, randomly assigned the tips to each, and (by chance)
the same design results. The incorrect analysis as a completely randomized
single-factor design is:

> anova(lm((hard-9.5)*10 ~ tip))
Analysis of Variance Table

Response: (hard - 9.5) * 10
Df Sum Sq Mean Sq F value Pr(>F)

tip 3 38.500 12.833 1.7017 0.2196
Residuals 12 90.500 7.542

The Hypothesis of equal mean hardness from the 4 tips cannot be rejected!

Thus, the randomized block design reduces the amount of noise sufficiently.
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Multiple Comparisons: The analysis indicates a significant difference in
treatment means. Now we are interested which treatment means differ.

We create a set of confidence intervals on the differences between the means of
the levels of tip. The intervals are based on the Studentized range statistic,
Tukey’s Honest Significant Difference method.

> hardness.aov <- aov((hard-9.5)*10 ~ tip + coupon)
> TukeyHSD(hardness.aov, which="tip", ordered=FALSE, conf.level = 0.95)
Tukey multiple comparisons of means
95% family-wise confidence level

$tip
diff lwr upr

2-1 0.25 -1.8312 2.3312
3-1 -1.25 -3.3312 0.8312
4-1 3.00 0.9188 5.0812
3-2 -1.50 -3.5812 0.5812
4-2 2.75 0.6688 4.8312
4-3 4.25 2.1688 6.3312
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> plot(tip, hard); plot(TukeyHSD(hardness.aov, "tip"))
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Differences in mean levels of tip

Thus, tip type 4 produce a mean hardness reading that is significantly higher than
the means from the other type of tips.
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3.2 The Latin Square Design

The randomized complete block design was introduced to reduce the residual
error by removing variability due to a known and controllable nuisance parameter.

There are several other designs that utilize the blocking principle.

Suppose that an experimenter is studying the effects of 5 different formulations of
a rocket propellant on the observed burning rate. Each formulation is mixed from
a batch of raw material that is only large enough for 5 formulations to be tested.
Furthermore, the formulations are prepared by several operators, and there may
be substantial differences in the skills and experience of the operators. Thus, it
seems that there are 2 nuisance factors to be averaged out in the design: batches
of raw material and operators.

The appropriate design for this problem consists of testing each formulation
exactly once in each batch of raw material and for each formulation to be
prepared exactly once by each of 5 operators (Latin Square Design).
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Batches of Operators
Raw Material 1 2 3 4 5

1 A = 24 B = 20 C = 19 D = 24 E = 24
2 B = 17 C = 24 D = 30 E = 27 A = 36
3 C = 18 D = 38 E = 26 A = 27 B = 21
4 D = 26 E = 31 A = 26 B = 23 C = 22
5 E = 22 A = 30 B = 20 C = 29 D = 31

Design is a square arrangement and the 5 formulations (treatments) are denoted
by Latin letters (A,B, C, D, E).

The Latin square design is used to eliminate 2 nuisance sources of variability: it
systematically allows blocking in 2 directions
=⇒ rows and columns represent 2 restrictions on randomization.

In general, a p × p Latin square design contains p rows and p columns. Each of
the p2 cells contains one of the p letters, and each letter occurs once and only
once in each row and column.
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Some examples of Latin squares:

4× 4 5× 5 6× 6
A B C D A D B E C A D C E B F
B C D A D A C B E B A E C F D
C D A B C B E D A C E D F A B
D A B C B E A C D D C F B E A

E C D A B F B A D C E
E F B A D C
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The statistical model for a Latin Square is:

yijk = µ + αi + τj + βk + εijk ,

where yijk is the observation in the ith row and kth column for the jth treatment

µ is the overall mean,

αi is the ith row effect,

τj is the jth treatment effect,

βk ist the kth column effect,

εijk is the random error.

The model is completely additiv. There are no interactions between rows,
columns, and treatments.
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Since there is only 1 observation in each cell, only 2 of the 3 subscripts i, j, k
are needed. E.g., if i = 2 and k = 3 we automatically find j = 4 (formulation D)
(Because each treatment appears exactly once in each row and column.)

ANOVA decomposition:

SSTotal = SSRows + SSColumns + SSTreatments + SSE

with respective degrees of freedom:

p2 − 1 = (p− 1) + (p− 1) + (p− 1) + (p− 2)(p− 1)

The appropriate statistic for testing for no differences in treatment means is

F =
MSTreatments

MSE
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> y <- c(24, 20, ..., 29, 31)
> oper <- gl(5, 1, 25); batch <- gl(5, 5)
> form <- as.factor(c("A","B","C","D","E", "B","C" ...,"D"))
> summary(aov(y ~ oper + batch + form))

Df Sum Sq Mean Sq F value Pr(>F)
oper 4 150.00 37.50 3.5156 0.040373 *
batch 4 68.00 17.00 1.5937 0.239059
form 4 330.00 82.50 7.7344 0.002537 **
Residuals 12 128.00 10.67

We conclude, that there is a significant difference in the mean burning rate
generated by the different formulations.

There is also an indication that there are differences between operators, so
blocking on this factor was a good precaution.

There is no strong evidence of a difference between batches of raw material, so it
seems that in this particular experiment we were unnecessarily concerned about
this source of variability.
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A Latin square in which the first row and column consists of the letters in
alphabetical order is called a standard Latin square (as in the example).

As with any experimental design, the observations in the Latin square should be
taken in random order. E.g, if p = 3 there exist a total number of 12 Latin square
designs. For our example with p = 5 we could already select out of 161,280
suitable Latin square designs.
Usual procedure: select a Latin square from a table of such designs, and then
arrange the order of rows and columns, and letters at random.

With Latin squares we can investigate 3 factors (rows, columns, and letters), each
at p levels, in only p2 runs. This design assumes that there are no interactions
between the factors.

Disadvantage of small Latin squares: they provide relatively small number of error
df . E.g., a 3× 3 design has only 2 error df , a 4× 4 design has only 6 error df .
Solution: replicate them n times to increase error df ! (There are several ways
to do that.)
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3.3 The Graeco-Latin Square Design

Consider a p× p Latin square, and superimpose on it a second p× p Latin square
in which the treatments are denoted by Greek letters. If the two squares when
superimposed have the property that each Greek letter appears once and only
once with each Latin letter, the design obtained is called a Graeco-Latin square.

Example of a 4× 4 Graeco-Latin square:

Column
Row 1 2 3 4
1 Aα Bβ Cγ Dδ
2 Bδ Aγ Dβ Cα
3 Cβ Dα Aδ Bγ
4 Dγ Cδ Bα Aβ

Such a design can be used to control systematically 3 sources of extraneous
variability, that is, to block in 3 directions. The design allows investigation of 4
factors (rows, clomns, Latin and Greek letters), each at p levels in only p2 runs.
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Statistical model:

yijkl = µ + θi + τj + ωk + ψl + εijkl ,

where yijkl is the observation in row i and column l for Latin letter j and Greek
letter k,

µ is the overall mean,

θi is the ith row effect,

τj is the effect of Latin letter j treatment,

ωk is the effect of Greek letter k treatment,

ψl is the lth column effect,

εijkl is the random error, assumed to be N(0, σ2).

Only 2 of the 4 subscripts are necessary to completely identify an observation.
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ANOVA very similar to that of a Latin square.

SSTotal = SSRows + SSColumns + SSL + SSG + SSE

with respective degrees of freedom:

p2 − 1 = (p− 1) + (p− 1) + (p− 1) + (p− 1) + (p− 3)(p− 1)

The appropriate F statistic for testing for no differences in rows, columns, Latin
letters, and Greek letters is the respective mean square divided by the mean
square error.
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Example: Suppose that in the rocket propellant experiment an additional factor,
test assemblies, could be of importance. Let there be 5 test assemblies denoted
by the Greek letters α, β, γ, δ, and ε.

Here is the resulting 5× 5 Graeco-Latin square design:

Batches of Operators
Raw Material 1 2 3 4 5

1 Aα = 24 Bγ = 20 Cε = 19 Dβ = 24 Eδ = 24
2 Bβ = 17 Cδ = 24 Dα = 30 Eγ = 27 Aε = 36
3 Cγ = 18 Dε = 38 Eβ = 26 Aδ = 27 Bα = 21
4 Dδ = 26 Eα = 31 Aγ = 26 Bε = 23 Cβ = 22
5 Eε = 22 Aβ = 30 Bδ = 20 Cα = 29 Dγ = 31

Notice that, since the totals for batches of raw material (rows), operators
(columns), and formulations (Latin letters) are identical to those before, we have

SSBatches = 68.0, SSOperators = 150.0, SSFormulations = 330.0.
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> assem <- as.factor(c("a","c","e","b","d", "b","d", ...,"c"))
> summary(aov(y ~ oper + batch + form + assem))

Df Sum Sq Mean Sq F value Pr(>F)
oper 4 150.00 37.50 4.5455 0.032930 *
batch 4 68.00 17.00 2.0606 0.178311
form 4 330.00 82.50 10.0000 0.003344 **
assem 4 62.00 15.50 1.8788 0.207641
Residuals 8 66.00 8.25

Formulations are significantly different at 1%. Compared to the previous result,
we see that removing the variability due to test assemblies has decreased the
experimental error. However, we have also reduced the error df from 12 to 8.
Thus, our estimate of error has fewer df , and the test may be less sensitive.
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3.4 Balanced Incomplete Block Design

In some randomized block designs, it may not be possible to apply all treatments
in every block. For example, in the hardness testing experiment, suppose that
because of their size each coupon can be used only for testing 3 tips.

The question is: Which tips are to be tested on the first coupon, which on the
second and so on if information is desired in all four tips?

A solution to this problem is to use a (balanced incomplete block design).

An incomplete block design is simply one in which there are more treatments
than can be put in a single block.

A balanced incomplete block design is an incomplete block design in which
every pair of treatments occurs the same number of times in the experiment.

The number of blocks necessary for balancing will depend on the number of
treatments that can be run in a single block.
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Example: Does time of reaction for a chemical process depend on the type of
4 catalyst employed? The experimental procedure consists of: select a batch of
raw material, apply each catalyst in a separate run, observe reaction time. Since
batches may affect the performance of the catalysts, we use batches as blocks.

However, each batch is only large enough to permit 3 catalysts to be run.
The order in which the catalysts are run in each block is randomized.

Treatment Block (Material Batch)
(Catalyst) 1 2 3 4 yi.

1 73 74 — 71 218
2 — 75 67 72 214
3 73 75 68 — 216
4 75 — 72 75 222

y.j 221 224 207 218 870 = y..

Note that each pair of catalysts such as (1, 2), occurs together twice in the
experiment.
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Assume that there are a treatments (a = 4) and b blocks (b = 4). Each block
contains k treatments (k = 3), each treatment occurs r times in the design
(r = 3), there are N = ar = bk total observations (N = 12).

The number of times each pair of treatments appears together throughout the
experiment is λ = r(k − 1)/(a− 1) (λ = 2).

If a = b, the design is symmetric. λ must be an integer.

Statistical model (BIBD):

yij = µ + τi + βj + εij ,

yij is the ith observation in the jth block, µ is the overall mean,

τi is the effect of the ith treatment,

βj is the effect of the jth block,

εij is the random error, assumed to be N(0, σ2).
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Partition the total variability as

SStotal = SStreatments(adjusted) + SSblocks + SSE

Because each treatment is represented in a different set of r blocks, the adjustment
is necessary to extract treatment effect from blocks. The BIBD is not orthogonal.

> y <- c(73,74,NA,71,...,75); cat <- gl(4,4); batch <- gl(4,1,16)
> summary(aov(y ~ cat + batch)) # yields unadjusted SS’s

Df Sum Sq Mean Sq F value Pr(>F)
cat 3 11.667 3.889 5.9829 0.0414634 *
batch 3 66.083 22.028 33.8889 0.0009528 ***
Residuals 5 3.250 0.650

> summary(aov(y ~ batch + cat)) # yields adjusted SS’s
Df Sum Sq Mean Sq F value Pr(>F)

batch 3 55.000 18.333 28.205 0.001468 **
cat 3 22.750 7.583 11.667 0.010739 *
Residuals 5 3.250 0.650
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4. Introduction to Factorial Designs

4.1 Basic Definitions and Principles

Suppose there are now 2 factors of interest to the experimenter. For simplicity,
let both factors have only 2 levels low and high, and denote them by (−, +).

> A <- as.factor(c("low","low","high","high"))
> B <- as.factor(c("low","high","low","high"))
> y1 <- c(20, 30, 40, 52)
> y2 <- c(20, 40, 50, 12)
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Definition of a factor effect: The change in the mean response when the factor
changed from low to high.

A = yA+ − yA− =
40 + 52

2
− 20 + 30

2
= 21

B = yB+ − yB− =
30 + 52

2
− 20 + 40

2
= 11
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In case of interaction:

A = yA+ − yA− =
50 + 12

2
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B = yB+ − yB− =
40 + 12
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− 20 + 50

2
= −9

AB =
20 + 12

2
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2
= −29
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The advantage of a factorial experiment:

1. More efficiency than on-factor-at-a-time experiments,

2. All data are used in computing both effects. (Note that all 4 observ’s are used
in determining the average effect of factor A and the average of factor B.),

3. Some information is provided on possible interaction between the 2 factors.
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4.2 The Two-Factor Factorial Design

There are a levels of factor A and b levels of factor B. In addition, there are n
replications for all ab treatment combinations.

The order in which the abn observations are taken is selected at random so that
this design is a completely randomized design.

Example (Battery Design Experiment): Effective life time (in hours) of a
battery possibly depend on the plate material of the battery, and the temperature
(oF) of the device for which the battery is used. n = 4 batteries are tested at
each combination of material and temperature. All 36 tests are run in random
order.

The engineer wants to answer the following questions.

• What effect do material type and temperature have on battery life?

• Is there a material that give uniformly long life regardless of temperature?
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Life (in hours) data for the battery Design Example:

Material Temperature (oF)
Type 15 70 125

1 130 155 34 40 20 70
74 180 80 75 82 58

2 150 188 136 122 25 70
159 126 106 115 58 45

3 138 110 174 120 96 104
168 160 150 139 82 60
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The statistical (effects) model is:

yijk = µ + τi + βj + (τβ)ij + εijk ,

µ is the overall mean,

τi is the effect of the ith level of the row factor A,
∑

i τi = 0,

βj is the effect of the jth level of the column factor B,
∑

j βj = 0,

(τβ)ij is the interaction effect between τi and βj,
∑

i(τβ)ij =
∑

j(τβ)ij = 0,

εij is the random error, assumed to be N(0, σ2).

The statistical (means) model is:

yijk = µij + εijk ,

where µij = µ + τi + βj + (τβ)ij.
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We are interested in testing the following hypotheses

1. The equality of row treatment effects

H0 : τ1 = τ2 = · · · = τa = 0

2. The equality of column treatment effects

H0 : β1 = β2 = · · · = βb = 0

3. The exist of interaction

H0 : (τβ)ij = 0 for all i, j
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The total variability can be expressed as (two-factor ANOVA)

a∑

i=1

b∑

j=1

n∑

k=1

(yijk − y...)
2 = bn

a∑

i=1

(yi.. − y...)
2 + an

b∑

j=1

(y.j. − y...)
2

+n
a∑

i=1

b∑

j=1

(yij. − yi.. − y.j. + y...)
2

+
a∑

i=1

b∑

j=1

n∑

k=1

(yijk − yij.)
2

Thus
SStotal = SSA + SSB + SSAB + SSE

with associated df

abn− 1 = (a− 1) + (b− 1) + (a− 1)(b− 1) + ab(n− 1)
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The expected values of the mean squares are

E(MSA) = σ2 +
bn

a− 1

a∑

i=1

τ2
i

E(MSB) = σ2 +
an

b− 1

b∑

j=1

β2
j

E(MSAB) = σ2 +
n

(a− 1)(b− 1)

a∑

i=1

b∑

j=1

(τβ)2ij

E(MSE) = σ2

Under the three H0’s, MSA, MSB, MSAB, and MSE all estimates σ2.

Under the three H1’s, MSA > MSE, MSB > MSE, MSAB > MSE, that is
large values of the ratios imply that the data do not support the null hypotheses.
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> y <- c(130,155,74,180, 34,40,80,75, ..., 96,104,82,60)
> type <- gl(3, 12)
> temp <- gl(3, 4, 36, levels = c("15", "70", "125"))
> life <- lm(y ~ type*temp)
> anova(life)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

type 2 10684 5342 7.9114 0.001976 **
temp 2 39119 19559 28.9677 1.909e-07 ***
type:temp 4 9614 2403 3.5595 0.018611 *
Residuals 27 18231 675

Conclude that there is a significant interaction between material type and
temperature. Both main effects are also significant.

Construct a graph of the average response at each treatment combination. The
significant interaction is indicated by the lack of parallelism of the lines.
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> # compute sample means (= fitted means) of each cell and plot it
> interaction.plot(temp, type, y)
> interaction.plot(type, temp, y)
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Multiple Comparisons:

Once we fail to reject H0 : (τβ)ij = 0 for all i, j, we can test the main effects.

Suppose that we reject H0 : τi = 0 or H0 : βj = 0. We then need to do multiple
comparisons to discover specific differences between row or column means.

If interaction is significant, we could compare all ab cell means to determine which
ones differ. This gives 36 comparisons between all possible pairs of the 9 means.

> tapply(fitted(life), list(type, temp), mean)
15 70 125

1 134.75 57.25 57.5
2 155.75 119.75 49.5
3 144.00 145.75 85.5
> tapply(y, list(type, temp), mean)

15 70 125
1 134.75 57.25 57.5
2 155.75 119.75 49.5
3 144.00 145.75 85.5
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> # we could compare pairs of row and/or column means (not appropriate here)
> # as also all pairs of cell means by:

> life.aov <- aov(y ~ type*temp)
> TukeyHSD(life.aov)
Tukey multiple comparisons of means

95% family-wise confidence level

$type
diff lwr upr

2-1 25.17 -1.14 51.47
3-1 41.92 15.61 68.22
3-2 16.75 -9.55 43.05

$temp
diff lwr upr

70-15 -37.25 -63.55 -10.95
125-15 -80.67 -106.97 -54.36
125-70 -43.42 -69.72 -17.11
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$"type:temp"
diff lwr upr

[1,] 21.00 -40.82 82.82 # (2, 15) - (1, 15)
[2,] 9.25 -52.57 71.07 # (3, 15) - (1, 15)
[3,] -77.50 -139.32 -15.68 # (1, 70) - (1, 15)
[4,] -15.00 -76.82 46.82 # (2, 70) - (1, 15)
[5,] 11.00 -50.82 72.82 # (3, 70) - (1, 15)
[6,] -77.25 -139.07 -15.43 # (1,125) - (1, 15)
...
[22,] 62.50 0.68 124.32 # (2, 70) - (1, 70)
[23,] 88.50 26.68 150.32 # (3, 70) - (1, 70)
...
[27,] 26.00 -35.82 87.82 # (3, 70) - (2, 70)
...
[36,] 36.00 -25.82 97.82 # (3,125) - (2,125)

E.g., fix temp=70 and test if mean battery life is the same for material types.
Mean life is equal for material 2 and 3, but both of these materials are significantly
better than material 1.
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> plot(TukeyHSD(life.aov)) # notice: (22,23,27) corresponds to (15,14,10)
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Model Diagnostics:

> e <- residuals(life); f <- fitted(life)
> plot(type, e); plot(temp, e)
> plot(f, e); qqnorm(e); qqline(e)
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No major departures can be detected (variances only slightly increase as life
increases). Since σ̂ = 26, only 1 residual (−60.75 from material 1, 15o) is larger
than 2σ̂. Notice that the second largest residual (45.26) is from the same cell.
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One Observation per Cell

Two-factor experiment with only a single replicate (n = 1). The model is:

yij = µ + τi + βj + (τβ)ij + εij ,

with both factors again assumed to be fixed.

Under this model the error variance σ2 is not estimable. The model is said to
be saturated and results in SSE = 0. If there is no interaction effect present,
then (τβ)ij = 0 for all i, j, and we consider the main effects model

yij = µ + τi + βj + εij .

If this model is appropriate, then E(MSE) = σ2, and the main effects A and B
may be tested by comparing MSA and MSB to MSE, respectively.
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• How to test whether or not 2 factors interact when n = 1?

Instead of assuming the interaction model (no main effects can be tested) or the
main effects model (which is too simple), Tukey considered the two-factor model

yij = µ + τi + βj + γτiβj + εij ,

where γ is an unknown constant. By defining the interaction term this way, we
may use a regression approach to test on H0 : γ = 0.

The test partition the residual sum of squares SSResidual into a single-degree-of-
freedom component (SSN describing the non-additivity sum of squares related
to γ and hence to the interaction) and SSE, a component for error with
dfE = (a− 1)(b− 1)− 1. That is

SSE = SSResidual − SSN

F = SSN/(SSE/dfE) is used to test on interaction.
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The sum of squares for non-additivity is computed as

SSN =

[∑a
i=1

∑b
j=1(yi. − y..)(y.j − y..)yij

]2

∑a
i=1(yi. − y..)2

∑b
j=1(y.j − y..)2

,

giving the ANOVA decomposition

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F
Rows (A) SSA a− 1 MSA MSA/MSE

Columns (B) SSB b− 1 MSB MSB/MSE

Non-additivity SSN 1 MSN MSN/MSE

Error SSE (a− 1)(b− 1)− 1 MSE

Total SST ab− 1
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Example:
The impurity present in a chemical product is affected by two factors: Pressure
and temperature. We have data from a single replicate of a factorial experiment.

Temperature Pressure
(oF) 25 30 35 40 45 yi.

100 5 4 6 3 5 23
125 3 1 4 2 3 13
150 1 1 3 1 2 8
y.j 9 6 13 6 10 44

> y <- c(5, 4, 6, 3, ..., 2); temp <- gl(3, 5, labels=c("100","125","150"))
> press <- gl(5, 1, 15, labels=c("25","30","35","40","45"))
> anova(lm(y ~ temp * press)) # saturated model => SSE=0

Df Sum Sq Mean Sq F value Pr(>F)
temp 2 23.333 11.667
press 4 11.600 2.900
temp:press 8 2.000 0.250
Residuals 0 0.000
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> a <- anova(lm(y ~ temp + press)); a
Analysis of Variance Table
Response: y

Df Sum Sq Mean Sq F value Pr(>F)
temp 2 23.333 11.667 46.667 3.885e-05 ***
press 4 11.600 2.900 11.600 0.002063 **
Residuals 8 2.000 0.250

> SStemp <- a[1,2]; dft <- a[1,1]
> SSpress <- a[2,2]; dfp <- a[2,1]
> SSresid <- a[3,2]; dfr <- a[3,1]

> # Now use the function tukey.1df() to calculate SSN
> source("tukey.1df.R")
> data <- matrix(c(as.numeric(temp), as.numeric(press), y), nrow=length(y))
> colnames(data) <- c("temp","press","y")
> SSN <- tukey.1df(data); SSN
[1] 0.09852217
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> SSE <- SSresid - SSN; dfE <- dfr-1; MSE <- SSE/dfE
> Ftemp <- (SStemp/dft)/MSE; Fpress <- (SSpress/dfp)/MSE; FN <- SSN/MSE
> 1-pf(Ftemp, dft, dfE); 1-pf(Fpress, dfp, dfE); 1-pf(FN, 1, dfE)

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F P-Value

Temperature 23.33 2 11.67 42.95 0.0001
Pressure 11.60 4 2.90 10.68 0.0042

Non-additivity 0.098 1 0.098 0.36 0.5660
Error 1.902 7 0.272
Total 36.93 14

From the test statistic for non-additivity F = 0.36 (with p-value 0.566) we
conclude that there is no evidence of interaction in this data. The main effects of
temperature and pressure are significant.
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4.3 The General Factorial Design

The results for the two-factor factorial design can be extended to the general case
with a levels of factor A, b levels of factor B, c levels of factor C, and so on. We
assume again that there are n ≥ 2 replicates of the complete experiment.

For example consider the three-factor analysis of variance model

yijkl = µ + τi + βj + γk + (τβ)ij + (τγ)ik + (βγ)jk + (τβγ)ijk + εijkl ,

with all factors A, B, and C fixed, and εijkl ∼ N(0, σ2).

Example: A soft drink bottler is interested in obtaining more uniform fill heights
in the bottles. The engineer can control 3 variables during the filling process: the
percent carbonation (A), the operating pressure in the filler (B), and the bottles
produced per minute (C, line speed). The response observed is the deviation
from the target fill height.
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Operating Pressure
25 psi 30 psi

Percent Line Speed Line Speed
Carbonation 200 250 200 250 yi...

10 -3 -1 -1 1 -4
-1 0 0 1

12 0 2 2 6 20
1 1 3 5

14 5 7 7 10 59
4 6 9 11

y.jk. 6 15 20 34 y.... = 75
y.j.. 21 54

> y <- c(-3,-1,-1,0,-1,0,1,1,0,1,2,1,2,3,6,5,5,4,7,6,7,9,10,11)
> carb <- gl(3, 8, labels=c("10", "12", "14"))
> press <- gl(2, 4, 24, labels=c("25", "30"))
> speed <- gl(2, 2, 24, labels=c("200", "250"))
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> anova(lm(y ~ carb*press*speed))
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

carb 2 252.750 126.375 178.4118 1.186e-09 ***
press 1 45.375 45.375 64.0588 3.742e-06 ***
speed 1 22.042 22.042 31.1176 0.0001202 ***
carb:press 2 5.250 2.625 3.7059 0.0558081 .
carb:speed 2 0.583 0.292 0.4118 0.6714939
press:speed 1 1.042 1.042 1.4706 0.2485867
carb:press:speed 2 1.083 0.542 0.7647 0.4868711
Residuals 12 8.500 0.708

We see that carbonation, pressure, and speed significantly affect the fill volume.
The carbonation/pressure interaction F ratio has a p-value of 0.0558, indicating
some interaction between these two factors.
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So we decide to recommend the low level of pressure (25 psi) and the high level of
line speed (250 bpm, which will maximize the production rate). The carbonation
rate, which is difficult to control, should be also kept low.
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5. The 2k Factorial Design

We consider k factors, each at only 2 levels (they could be either quantitative
or qualitative and are usually denoted by low and high, or −, +). A complete
replicate of such a design requires 2 × 2 × · · · × 2 = 2k observations and is
called 2k factorial design. This class of designs is very widely used in industrial
experimentation.

Throughout this chapter we assume that the factors are fixed, the designs are
completely randomized, and the usual normality assumptions are satisfied.

5.1 The 22 Design

Only two factors A and B, each run at two levels. Typical for chemical process
data, where A denotes reactant concentration (15 and 25%), and B is the amount
of catalyst used (low=1pound and high=2pounds). The experiment is replicated
three times.
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Factor Treatment Replicate
A B Combination I II III Total
– – A low, B low 28 25 27 80
+ – A high, B low 36 32 32 100
– + A low, B high 18 19 23 60
+ + A high, B high 31 30 29 90

By convention we denote the effect of a factor by a capital Latin letter.

The high level of any factor in the treatment combination is denoted by the
corresponding lowercase letter.

The low level of any factor in the treatment combination is denoted by the
absence of the corresponding letter.

Thus, a represents the treatment combination of A at high level and B at the
low level. ab represents both factors at the high level, and (1) is used to denote
both factors at the low level.
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Analysis procedure for a factorial design:

• Estimate factor effects; main effects A and B, and interaction AB

• Statistical testing (ANOVA); compute SS terms according to A, B, AB, and
error; build ANOVA table and test

• Analyze residuals; check normality assumption and constant variance

Compute main effects and interaction effect

Treatment Effect of Factor
Combination I A B AB

(1) + – – +
a + + – –
b + – + –
ab + + + +
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In a two-level factorial design, we define the average effect of a factor as the
change in response produced by a change in the level of that factor averaged over
the levels of the other factor.

The effect of A at the low level of B is [a− (1)]/n and at the high level of B it
is [ab − b]/n. Averaging these quantities yields the main effect of A. Applying
this principle also onto B and AB gives

A =
1
2n
{[ab− b] + [a− (1)]} =

1
2n
{[ab + a]− [b + (1)]}

B =
1
2n
{[ab− a] + [b− (1)]} =

1
2n
{[ab + b]− [a + (1)]}

AB =
1
2n
{[ab− b]− [a− (1)]} =

1
2n
{[ab + (1)]− [a + b]}

For the chemical experiment, we get A = 8.33, B = −5.00, and AB = 1.67.
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The effect of A is positive; increasing reactant conc. from low to high will increase
the yield. The effect of B is negative; increasing the amount of catalyst will
decrease the yield. The interaction effect appears to be relatively small.

Both main effects and the interaction effect were estimated by means of contrasts.
These are linear combinations of the treatment totals, e.g. C =

∑a
i=1 ciyi. with

the restriction
∑a

i=1 ci = 0. The sum of squares due to a contrast C is

SSC =
(
∑a

i=1 ciyi.)
2

n
∑a

i=1 c2
i

.

We define contrasts in 22 designs as

contrastA = ab + a− b− (1)

contrastB = ab− a + b− (1)

contrastAB = ab− a− b + (1) .
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These 3 contrasts are orthogonal. The sum of squares due to contrasts are

SSA =
(contrastA)2

4n

SSB =
(contrastB)2

4n

SSAB =
(contrastAB)2

4n
.

In the example n = 3, giving sum of squares SSA = 502/12 = 208.33, SSB =
(−30)2/12 = 75.00, and SSAB = 102/12 = 8.33. SST and SSE are computed
in the usual way giving SST = 323.00 and SSE = SST −SSA−SSB−SSAB =
31.33. We summarized these results again in an ANOVA table.
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Source of Sum of Degrees of Mean
Variation Squares Freedom Square F

A SSA 1 MSA MSA/MSE

B SSB 1 MSB MSB/MSE

AB SSAB 1 MSAB MSAB/MSE

Error SSE 22(n− 1) MSE

Total SST n22 − 1

> y <- c(28, 25, 27, 36, ..., 29); rep <- gl(3,1,12)
> A <- gl(2, 3, 12, labels=c("-","+")); B <- gl(2, 6, 12, labels=c("-","+"))
> anova(lm(y ~ A*B))
Analysis of Variance Table
Response: y

Df Sum Sq Mean Sq F value Pr(>F)
A 1 208.333 208.333 53.1915 8.444e-05 ***
B 1 75.000 75.000 19.1489 0.002362 **
A:B 1 8.333 8.333 2.1277 0.182776
Residuals 8 31.333 3.917
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It is often convenient to to write down the treatment combinations in the order
(1), a, b, ab, This is referred to as standard order. Using this standard order, we
see that the contrast coefficients are:

Effects (1) a b ab
A −1 +1 −1 +1
B −1 −1 +1 +1

AB +1 −1 −1 +1

Regression Approach: For the chemical process example the model is

y = β0 + β1x1 + β2x2 + ε ,

where x1 and x2 are coded variables representing the natural variables, reactant
concentration and the amount of catalyst used.
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The relationship between the natural variable and the coded variable is

x1 =
conc− (concl + conch)/2

(conch − concl)/2
, x2 =

cata− (catal + catah)/2
(catah − catal)/2

When the natural variables have only 2 levels, this coding will produce the familiar
±1 notation. In the example, this gives

x1 =
conc− (15 + 25)/2

(25− 15)/2
=

conc− 20
5

x2 =
cata− (1 + 2)/2

(2− 1)/2
=

cata− 3/2
1/2

If concentration is at the high level 25%, then x1 = +1 (low level 15% results in
x1 = −1). If catalyst is at high level 2 pounds, then x2 = 1 (low level 1 pound
results in x2 = −1).

109



> mod <- lm(y ~ A+B, x=TRUE) # provides also the design matrix X
> mod$x # ’low’ is coded as +1 and ’high’ as -1

(Intercept) A1 B1
1 1 1 1
2 1 1 1
3 1 1 1
4 1 -1 1
5 1 -1 1
6 1 -1 1
7 1 1 -1
8 1 1 -1
9 1 1 -1
10 1 -1 -1
11 1 -1 -1
12 1 -1 -1

The factor level appearing first is always coded as +1 in R. Arranging the data
appropriately is the only chance in order not to get wrong signs of the estimates.
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> summary(mod)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.5000 0.606 45.377 6.13e-12 ***
A1 -4.1667 0.606 -6.875 7.27e-05 ***
B1 2.5000 0.606 4.125 0.00258 **

The intercept is the grand average of all 12 observations, and the regression
coefficients β̂1, β̂2 are one-half the corresponding factor effect estimates. (Because
the regression coefficient measures the effect of a unit change in x on the mean
of y, and the factor effect is based on a two-unit change from −1 to +1.)

The fitted mean model is (x1 = x2 = +1 if concentration and catalyst are low)

µ̂ = 27.5 +
(−8.33

2

)
x1 +

(
+5.00

2

)
x2

and can be compared to the estimated factor effects A = +8.33 and B = −5.00.
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Notice, a regression model with interaction effect results the same main effect
estimates as the main effects only model (but slightly different standard errors).

> summary(lm(y ~ A*B))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.5000 0.5713 48.135 3.84e-11 ***
A1 -4.1667 0.5713 -7.293 8.44e-05 ***
B1 2.5000 0.5713 4.376 0.00236 **
A1:B1 0.8333 0.5713 1.459 0.18278

Fitted values: Using the model w/o interaction effect we get as fitted cell means

Reactant Amount of Catalyst
Concentration 1 Pound (x2 = 1) 2 Pounds (x2 = −1)
15% (x1 = 1) 27.5− 4.167 + 2.5 = 25.83 27.5− 4.167− 2.5 = 20.83

25% (x1 = −1) 27.5 + 4.167 + 2.5 = 34.17 27.5 + 4.167− 2.5 = 29.17

The model with interaction gives the observed cell means as fitted values.
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5.2 The 23 Design

Suppose that three two-level factors A, B, and C are of interest.

Example: Recall the previous bottle filling example, where 3 levels of percent
carbonation (10, 12, and 14%) were used. Suppose that only the first two are
studied. Then the data can be described as a 23 factorial experiment.

Operating Pressure (B)
25 psi 30 psi

Percent Line Speed (C) Line Speed (C)
Carbonation (A) 200 250 200 250

10 -3 -1 -1 1

-1 0 0 1

12 0 2 2 6

1 1 3 5

The 8 treatment combinations can now be displayed geometrically as a cube.
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The effect of A when B and C are at the low level is [a− (1)]/n. The effect of
A when B is high and C is low is [ab− b]/n. The effect of A when C is high and
B is low is [ac− c]/n. When B and C are high, the effect of A is [abc− bc]/n.
Thus the average effect of A is just the average of these 4 effects, i.e.

A =
1
4n

[(a− (1)) + (ab− b) + (ac− c) + (abc− bc)]

After arranging these term we get

A = [a + ab + ac + abc− (1)− b− c− ac] /4n

B = [b + ab + bc + abc− (1)− a− c− ac] /4n

C = [c + ac + bc + abc− (1)− a− b− ac] /4n

Similar expressions could be found for the interaction effects. Sum of Squares
can be computed by SS = (contrast)2/8n.
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> y <- c(-3, -1, -1, 0, -1, 0, ..., 6, 5)
> carb <- gl(2, 8, labels=c("10", "12"))
> press <- gl(2, 4, 16, labels=c("25", "30"))
> speed <- gl(2, 2, 16, labels=c("200", "250"))
> anova(lm(y ~ carb*press*speed))
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

carb 1 36.000 36.000 57.6 6.368e-05 ***
press 1 20.250 20.250 32.4 0.0004585 ***
speed 1 12.250 12.250 19.6 0.0022053 **
carb:press 1 2.250 2.250 3.6 0.0943498 .
carb:speed 1 0.250 0.250 0.4 0.5447373
press:speed 1 1.000 1.000 1.6 0.2415040
carb:press:speed 1 1.000 1.000 1.6 0.2415040
Residuals 8 5.000 0.625

The main effects are very strong. Only the AB interaction is slightly significant.
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Regression Model Approach: We use a model with all main effects and
carbonation/pressure interaction only to predict fill height deviation.

y = β0 + β1x1 + β2x2 + β3x3 + β12x12 + ε

> summary(lm(y ~ carb+press+speed+carb:press))
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.000 0.203 4.927 0.000452 ***
carb1 -1.500 0.203 -7.391 1.38e-05 ***
press1 -1.125 0.203 -5.543 0.000175 ***
speed1 -0.875 0.203 -4.311 0.001233 **
carb1:press1 0.375 0.203 1.848 0.091700 .

Remember, that a factor at its low (high) level is again coded as x = −1
(x = +1).

µ̂ = 1.00 +
(

3.00
2

)
x1 +

(
2.25
2

)
x2 +

(
1.75
2

)
x3 +

(−0.75
2

)
x12
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5.3 A Single Replicate of the 2k Design

For even a moderate number of factors, the total number of treatment combination
in a 2k design is large (a 26 design has 64 treatment combinations). Frequently,
available resources only allow a single replicate of the design to be run.

Example: A chemical product is produced in a pressure vessel. The four factors
temperature (A), pressure (B), concentration of formaldehyde (C), and stirring
rate (D) are possible influencing the mean filtration rate y. 24 = 16 runs are
made in random order.

The process engineer is interested in maximizing the filtration rate. The engineer
also would like to reduce the formaldehyde concentration as much as possible.
Currently, the process uses the concentration at the high level (low level always
results in lower filtration rates).

118



Run Factor Filtration
Number A B C D Run Label Rate

1 – – – – (1) 45
2 + – – – a 71
3 – + – – b 48
4 + + – – ab 65
5 – – + – c 68
6 + – + – ac 60
7 – + + – bc 80
8 + + + – abc 65
9 – – – + d 43
10 + – – + ad 100
11 – + – + bd 45
12 + + – + abd 104
13 – – + + cd 75
14 + – + + acd 86
15 – + + + bcd 70
16 + + + + abcd 96
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> y <- c(45,71,48,65,68,60,80,65,43,100,45,104,75,86,70,96)
> A <- gl(2,1,16); B <- gl(2,2,16); C <- gl(2,4,16); D <- gl(2,8,16)
> mod <- lm(y ~ A*B*C*D)
> fac.effects <- mod$coeff[2:16] * c(-2,-2,-2,-2,2,2,2,2,2,2,-2,-2,-2,-2,2)
> fac.effects

A1 B1 C1 D1
21.625 3.125 9.875 14.625
A1:B1 A1:C1 A1:D1 B1:C1
0.125 -18.125 16.625 2.375
B1:D1 C1:D1 A1:B1:C1 A1:B1:D1
-0.375 -1.125 1.875 4.125

A1:C1:D1 B1:C1:D1 A1:B1:C1:D1
-1.625 -2.625 1.375

> qqnorm(fac.effects); qqline(fac.effects)

All of these effects that lie along the straight line in the probability plot are
negligible, whereas the large effects are far from the line. Thus, the important
effects are the main effects of A, C, D, and the AC and AD interaction. The
model considered is saturated, thus the ANOVA table does not give F tests.
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> interaction.plot(A,C,y); interaction.plot(A,D,y); interaction.plot(C,D,y)
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We study a regression model with the main factors A, C, D, and all of their
interactions included.

> anova(lm(y ~ A * C * D ))
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

A 1 1870.56 1870.56 83.3677 1.667e-05 ***
C 1 390.06 390.06 17.3844 0.0031244 **
D 1 855.56 855.56 38.1309 0.0002666 ***
A:C 1 1314.06 1314.06 58.5655 6.001e-05 ***
A:D 1 1105.56 1105.56 49.2730 0.0001105 ***
C:D 1 5.06 5.06 0.2256 0.6474830
A:C:D 1 10.56 10.56 0.4708 0.5120321
Residuals 8 179.50 22.44

The same conclusions can be drawn as from the probability plot. The interactions
CD and ACD are not significant.
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> summary(lm(y ~ A * C * D - C:D - A:C:D)) # F1 stands for F=low
Coefficients: # add nothing if F=high

Estimate Std. Error t value Pr(>|t|)
(Intercept) 70.062 1.104 63.444 2.30e-14 ***
A1 -10.812 1.104 -9.791 1.93e-06 ***
C1 -4.938 1.104 -4.471 0.00120 **
D1 -7.313 1.104 -6.622 5.92e-05 ***
A1:C1 -9.062 1.104 -8.206 9.41e-06 ***
A1:D1 8.312 1.104 7.527 2.00e-05 ***

This gives fitted values (remember: if x = +1 for high, and x = −1 for low)

µ̂ = 70.06 +
(

21.625
2

)
x1 +

(
9.875

2

)
x3 +

(
14.625

2

)
x4

+
(−18.125

2

)
x13 +

(
16.625

2

)
x14
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The Addition of Center Points to the 2k Design

A potential concern in the use of two-level factorial experiments is the assumption
of linearity in the factor effects. If the k factors are quantitative, a more
appropriate model in some situations is the second-order response surface
model

y = β0 +
k∑

j=1

βjxj +
k∑

i=1

k∑

j=i+1

βijxixj +
k∑

j=1

βjjx
2
j + ε ,

where βjj represent pure quadratic effects. We also add center points to the
2k design. These consist of n replicates at the points xi = 0, i = 1, . . . , k.

Consider a 22 design with 1 observation at each factorial point (−,−), (+,−),
(−, +), and (+, +) and with nC observations at the center point (0, 0). Let yF

be the average of the 4 runs at the 4 factorial points, and let yC be the average
of the nC runs at the center point. If the difference yF − yC is small, then the
center points lie on or near the plane passing through the factorial points (no
quadratic effect).
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A single degree-of-freedom sum of squares for pure quadratic curvature is

SSPure Quadratic =
nFnC(yF − yC)2

nF + nC
,

where nF is the number of factorial design points. F = SSPure Quadratic/MSE

actually tests H0 :
∑

j βjj = 0. Furthermore, if the factorial points are
unreplicated, one may use the nC center points to construct an estimate of
error

SSE =
∑

center points

(yi − yC)2

with nC − 1 df .

Example: The yield of a chemical process depend on reaction time (A: low
is 30, high is 40 min) and reaction temperature (B: low is 150, high is 160
degrees). Because we are uncertain about the linearity, we conduct a 22 factorial
experiment (with a single replicate) augmented with 5 center points run at 35
minutes, 155 degrees.
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Run A B Yield
1 low low 39.3
2 low high 40.0
3 high low 40.9
4 high high 41.5
5 center center 40.3
6 center center 40.5
7 center center 40.7
8 center center 40.2
9 center center 40.6

> y <- c(39.3,40.0,40.9,41.5,40.3,40.5,40.7,40.2,40.6)
> A <- as.factor(c("-1","-1","1","1","0","0","0","0","0"))
> B <- as.factor(c("-1","1","-1","1","0","0","0","0","0"))
> m.f <- mean(y[1:4]); m.f # mean of obs at factorial points
[1] 40.425
> m.c <- mean(y[A==0 & B==0]); m.c # mean of obs at center points
[1] 40.46
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> MSE <- var(y[A==0 & B==0]); MSE # MS from center points (df=4)
[1] 0.043
> SSPQ <- 4*5*(m.f-m.c)^2/9; SSPQ # SS Pure Quadratic (df=1)
[1] 0.002722222
> SSPQ/MSE # Test statistic on no-curvature hypothesis
[1] 0.06330749

> anova(lm(y ~ A*B)) # wrong ANOVA !!
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

A 2 2.4052 1.2026 27.9677 0.004454 ** # also includes SSPQ
B 1 0.4225 0.4225 9.8256 0.035030 * # correct
A:B 1 0.0025 0.0025 0.0581 0.821316 # correct
Residuals 4 0.1720 0.0430 # correct
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To get df = 1 for both three-level factors we define A and B as variables:

> A <- c(-1,-1,1,1,0,0,0,0,0); B <- c(-1,1,-1,1,0,0,0,0,0)
> anova(lm(y ~ A*B))

Df Sum Sq Mean Sq F value Pr(>F)
A 1 2.40250 2.40250 68.7520 0.0004166 ***
B 1 0.42250 0.42250 12.0906 0.0177127 *
A:B 1 0.00250 0.00250 0.0715 0.7997870
Residuals 5 0.17472 0.03494 # also includes SSPQ

> anova(lm(y ~ A*B + I(A^2) + I(B^2)))
Df Sum Sq Mean Sq F value Pr(>F)

A 1 2.40250 2.40250 55.8721 0.001713 **
B 1 0.42250 0.42250 9.8256 0.035030 *
I(A^2) 1 0.00272 0.00272 0.0633 0.813741 # SSPQ is now separated
A:B 1 0.00250 0.00250 0.0581 0.821316
Residuals 4 0.17200 0.04300

Conclusion: significant main effects, no interaction and no second-order curvature.
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Remember our regression model

y = β0 + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2 + ε

with 6 parameters included. But the 22 design plus center points only has 5
independent runs. Thus, 1 parameter is not estimable.

> summary(lm(y ~ A*B + I(A^2) + I(B^2)))
Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.46000 0.09274 436.291 1.66e-10 ***
A 0.77500 0.10368 7.475 0.00171 **
B 0.32500 0.10368 3.135 0.03503 *
I(A^2) -0.03500 0.13910 -0.252 0.81374
A:B -0.02500 0.10368 -0.241 0.82132

The quadratic B effect cannot be estimated. In a central composite design the
2k design is augmented with central points and some further axial points like
(
√

2, 0), (−√2, 0), (0,−√2), and (0,
√

2) for a 22 design (very effective!).
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6. Blocking and Confounding in the 2k Factorial Design

Blocking a replicated Design

• Blocking is a technique for dealing with controllable nuisance variables

• If there are n replicates of the design, then each replicate is a block

• Each replicate is a run of the blocks (time periods, batches of raw materials,
etc.)

• Runs within the block are randomized
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Example: The chemical process experiment with A (concentration) and B
(catalyst) from the previous chapter.

Suppose that only 4 experimental trials can be made from a single batch of raw
material. Therefore, 3 batches of raw material will be required to run all three
replicates of this design.

Block 1 Block 2 Block 3
(1) = 28 a = 32 ab = 29

a = 36 ab = 30 (1) = 27
b = 18 (1) = 25 b = 23

ab = 31 b = 19 a = 32
B1 = 113 B2 = 106 B3 = 111

> A <- as.factor(c("low","high","low","high", ..., "high"))
> B <- as.factor(c("low","low","high","high", ..., "low"))
> Block <- as.factor(c(1, 1, 1, 1, 2, ..., 3))
> y <- c(28, 36, 18, 31, 32, 30, 25, 19, 29, 27, 23, 32)
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> anova(lm(y ~ Block + A*B))
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

Block 2 6.500 3.250 0.7852 0.4978348
A 1 208.333 208.333 50.3356 0.0003937 ***
B 1 75.000 75.000 18.1208 0.0053397 **
A:B 1 8.333 8.333 2.0134 0.2057101
Residuals 6 24.833 4.139

The conclusions from this analysis, had the design been run in blocks, are identical
to those before (relatively small block effect).
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Confounding in the 2k factorial design

When the block size is smaller than the number of treatment combinations in
one replicate, confounding is a design technique for arranging a complete factorial
experiments in blocks. Usually, higher order interactions are confounded with
blocks.

Even though the designs presented are incomplete block designs, because each
block does not contain all the treatments or treatment combinations, the special
structure of the 2k factorial system allows a simplified method of analysis.

Simple Confounding: Run a single replicate of a 22 design. Each batch of raw
material is only large enough for 2 treatment combinations. Thus, 2 batches are
required and we consider batches as blocks. One possible design is

Block 1 Block 2
(1) a
ab b

134



A

B

− +

−
+

(1)

b

a

ab

Treatment combinations on opposing diagonals are
assigned to different blocks. The order in which
the treatment combinations are run within a block
is randomly determined. We also randomly decide
which block to run first.
Suppose we estimate the main effects of A and B
as if no blocking had occurred:

A =
1
2
[ab + a− b− (1)] B =

1
2
[ab + b− a− (1)]

Note that both A and B are unaffected by blocking since in each estimate there
is 1 plus and 1 minus treatment combination from each block. That is, any
difference between block 1 and block 2 will cancel out.
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Now consider the AB interaction

AB =
1
2
[ab + (1)− a− b]

Since the 2 treatment combinations with plus sign, ab and (1), are in block 1 and
the 2 with a minus sign, a and b, are in block 2, the block effect and the AB
interaction are identical. That is, AB is is indistinguishable from, or confounded
with blocks.

The is apparent from the table of plus and minus signs:

Treatment Factorial Effect
Combination I A B AB
(1) + − − +
a + + − −
b + − + −
ab + + + +

⇑

All treatment combinations that have a
plus sign on AB are assigned to block 1,
whereas all treatment combinations that
have a minus sign on AB are assigned to
block 2. This approach can be used to
confound any effect (A, B, or AB) with
blocks.
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This approach can be used to confound any effect (A, B, AB) with blocks. E.g.,
for

Block 1 Block 2
(1) a
b ab

Treatment Factorial Effect
Combination I A B AB
(1) + − − +
a + + − −
b + − + −
ab + + + +

⇑

the main effect A would have been confounded with blocks.

This scheme can be used to confound any 2k design in two blocks. As a second
example, consider the 23 design run in 2 blocks. Suppose we wish to confound
the 3-factor interaction ABC with blocks. From the table of plus/minus signs
we assign the treatment combinations that are minus on ABC to block 1 and
those that are plus on ABC to block 2.
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Treatment Factorial Effect
Combination I A B AB C AC BC ABC
(1) + − − + − + + −
a + + − − − − + +
b + − + − − + − +
ab + + + + − − − −
c + − − + + − − +
ac + + − − + + − −
bc + − + − + − + −
abc + + + + + + + +

Block 1 Block 2
(1) a
ab b
ac c
bc abc

Run the treatment combinations within a block in random order!

Example: Recall the example in which temperature (A), pressure (B),
concentration of formaldehyde (C), and stirring rate (D) are studied to determine
their effect on filtration rate.
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We make 2 modifications:

• suppose the 16 treatment combinations cannot
all be run using 1 batch of raw material. We
can run 8 from a single batch, so a 24 design
confounded in 2 blocks seems appropriate. Of
course, we confound the highest-order interaction
ABCD with blocks.
• We introduce a block effect, so that the utility of
blocking can be demonstrated. suppose that one
of the 2 batches of raw material is of much poorer
quality (batch 1), and, as a result, all responses
will be 20 units lower in this batch than in the
other. Now all the tests in block 1 are performed
first (in random order)

Block 1 Block 2
(1) = 25 a = 71
ab = 45 b = 48
ac = 40 c = 68
bc = 60 d = 43
ad = 80 abc = 65
bd = 25 bcd = 70
cd = 55 acd = 86

abcd = 76 abd = 104

> y <- c(45,71,48,65,68,60,80,65,43,100,45,104,75,86,70,96) # original data
> A <- gl(2,1,16); B <- gl(2,2,16); C <- gl(2,4,16); D <- gl(2,8,16)
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> block <- as.factor(c(1,2,2,1,2,1,1,2,2,1,1,2,1,2,2,1))
> y <- y - 20*(block=="1")

> options(contrasts=c("contr.sum", "contr.poly"))
> mod <- lm(y ~ A*B*C*D) # as if no blocking had occurred
> summary(mod)
Residuals:
ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 60.0625 NA NA NA
A1 -10.8125 NA NA NA
:
A1:B1:C1:D1 -9.3125 NA NA NA

Residual standard error: NaN on 0 degrees of freedom
Multiple R-Squared: 1, Adjusted R-squared: NaN
F-statistic: NaN on 15 and 0 DF, p-value: NA
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The estimates of all 4 main effects, 6 two-factor interactions, and the 4 three-
factor interactions are identical to the effect estimates obtained previously, where
there was no block effect.

What about the ABCD interaction effect? The estimate in the original
experiment was ABCD = 1.375. Now it is ABCD = −18.625. Since ABCD is
confounded with blocks, the ABCD interaction estimates the original interaction
effect plus the block effect, which is −20.

> anova(lm(y ~ A + C + D +A:C + A:D + block))

Df Sum Sq Mean Sq F value Pr(>F)
A 1 1870.56 1870.56 89.757 5.600e-06 ***
C 1 390.06 390.06 18.717 0.0019155 **
D 1 855.56 855.56 41.053 0.0001242 ***
block 1 1387.56 1387.56 66.581 1.889e-05 ***
A:C 1 1314.06 1314.06 63.054 2.349e-05 ***
A:D 1 1105.56 1105.56 53.049 4.646e-05 ***
Residuals 9 187.56 20.84
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Experiments with Random Factors

1. Introduction:

• Previous chapters have considered fixed factors.

1. A specific set of factor levels is chosen for the experiment
2. Inference confined to those levels.
3. Often quantitative factors are fixed (why?)

• When factor levels are chosen at random from a larger population of potential
levels, the factor is random

1. Inference is about the entire population of levels.
2. Industrial applications include measurements system studies.
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1. Introduction:

• Example
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