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Outline

• Spirit and Principle of the Bootstrap

• Estimating Bias & Standard Error

• Bootstrapping the Bootstrap (Iterating the Principle)

• Hypothesis Tests

• Linear Regression Models

• Generalized Linear Models (if timing permits?)
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The Bootstrap Principle

Efron (1979), Efron & Tibshirani (1986):

P −→ y ⇒ P̂ −→ y∗

↘ ↙ ↘ ↙
R(y, P ) R(y∗, P̂ )

• unknown probability mechanism (statistical model) P

• sample (observed data) y = (y1, . . . , yn)
• random variable R(y, P ), which possibly depends on both, the

data and the unknown P .
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The Real World (left triangle) is described/estimated by the

Bootstrap World (right triangle)

E.g., the expectation of R(y, P ) is estimated by the bootstrap

expectation of R(y∗, P̂ )

The double arrow indicates the crucial step in applying the bootstrap

The bootstrap ‘estimates’

1) P by means of the data y

2) distribution of R(y, P ) through the conditional distribution of

R(y∗, P̂ ), given y
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Spirit of the Bootstrap

Use sample behavior of the triple

(P̂ ,y∗, R(y∗, P̂ )),

to mimic the one of (P,y, R(y, P )),

where the relationship between

P̂ ,y∗ and R(y∗, P̂ )

has to equal that between

P,y and R(y, P )

4



How to estimate P (iid)

• parametric (known likelihood): assume that yi
iid∼ F (θ)

P̂ = F (θ̂),

• nonparametric (unknown likelihood):

P̂ = F̂ : puts mass 1/n at every yi

Interpretation: draw a resample y∗1, . . . , y
∗
n again of size n with

replacement from the original data y1, . . . , yn.
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Remarks:

The concept was introduced by Prof. Bradley Efron, Stanford

University, in his 1977 Rietz lecture

The bootstrap is a resampling procedure (as the Jackknife or as

cross-validation).

In Efron (1979), acknowledge part: his personal favorite name

actually was Shotgun, which, to paraphrase Tukey, can blow the
head off any problem if the statistician can stand the resulting
mess!

In German language: Muenchhausen-Trick instead of pull strap.
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Measures of Statistical Error

Error Measure:

characteristic of the sampling distribution

HF (r) = P (R(y, F ) ≤ r)

Estimator:

respective characteristic of the estimated sampling distribution

HF̂ (r) = P∗(R(y∗, F̂ ) ≤ r|y)

7



Choices of R:

Estimation of Bias: For a statistic θ̂(y) and a parameter θ(F ), let

R(y, F ) = θ̂(y)− θ(F ) .

The bias of θ̂ for estimating θ is

bias(F ) = EF (R(y, F )) = EF (θ̂(y))− θ(F ) .

The bootstrap estimate of bias is

bias(F̂ ) = EF̂ (R(y∗, F̂ )|y) = EF̂ (θ̂(y∗)|y)− θ(F̂ ) .

8



Estimation of Standard Error: let R(y, F ) = θ̂(y)

(
varF (R(y, F ))

)1/2

=
(
varF (θ̂(y))

)1/2

(
varF̂ (R(y∗, F̂ ))

)1/2

=
(
varF̂ (θ̂(y∗)|y)

)1/2

Mean Squared Error:

MSE(θ̂(y)) = var(θ̂(y)) + bias2(θ̂(y)) .
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Example: Nonparametric Bootstrap yi
iid∼ F (unknown), y∗i

iid∼ F̂

E∗(y∗1|y) =
n∑

i=1

yiP (y∗1 = yi) =
1
n

n∑

i=1

yi = y

var∗(y∗1|y) = E∗
(
(y∗1 − y)2|y

)
=

1
n

n∑

i=1

(yi − y)2 = s2

E∗(·) and var∗(·) are the bootstrap moments w.r.t. the edf F̂
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Example cont’d:
assess θ̂(y) = y as an estimate of µ(F ) =

∫
y dF (y)

Bias:

E(y)− µ(F ) = 0

E∗(y∗|y)− µ(F̂ ) = E∗(y∗1|y)− y = 0

Standard Error:

var(y) = σ2/n

var∗(y∗|y) = var∗(y∗1|y)/n = s2/n
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Example cont’d:
Now assess θ̂(y) = s2 as an estimate of σ2(F ) =

∫
(y − µ)2 dF (y)

Bias:

E(s2)− σ2(F ) = −σ2/n

E∗(s∗2|y)− σ2(F̂ ) = −s2/n

Drawback: usually it’s pretty hard to find explicitly the bootstrap

distribution or even the bootstrap moments.
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Bootstrapping the Bootstrap

E.g., bias correction of bootstrap calculations:

Estimator T = t(F̂ ) for θ = t(F ) has bias

β = bias(F ) = E(T )− θ = E[t(F̂ )|F ]− t(F )

Bootstrap estimate of this bias is

B = bias(F̂ ) = E∗(T ∗)− T = E∗[t(F̂ ∗)|F̂ ]− t(F̂ )

F̂ ∗ is the edf of the bootstrap sample Y ∗
1 , . . . , Y ∗

n (drawn from F̂ ).
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As with T = t(F̂ ) itself, so with B = bias(F̂ ): the bias can be

estimated using the bootstrap. Write

c(F ) = E(B|F )− bias(F )

then the simple bootstrap estimate is

c(F̂ ) = E∗(B∗|F̂ )− bias(F̂ )

= E∗
{

E∗∗[t(F̂ ∗∗)|F̂ ∗]− t(F̂ ∗)|F̂
}
−

{
E∗[t(F̂ ∗)|F̂ ]− t(F̂ )

}

= E∗
{

E∗∗(T ∗∗)
}
− 2E∗(T ∗|F̂ ) + T

F̂ ∗∗ is the edf of a resample Y ∗∗
1 , . . . , Y ∗∗

n drawn from F̂ ∗.
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Since there are 2 levels of bootstrapping here, this procedure is also

called nested or double bootstrap.

The adjusted estimate of the bias of T is

Badj = bias(F̂ )− c(F̂ ) .
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Example: T = n−1
∑

i(yi − y)2 to estimate var(Y ) = σ2. Thus

β = bias(F ) = −σ2/n ,

which the bootstrap estimates by

B = bias(F̂ ) = −T/n .

The bias of this bias estimate is E(B)− β = σ2/n2,

which the bootstrap estimates by c(F̂ ) = T/n2.

Thus, the adjusted bias estimate is Badj = −T/n− T/n2.

Improvement: E(Badj) = β(1+n−2), whereas E(B) = β(1+n−1).
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Bootstrap Distribution

• direct calculation (often impossible)

• asymptotical methods (see e.g. Hall, 1992)

• Monte Carlo approximation (always a good choice ;)
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For b = 1, . . . , B (B large) resample y∗b from P̂ and calculate t(y∗b)

Apply the Law of Large Numbers in the sense that

EMC(t(y∗)|y) = t(y∗) =
1
B

B∑

b=1

t(y∗b)
a.s.−→ E∗(t(y∗)|y)

Thus, var∗(t(y∗)|y) is approximated by

varMC(t(y∗)|y) =
1
B

B∑

b=1

(
t(y∗b)− t(y∗)

)2 a.s.−→ var∗(t(y∗)|y)
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Remarks:

• MC results are used to approximate BT quantities.

• BT quantities are desired as estimates of population charact’s.

• sometimes MC results are misleadingly called BT estimates

• generating large MC samples can be computationally expensive!

• Histogram of the MC resamples approximates the BT density

(estimates the unknown density)

• empirical MC moments approximate the respective BT moments

(estimates the unknown moments)
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Using R for MC Simulations

Example 1: correlation coefficient, n = 15

> library(bootstrap); data(law)
> R <- cor(law$LSAT, law$GPA); R
0.7763745

> B <- 1000; cor.MC <- 1:B
> for (b in 1:B) {
+ i <- sample(15, replace=TRUE)
+ cor.MC[b] <- cor(law$LSAT[i], law$GPA[i])
+ }
> mean(cor.MC); sd(cor.MC)

Mean StdDev
0.7716 0.1309
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Example 2: BHCG blood serum levels for 54 breast cancer patients

> lev <- c(0.1, 0.1, ..., 4.4, 4.5, 6.4, 9.4)
> mean(lev); mean(lev, trim=0.25)
[1] 2.3185 2.2393

We want to estimate the true mean µ = EF (y) of this population,
using θ̂, the 25% trimmed mean (because of 2 large obs’s 6.4, 9.4).

> for (b in 1:B) {
+ i <- sample(54, replace=TRUE)
+ m.MC[b,1] <- mean(lev[i])
+ m.MC[b,2] <- mean(lev[i], trim=0.25)
+ }
> sd(m.MC)
[1] 0.2116334 0.1617231

Thus, the standard error for θ̂ is much smaller.
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Example 2 cont’d: consider the t-like statistic

R(y, F ) =
θ̂(y)− µ(F )

îqr(y)

What about confidence intervals for µ(F )?

Suppose we know the 5th and 95th percentiles of R, say ρ(0.05)(F )
and ρ(0.95)(F ), where

PF (R(y, F ) ≤ ρ(α)(F )) = α .

This gives a central 90% interval for µ(F ),

µ(F ) ∈ [θ̂(y)− îqr(y) · ρ(0.95), θ̂(y)− îqr(y) · ρ(0.05)]
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Because ρ(α)(F ) is unknown, a bootstrap sample gives

R(y∗, F̂ ) =
θ̂(y∗)− µ(F̂ )

îqr(y∗)

MC estimate of PF̂ (R(y∗, F̂ ) < ρ) is #(R(y∗b , F̂ ) < ρ)/B

> for (b in 1:B) {
+ i <- sample(54, replace=TRUE)
+ R[b] <- (mean(lev[i], trim=0.25) - mean(lev))/IQR(lev[i])
+ }
> mean(lev, trim=0.25) - IQR(lev)*sort(R)[950]
[1] 2.05
> mean(lev, trim=0.25) - IQR(lev)*sort(R)[ 50]
[1] 2.60
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This interval (2.05, 2.60) is smaller than the usual t interval

y ±
√

v̂ar(y)/n · t0.95,53 = (1.97, 2.67)

MC Resampling Libraries:

Efron & Tibshirani (1993): bootstrap

Davison & Hinkley (1997): boot
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Hypothesis Tests

Question: How to use resampling methods for significance tests in

parametric & nonparametric settings.

Simplest situation: simple null hypothesis H0 completely specifies

the distribution of the data; e.g. H0 : F = F0, where F0 contains

no unknown parameters; exponential with λ = 1.

Situation in practice: composite null hypothesis H0; some aspects

of F unknown when H0 is true; normal with µ = 1 (σ2 not

specified).
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Test statistic T measures discrepancy between data and H0.

Convention: large values of T are evidence against H0.

H0 simple, T = t observed: level of evidence against H0 measured

by the significance probability, the P-value

p = Pr(T ≥ t|H0) .

Critical value tp for t, associated with testing at level p: if t ≥ tp
we reject H0 at level p. Thus, Pr(T ≥ tp|H0) = p.

p is called error rate and {(y1, . . . , yn) : t ≥ tp} level p critical
region of the test. The distribution of T under H0 is called the null
distribution.
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Choice of test statistic in parametric setting:

Explicit form of sampling distribution is known, with a finite number

of unknown param’s. H0 specifies relationships between param’s.

Likelihood function: L(θ) = fY1,...,Yn(y1, . . . , yn|θ).
When H0 : θ = θ0, HA : θ = θA are both simple, the best test

statistic is the likelihood ratio T = L(θA)/L(θ0).

Different situation when we test goodness of fit of the parametric

model. This can be done by embedding the model into a larger

model (add’al param’s), to check departures from the original model.

29



Choice of test statistic in nonparametric setting:

No particular form specified for the sampling distribution. Choice of

T is less clear. Usually T based on a statistical function s(F̂ ), for

which H0 specifies a value.

We test H0 : X,Y are independent, sample (X1, Y1), . . . , (Xn, Yn).
ρ = corr(X, Y ) = s(F ) measures dependence, and ρ = 0 under H0.

If HA is positive dependence (one-sided), we can use

T = s(F̂ )

the sample correlation. If HA is dependence, then

T = s2(F̂ ) .

30



Conditional tests:
H0 is often composite, leaves param’s unknown, F not completely

specified. P-value not well defined, since Pr(T ≥ t|F ) may depend

on which F ∈ H0 is taken.

a) choose T , so that its distribution is the same for all F ∈ H0 (e.g.

Student-t test for normal mean with σ2 unknown).

b) Eliminate param’s which are unknown under H0, by conditioning
on the sufficient statistic under H0. Let S denote this statistic,

then the conditional P-value is defined by

p = Pr(T ≥ t|S = s,H0).

(e.g., Fisher’s exact test for 2× 2 tables, Student-t test)
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A less satisfactory approach (which can give good approximations)

is to estimate F by a cdf F̂0, which satisfies H0 and then calculate

p = Pr(T ≥ t|F̂0).

Typically this will not satisfy the definition of the error rate exactly.
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Pivot tests:

For H0 : θ = θ0, use equivalence between tests and confidence sets.

If θ0 is outside a 1 − α confidence set for θ, then θ differs from θ0

with P-value less than α. Pivot tests based on this equivalence.

Let T be an estimator for scalar θ with estimated variance V .

Suppose that the studentized form

Z = (T − θ)/V 1/2

is a pivot, meaning that its distribution is the same for all relevant

F , and in particular for all θ (e.g. Student-t statistic).
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For H0 : θ = θ0 vs HA : θ > θ0, and z0 = (t− θ0)/v1/2 observed

p = Pr
(
(T − θ0)/V 1/2 ≥ (t− θ0)/v1/2|H0

)
.

But because Z is a pivot,

Pr
(
Z ≥ (t− θ0)/v1/2|H0

)
= Pr

(
Z ≥ (t− θ0)/v1/2|F

)
,

and therefore

p = Pr(Z ≥ z0|F ) .

No special null sampling distributions needed to resample from.
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Distinguish param’s of interest ψ and nuisance param’s λ.

H0 concerns only ψ. Thus, conditional p-value is independent of λ.

How to construct a general test statistic T?

Generalize the likelihood ratio and define

LR =
maxHA

L(ψ, λ)
maxH0 L(ψ, λ)

.

For H0 : ψ = ψ0 vs HA : ψ 6= ψ0, this is

LR =
L(ψ̂, λ̂)

L(ψ0, λ̂0)
=

maxψ,λ L(ψ, λ)
maxλ L(ψ0, λ)

.
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Often T = 2 log LR ∼ χ2
d under H0 (approx.), where d is the

dimension of ψ, so that

p
·= Pr(χ2

d ≥ t)

independently of λ. Thus the LR is an approximate pivot.

Approximations for p exist in many cases (behavior for n →∞).

Resampling alternatives, if such approximations fail to give

appropriate accuracy or do not exist at all.
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Resampling for Parametric Tests

Monte Carlo Tests

Null distribution of T does not include nuisance parameters

(conditioning). Often it is impossible to calculate the conditional

P-value, but MC tests provide approximations to the full tests.

Basic MC test compares the observed t to R independent values of

T , e.g. t∗1, . . . , t
∗
R, obtained from samples, which are independently

simulated under H0.
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Under H0, all R + 1 values t, t∗1, . . . , t
∗
R are equally likely values of

T . Thus, if T is continuous,

Pr(T < T ∗(r)|H0) =
r

R + 1
.

If exactly k of the simulated t∗ values exceed t (and none equal it),

the MC P-value is

p = Pr(T ≥ t|H0)
·= pmc =

k + 1
R + 1

.

If T is continuous, then the distribution of Pmc is uniform on

(1/(R + 1), . . . , R/(R + 1), 1) under H0 (error rate interpretation).

The full test corresponds to R →∞.
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If T is discrete, then repeated values of t∗ can occur. If exactly l

of the t∗ values equal t, then

k + 1
R + 1

≤ pmc ≤ k + l + 1
R + 1

.

We (have to) use the upper bound

pmc =
1 + #(t∗r ≥ t)

R + 1
.
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Example: n = 50 counts of fir seedlings in 5 feet square quadrats.

0 1 2 3 4 3 4 2 2 1

0 2 0 2 4 2 3 3 4 2

1 1 1 1 4 1 5 2 2 3

4 1 2 5 2 0 3 2 1 1

3 1 4 3 1 0 0 2 7 0

Test the null that the data are iid Poisson(µ).

Concern: overdispersion relative to Poisson, var(Yi) = ψµ, ψ > 1.

Take dispersion index as test statistic

T =
n∑

i=1

(Yi − Y )2

Y
.
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Under H0, S =
∑n

i=1 Yi is sufficient for µ.

Conditional test: (Y1, . . . , Yn)|(S = s) multinomial with

denominator s and n categories, each having probability 1/n.

It is easy to simulate from this.

We further know that T |(S = s)
H0∼ χ2

n−1 (approximately).

> library(boot); attach(fir)
> fir.mle <- c(sum(fir$count), nrow(fir)); fir.mle # s & n
[1] 107 50

> fir.fun <- function(data) # test statistic t
+ ((nrow(data) - 1) * var(data$count))/mean(data$count)
> fir.fun(fir)
[1] 55.14953
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> fir.gen <- function(data, mle) {
+ d <- data
+ y <- sample(x=mle[2], size=mle[1], replace=T)
+ d$count <- tabulate(y, mle[2]); d
+ }
> fir.boot <- boot(fir, fir.fun, R=999, sim="parametric",
+ ran.gen=fir.gen, mle=fir.mle)

> summary(fir.boot$t)
Min. 1st Qu. Median Mean 3rd Qu. Max.

27.11 42.07 48.61 49.08 55.15 91.60

> pmc <- (sum(fir.boot$t>fir.boot$t0)+1)/(fir.boot$R+1); pmc
[1] 0.249
> 1 - pchisq(fir.boot$t0, fir.mle[2]-1)
[1] 0.2534432
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Parametric Bootstrap Tests

If null distribution of T depends on nuisance param’s, which cannot

be conditioned away so MC tests cannot be applied. Fit F̂0 and

calculate

p = Pr(T ≥ t|F̂0) .

In a parametric model test H0 : ψ = ψ0 with λ a nuisance parameter,

F̂0 is the cdf of f(y|ψ0, λ̂0), with λ̂0 the MLE of λ when ψ = ψ0.

If p cannot be computed, draw R iid samples y∗1, . . . , y
∗
n from F̂0

and calculate t∗r. Significance probability is approximated by

pboot =
1 + #{t∗r ≥ t}

R + 1
.
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Example: (Separate Families Test)

Choose between alternative families f0(y|η) and f1(y|ζ).
Nuisance parameter λ = (η, ζ).

Indicator ψ with null value ψ0 = 0 and alternative value ψA = 1.

Likelihood ratio is

T =
1
n

log
L1(ζ̂)
L0(η̂)

=
1
n

n∑

i=1

log
f1(yi|ζ̂)
f0(yi|η̂)

.

(ζ̂, η̂) are the MLE’s under f1 and f0. If families are strictly

separated (not nested), then the χ2 approximation does not apply!
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Generate R samples (size n) by random sampling from the fitted null

model f0(y|η̂). For each sample calculate η̂∗ and ζ̂∗ by maximizing

the simulated log-likelihoods

`∗1(ζ) =
n∑

i=1

log f1(y∗i |ζ) , `∗0(η) =
n∑

i=1

log f0(y∗i |η) .

and compute the simulated log-likelihood ratio statistic

t∗ = 1/n{`∗1(ζ̂∗)− `∗0(η̂
∗)} .
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Example: Failure times of air-conditioning equipment (n = 12).

3 5 7 18 43 85 91 98 100 130 230 487

Plausible models for y > 0:

Gamma: f0(y|η) =
κ(κy)κ−1 exp(−κy/µ)

µκΓ(κ)

Lognormal: f1(y|ζ) =
1
βy

φ

(
log y − α

β

)

Gamma mean: µ̂ = y = 108.1
Gamma index: solves log(κ̂)− d log Γ(κ̂)/dκ̂ = log(y)− log(y)

giving κ̂ = 0.707
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Normal mean: α̂ = log y = 3.829
Normal variance: β̂2 = (n− 1)s2

log y/n = 2.339.

> data(aircondit); attach(aircondit)

> gamma.estim(hours)
$kappa: 0.7064932 $mu: 108.0833

> lognormal.estim(hours)
$alpha: 3.828588 $beta2: 2.33853

The observed test statistic is

t = −κ̂
(

log(κ̂/µ̂) + α̂− 1
)
− log Γ(κ̂)− log(2πβ̂2)/2− 1/2

= −0.465
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> air.mle <- c(gamma.estim(hours)$kappa, gamma.estim(hours)$mu)

> air.gen <- function(data, mle) {
+ d <- data
+ d$hours <- rgamma(nrow(data), mle[1], rate = mle[1]/mle[2])
+ d
+ }

> air.fun <- function(data) {
+ k <- gamma.estim(data$hours)$kappa
+ mu <- gamma.estim(data$hours)$mu
+ alpha <- lognormal.estim(data$hours)$alpha
+ beta2 <- lognormal.estim(data$hours)$beta2
+ -k*(log(k/mu)+alpha-1)-log(gamma(k))-log(2*pi*beta2)/2-1/2
+ }
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> air.boot <- boot(aircondit, air.fun, R=999, sim="parametric",
+ ran.gen=air.gen, mle=air.mle)

> summary(air.boot$t)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

-2.20 -0.7515 -0.3627 -0.4409 -0.0422 0.3688 44

> (1+sum(air.boot$t>=air.boot$t0,na.rm=T))
+ /(air.boot$R+1-sum(is.na(air.boot$t)))
[1] 0.6310881

Histogram has fairly non-normal shape. Thus, a normal

approximation will not be very accurate!
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Graphical Tests

Popular in model checking:

(half-) normal plots of residuals, plots of Cook distances, ...

Reference shape is straight line. Detect deviations from null model.

Requires notion of the plots probable variation under a null model.

Superimpose a probable envelope to which the original plot is

compared.

Probable envelope is obtained by MC or parametric resampling.
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Suppose that the graph plots T (a) vs a ∈ A, a bounded set. The

observed plot is {t(a) : a ∈ A}.
In a normal plot A is a set of normal quantiles and the values of

t(a) are the ordered values of a sample.

The idea now is to compare t(a) with the probable behavior of T (a)
for all a ∈ A, when H0 is true.
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Example: (Normal plot of gravity data)

1 2 3 4 5 6 7 8

40
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80
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0

Check if the last series of

n = 13 measurements of

the acceleration due to

gravity can be assumed

normal.
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Plot ordered studentized data values against N(0,1) quantiles, i.e.

z(i) = (y(i) − y)/s vs. ai = Φ−1(i/(n + 1)) .

A is the set of normal quantiles, and t(ai) = z(i).

> attach(gravity); g <- grav$g[grav$series==8]
> grav.z <- (g-mean(g))/sqrt(var(g))
> qqnorm(grav.z, xlab="N(0,1) quantiles", ylab="studentized z")
> abline(0, 1, lty=2)
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Assume the joint null distribution of {T (a) : a ∈ A} is free of

nuisance param’s (as for zi’s in normal plot). For any fixed a we

can undertake t(a) a MC test. For each of R indep. sets of data

y∗1, . . . , y
∗
n (from null model) compute simulated plot

{t∗(a) : a ∈ A}

Under H0, T (a), T ∗1 (a), . . . , T ∗R(a) are iid for any fixed a, so that

Pr(T (a) < T ∗(r)(a)|H0) =
r

R + 1
.

applies. This leads to the one-sided MC P-value at given a, i.e.

pmc =
1 + #(t∗r(a) ≥ t)

R + 1
.
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Graphical test should rather look at all a ∈ A simultaneously. At

each a compute lower and upper critical values (one-sided levels p)

and plot them against a (critical curves).

Procedure: choose integers R and k with k/(R + 1) = p and

calculate (from the R simulated plots) critical values

t∗(k)(a), t∗(R+1−k)(a) .

If t(a) is outside, the one-sided P-value is at most p. A two-sided

test, which rejects H0 if t(a) falls outside, has level 2p.
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The set of all lower and upper critical values defines the test
envelope

E1−2p = {[t∗(k)(a), t∗(R+1−k)(a)] : a ∈ A}

Excursions of t(a) outside E1−2p give evidence against H0.

Example normal plot cont’d:
For p = 5%, use at least R = 19 (take k = 1). Test envelope: lines

connecting minima and maxima.

Since studentized values are plotted, simulation is done with N(0, 1).
Each sample y∗1, . . . , y

∗
n is studentized to give z∗i = (y∗i − y∗)/s∗,

whose ordered values are plotted against ai = Φ−1(i/(n + 1)).
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Graphical test of normality:

> grav.gen <- function(dat, mle) rnorm(length(dat))
> grav.qqboot <- boot(grav.z, sort, R=19, sim="parametric",
+ ran.gen=grav.gen)
> grav.env <- envelope(boot.out=grav.qqboot,
+ mat=grav.qqboot$t, level=0.90,
+ index=1:ncol(grav.qqboot$t))
> grav.qq <- qqnorm(grav.z, plot=F)
> grav.qq <- lapply(grav.qq, sort)
> plot(grav.qq, ylim=c(-3.5,3.5),
+ ylab="Studentized Order Statistics",
+ xlab="Normal Quantiles", lty=1)
> lines(grav.qq$x, grav.env$point[1,], lty=4)
> lines(grav.qq$x, grav.env$point[2,], lty=4)
> for (i in 1:19) lines(grav.qq$x, grav.qqboot$t[i,], lty=18)
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Levels p hold pointwise only. Chance that E1−2p captures entire

plot is smaller than 1− 2p.

Evidence against the null model, if 1 point falls outside? The chance

for this is about 1/2 (in contrast to the pointwise chance 0.1).

Overall error rate: (empirical approach) Given R simulated plots,

compare {t∗r(a), a ∈ A} to E1−2p
−r (from the other R − 1 plots).

Repeat this simulated test for all r yields resample estimate

#{r : {t∗r(a), a ∈ A} exits E1−2p
−r }

R
.
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> grav.qqboot <- boot(grav.z, sort, R=999, sim="parametric",
+ ran.gen=grav.gen)
> grav.env <- envelope(boot.out=grav.qqboot,
+ mat=grav.qqboot$t, level=0.90,
+ index=1:ncol(grav.qqboot$t))

> grav.env$k.pt # Quantiles used for pointwise env
50 950

> grav.env$err.pt # pt, ov error rate for pt-env
0.100 0.491

> grav.env$k.ov # Quantiles used for overall env
7 993

> grav.env$err.ov # pt, ov error rate for ov-env
0.014 0.095

> grav.env$err.nom # nom. error rates for pt- and ov-env
0.1 0.1
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Nonparametric Permutation Tests

Statistical methods which do not depend on specific parametric

models (sign test, Wilcoxon test).

Simplest form of nonparametric resampling tests is the permutation

test, which is a comparative test (compares edf’s).
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Example: (correlation test)

Random pair Y = (U,X). Are U and X independent (H0)?

Alternative (HA): x tends to be larger when u larger.

Illustrative data set, n = 37 pairs: u =dnan is a generic measure

and x =hand is an integer measure of left-handedness.

Simple test statistic T = ρ(F̂ ), the sample correlation. Note that

the joint edf F̂ puts mass 1/n at each (ui, xi).

Correlation is zero for any distribution satisfying H0.

> data(claridge); attach(claridge)
> cor(dnan, hand)
0.5087758
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F unspecified: S = F̂ is minimal sufficient for F . Under H0, S

consists of the marginal edf’s, s = (u(1), . . . , u(n), x(1), . . . , x(n)).

A conditional test is applied with p = Pr(T |S, H0), which is

independent of the marginal distributions of U and X.

When S = s, the random sample (U1, X1), . . . , (Un, Xn) is

equivalent to (u(1), X
∗
1), . . . , (u(n), X

∗
n), with (X∗

1 , . . . , X∗
n) a

random permutation of x(1), . . . , x(n).

Under H0 all n! permutations are equally likely. One-sided P-value

p =
# permutations such that T ∗ ≥ t

n!
.
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All marginal sample moments are constant across permutations.

This implies that T ≥ t is equivalent to
∑

i XiUi ≥
∑

i xiui.

Problem: large number of permutations. Make use of MC !

Take R random permutations, calculate t∗1, . . . , t
∗
R, approximate p

p
·= pmc =

1 + #{t∗r ≥ t}
R + 1

.

> data(claridge); attach(claridge)
> cor.fun <- function(data, i) cor(data[ ,1], data[i, 2])
> cor.boot <- boot(claridge, cor.fun, R=999, sim="permutation")
> (1 + sum(cor.boot$t>cor.boot$t0))/(cor.boot$R + 1)
0.002
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Example: compare means µ1, µ2 of 2 populations

samples (y11, . . . , y1n1), (y21, . . . , y2n2).

H0 : µ1 = µ2 alone does not reduce sufficient statistic from the 2

ordered samples. We also assume that F1, F2 have one of the forms

F1(y) = G(y − µ1), F2(y) = G(y − µ2)

F1(y) = G(y/µ1), F2(y) = G(y/µ2)

Now H0 implies common cdf F for both populations, and the H0

sufficient statistic s is the set of ordered statistics for the pooled
sample u1 = y11, · · · , un1 = y1n1, un1+1 = y21, · · · , un1+n2 = y2n2,

that is s = (u(1), . . . , u(n1+n2)).
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Suppose we use t = y2 − y1 to test against HA : µ2 > µ1. If H0

implies a common cdf for Y1i and Y2j, then the exact significance

probability is

p = Pr(T ≥ t|S = s,H0) .

When S = s, the concatenation (Y11, . . . , Y1n1, Y21, . . . , Y2n2) must

form a permutation of s.

The first n1 elements of a permutation will give the first sample and

the last n2 components will give the second sample. Under H0, all(
n1+n2

n

)
permutations are equally likely, i.e.

p =
# permutations such that T ∗ ≥ t(

n1+n2
n

)

72



Nonparametric Bootstrap Tests

Permutation tests are special nonparametric resampling tests

without replacement.

Significance tests needs the calculation of P-values under H0.

We must resample from F̂0, satisfying H0. The basic bootstrap test

is to compute the P-value as

pboot = Pr∗(T ∗ ≥ t|F̂0)
·=

#{t∗r ≥ t}+ 1
R + 1

.
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Example: (compare 2 means, cont’d)

F̂0: pooled edf of (y11, . . . , y1n1, y21, . . . , y2n2).

Take random samples with replacement of size n1 + n2 from pooled

data.

> grav <- gravity[as.numeric(gravity$series) >= 7, ]
> grav.fun <- function(data, i) {
+ d <- data[i, ]
+ m <- tapply(d$g, data$series, mean); m[8]-m[7]
+ }
> grav.boot <- boot(grav, grav.fun, R=999)
> (sum(grav.boot$t > grav.boot$t0) + 1)/(grav.boot$R + 1)
0.036
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Question: do we lose anything by assuming that the two

distributions have the same shape?

F̂0 partly motivated by permutation test – this is clearly not the

only possibility.

More reasonable null model would be one which allows for different

variances, too. Generally, there are many candidates for null model

with different restrictions imposed in addition to H0.

Semiparametric null models: Some features of underlying

distributions are described by parameters.
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Example: (compare several means)

H0: means of all 8 series are equal, but allow for heterogeneity, i.e.

yij = µi + σiεij , j = 1, . . . , ni , i = 1, . . . , 8 .

εij ∼ G. H0: µ1 = · · · = µ8 with general alternative. Appropriate

test statistic

t =
8∑

i=1

wi(yi − µ̂0)2 , wi = ni/si ,

with µ̂0 =
∑

wiyi/
∑

wi the null estimate of the common mean.

The null distribution of T would be approximately χ2
7.
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Question: what about the effect of small sample sizes?

Answer: a bootstrap approach is sensible.

The null model fit includes µ̂0 and the estimated variances

σ̂2
i0 = (ni − 1)s2

i/ni + (yi − µ̂0)2 .

The plot of the H0 studentized residuals

eij =
yij − µ̂0√

σ̂2
i0 − (

∑
wi)−1

against normal quantiles shows mild non-normality.
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Apply nonparametric bootstrap and simulate data under H0

y∗ij = µ̂0 + σ̂i0ε
∗
ij , ε∗ij

iid∼ F̂e

> data(gravity); grav8 <- gravity

> grav8.fun <- function(data, i) {
+ d <- data[i, ]
+ mi <- tapply(d$g, data$series, mean)
+ si <- tapply(d$g, data$series, var)
+ ni <- summary(data$series); wi <- ni/si
+ mu0 <- sum(wi*mi/sum(wi))
+ sum(wi*(mi-mu0)^2) # test statistic
+ }
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> grav8.gen <- function(data) {
+ d <- data
+ d.g <- data$mu0
+ + sqrt(data$sigmai0)
+ * sample(x=data$e, size=length(data$e), replace=T)
+ d
+ }

> grav8.boot <- boot(grav8, grav8.fun, R=999, ran.gen=grav8.gen)

> (sum(grav8.boot$t > grav8.boot$t0)+1)/(grav8.boot$R+1)
0.013
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Regression Models

Assume: yi|xi
ind∼ Fy(µ(xi, β), σ2), i = 1, . . . , n or (equivalently)

yi = µ(xi, β) + εi ,

εi
iid∼ Fε(0, σ2)

where Fε is centered but unknown. Covariates x1, . . . , xn are fixed.

P = Fy identified through (β, Fε)
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Least-Squares estimate β̂ minimizes the criterion

SSE(y, β) =
n∑

i=1

(
yi − µ(xi, β)

)2

Question: How accurate is β̂ generally as an estimate of β?
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Residual Resampling

Estimate β by the LSE β̂ and Fε by

F̂ε : Mass 1/n at each ri − r

with residuals

ri = yi − µ(xi, β̂)
Thus, estimate P by P̂ = (β̂, F̂ε).

The bootstrap sample

y∗i = µ(xi, β̂) + ε∗i , ε∗i
iid∼ F̂ε

gives again a LSE β̂∗, the minimizer of SSE(y∗, β)
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For ordinary linear models, µ(xi, β) = xt
iβ, we have

y∗i = xt
iβ̂ + ε∗i , ε∗i

iid∼ F̂ε

This gives

β̂∗ = (XtX)−1Xty∗

in closed form with

E∗(β̂∗|y) = β̂, var∗(β̂∗|y) = σ̃2(XtX)−1

and

σ̃2 =
1
n

n∑

i=1

(ri − r)2.
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Let R(y, P ) = β̂ − β.

A familiar measure of accuracy is the MSE matrix

EP

(
β̂ − β)(β̂ − β)′

)
= EP

(
R(y, P )R(y, P )′

)

The bootstrap estimate of this matrix is

EP̂

(
R(y∗, P̂ )R(y∗, P̂ )′

)

with P̂ = (β̂, F̂ε)
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Example 3: mean vital capacity (lung volume) linearly depends on
age (powers) and height, really?

> summary(model <- lm(VC ~ height+age+I(age**2)+I(age**3)))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.106e+03 2.055e+02 -5.381 8.33e-07 ***
height 6.660e+00 9.106e-01 7.314 2.55e-10 ***
age 4.888e+01 1.575e+01 3.105 0.00270 **
I(age^2) -1.462e+00 4.979e-01 -2.935 0.00443 **
I(age^3) 1.318e-02 4.945e-03 2.665 0.00944 **
---
Residual standard error: 51.59 on 74 degrees of freedom
Multiple R-Squared: 0.566, Adjusted R-squared: 0.5426
F-statistic: 24.13 on 4 and 74 DF, p-value: 8.468e-13
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> r <- model$residuals
> f <- model$fitted
> for (b in 1:1000) {
+ i <- sample(79, replace=TRUE)
+ VC.star <- f + r[i]
+ b.MC[b, ]<-lm(VC.star ~ height+age+I(age**2)+I(age**3))$coef
+ }

> cov(b.MC)
[,1] height age age**2 age**3

[1,] 40149.83 -1.1797e+02 -1.9235e+03 59.50235 -5.8042e-01
[2,] -117.97 7.7866e-01 -2.1327e+00 0.06546 -5.8798e-04
[3,] -1923.54 -2.1327e+00 2.3616e+02 -7.38972 7.1890e-02
[4,] 59.50 6.5463e-02 -7.3897e+00 0.23406 -2.3024e-03
[5,] -0.58 -5.8798e-04 7.1890e-02 -0.00230 2.2900e-05
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> summary(beta.MC[,2:5])
height age age**2 age**3

Min. :3.56 Min. : 1.84 Min. :-2.98 Min. :-0.002
1st Qu.:6.06 1st Qu.:38.77 1st Qu.:-1.78 1st Qu.: 0.010
Median :6.67 Median :48.37 Median :-1.44 Median : 0.013
Mean :6.64 Mean :48.88 Mean :-1.46 Mean : 0.013
3rd Qu.:7.22 3rd Qu.:59.15 3rd Qu.:-1.12 3rd Qu.: 0.016
Max. :9.62 Max. :96.37 Max. : 0.06 Max. : 0.029
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Generalized Linear Models (GLM’s)

Assume: McCullagh & Nelder (1989), Fahrmeir & Tutz (1994)

1) y = (y1, . . . , yn)t independent random sample from an

2) exponential dispersion family (normal, Poisson, Binomial,

Gamma) with mean µi and variance φiV (µi). Let φi = φai,

with fixed ai and possibly unknown φ.

3) link function g(µi) = ηi (linear predictor)

4) ηi = xt
iβ with explanatory variables xi = (xi1, . . . , xip)t and

unknown parameters β = (β1, . . . , βp)t.
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Special GLM’s

• Linear regression: yi
ind∼ N(µi, σ

2),

E(yi) = µi, var(yi) = σ2, g(µi) = µi =
∑p

j=1 xijβj

• Linear logistic regression: yi
ind∼ Binomial(mi, πi),

E(yi/mi) = πi, var(yi/mi) = 1
mi

πi(1− πi)

g(µi) = log(µi/(1− µi)) =
∑p

j=1 xijβj

• Binary dispersion model: yi independent with

E(yi/mi) = πi, var(yi/mi) = φ 1
mi

πi(1− πi)

92



An Example: Tumor Prognosis

Find relevant Risk factors for Recurrence of Cervical Carcinoma.

Data: 313 patients, 123 recurrences within 5 years.

Risk factors:

LN: lymph node metastases (0-3),

BZ: border zone involvement (0-2),

MA: mitotic activity (0-2).

4× 3× 3 Contingency Table with entries:

#recurrences yi / #patients mi
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Standard Model: yi ∼ Binomial(mi, πi), i = 1, . . . , 36

log
πi

1− πi
= β1 + β2LN + β3BZ + β4MA.

What about allowing for additional dispersion parameter φ 6= 1 ?

Problems:

• find MLE β̂ and an estimate φ̂ (if φ 6= 1),

• properties of these estimates?
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Quasi-Likelihood Estimate

Wedderburn (1974): GLM assumptions only based on moments

E(yi) = µi, var(yi) = φV (µi)

Dispersion φ
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Note: Exponential family log-likelihood gives

∂`i

∂µi
=

yi − µi

φaiV (µi)
.

φ sometimes fixed (Poisson, binomial).

The quasi log-likelihood q is defined as

∂qi

∂µi
=

yi − µi

φaiV (µi)
.

Important: derivatives of ` and q have equal mean and covariance.
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Assuming g(µi) = ηi = xt
iβ gives

∂µi

∂β
=

∂µi

∂ηi

∂ηi

∂β
=

1
g′(µi)

xi.

g canonical ⇔ V (µi) = 1/g′(µi).

Only canonical links will be considered in the following. So we have

for φ = 1
∂li
∂βj

=
∂qi

∂βj
=

yi − µi

ai
xij.
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Standard Estimators

Remember var(yi) = φaiV (µi). The MLE β̂ solves

uj(β) =
n∑

i=1

yi − µi

ai
xij = 0. (1)

Expanding u(β): Iteratively Weighted Least Squares procedure

β̂ = (X ′W (µ)X)−1X ′W (µ)z(µ), (2)

with W (µ) = diag(V (µi)/ai) and some pseudo observations

z(µi) = η(µi) + (yi − µi)/V (µi). (3)
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Start the iteration at some µ = µ0.

In case of unknown φ we use the mean Pearson statistic

φ̂ =
1

n− p

n∑

i=1

(yi − µ̂i)2

aiV (µ̂i)
= (n− p)X2 (4)

Properties of the MLE: β̂: asymptotically normal

β̂ − β ∼ AN
(
0, φ(X ′W (µ)X)−1

)
.

Finite samples:

• estimate bias and variance of β̂.
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Example cont’d: log πi
1−πi

= β1 + β2LNi + β3BZi + β4MAi.

ML-estimation:

risk factor β̂ Std.Error Wald Prob.

1 −1.918 0.258 < 0.001
LN 1.036 0.156 < 0.001
BZ 0.530 0.180 0.003
MA 0.440 0.178 0.014

X2 = 44.86, df = 32

Note: X2/df = φ̂ = 1.402. Is there Overdispersion: φ > 1 ?

Then var(β̂) should be multiplied by φ̂ !
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Non-Parametric Residual Resampling

Motivation in GLM’s: Start in the true µ

z(µi) = η(µi) +
√

ai/V (µi)
yi − µi√
aiV (µi)

= η(µi) + W (µi)−1/2ε(µi),

so E(ε(µi)) = 0, var(ε(µi)) = φ.

Ordinary linear models (OLM): var(yi) = φ:

z(µi) = yi = µi + (yi − µi) = µi + ε(µi).
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ε(µi) are exchangeable. F̂ε describes Fz. Residual resampling:

F̂ε : mass 1/n at ε(µ̂i) = zi − µ̂i.

Very good (well known) properties.

• known z in OLM’s but unknown in GLM’s

• exact additivity in OLM’s but approx. additivity in GLM’s.
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Resample e∗1, . . . , e
∗
n from the edf F̂e based on ei = ε(µ̂i) − ε(µ̂)

then E∗(e∗i ) = 0 and var∗(e∗i ) = φ̂e

φ̂e =
1
n

n∑

i=1

ε2(µ̂i)− ε2(µ̂) =
1
n

n∑

i=1

e2
i < φ̂.

Build resampled quantities

z∗i = η(µ̂i) + W (µ̂i)−1/2e∗i ,

E∗(z∗i ) = η(µ̂i), var∗(z∗i ) = φ̂eai/V (µ̂i), to bootstrap zi with

E(zi) = η(µi), var(zi) = φai/V (µi).

• known z in GLM’s wrt. the bootstrap.
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Alternative Residuals

Moulton & Zeger (1991) resampled from

eh,i =
ei√

1− hii(µ̂)
.

where H = W 1/2X(X ′WX)−1X ′W 1/2.

Friedl & Tilg (1995): Because h(µ̂) = p/n, it is easier to use

eh,i =
ei√

1− p/n
= ei

√
n/(n− p).

This gives

φ̂h = φ̂− n

n− p
ε2(µ̂).

104



No matter from what type of residuals we are resampling from,

E∗(z∗) = Xβ̂, var∗(z∗) = φ̂(·)W (µ̂)−1.
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Parameter replications

Define Bootstrap replications like in the IWLS procedure (2):

β̂∗ = (X ′W (µ̂)X)−1X ′W (µ̂)z∗.

Since µ̂’s are ’known’, this defines a one-step procedure, with

E∗(β̂∗) = β̂,

and

var∗(β̂∗) = φ̂(·)(X ′W (µ̂)X)−1.

Therefore, no bias correction is available but we get some new

dispersion estimates depending on the residuals used.
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Wild Bootstrap

Consider the mean (quasi)-scorevector

u(β) =
1
n

n∑

i=1

ui(β) =
1
n

n∑

i=1

yi − µi

ai
xij.

Then E(ui(β)) = 0 and

var(ui(β)) = xix
′
ivar(yi)/a2

i .

From the IWLS procedure (2) it follows that

var(β̂) = (X ′WX)−1var(u(β))(X ′WX)−1.
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Estimate var(u(β)) by the wild bootstrap

u∗i = u(β̂) + (ui(β̂)− u(β̂))t∗i = ui(β̂)t∗i ,

with ti
iid∼ Ft(0, 1). Hence

E∗(u∗i ) = 0, var∗(u∗i ) = xix
′
i(yi − µ̂i)2/a2

i .

Let u∗ =
∑

i u
∗
i =

∑
i ui(β̂)t∗i . Then

β̂∗ = β̂ + (X ′W (µ̂)X)−1u∗

= (X ′W (µ̂)X)−1X ′W (µ̂)z∗

with z∗i = η̂i + W (µ̂i)−1/2ε(µ̂i)t∗i .
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Moreover, E∗(z∗) = Xβ̂ and

var∗(z∗) = W (µ̂)−1/2ε(µ̂)ε(µ̂)′W (µ̂)−1/2.

For the i-th term this is

var∗(z∗i ) = φ̂i/W (µ̂i), φ̂i =
(yi − µ̂i)2

aiV (µ̂i)

is the i-th contribution to φ̂. Therefore,

var∗(β̂∗) = (X ′W (µ̂)X)−1X ′S(µ̂)X(X ′W (µ̂)X)−1

with S(µ̂) = diag((yi − µ̂i)2/a2
i ).
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Example cont’d:

Standard Errors:

ML MQL Wild

φ̂ φ̂e φ̂h φ̂h BT

1 .26 .31 .29 .31 .30 .24

LN .16 .18 .17 .19 .18 .18

BZ .18 .21 .20 .21 .21 .20

MA .18 .21 .20 .21 .21 .21
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Overdispersion:

ML–model: φ = 1.000,

MQL–model: φ̂ = 1.402,

Res. unscaled: φ̂e = 1.241,

Res. h-scaled: φ̂h = 1.418,

Res. p/n-scaled: φ̂h = 1.396.
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Monte-Carlo Results

1000 β4 (MA) Replications

mean S.E. Pr> 0
unscaled 0.432 0.192 1.2%

p/n scaled 0.432 0.203 1.9%

Wild BT 0.446 0.204 1.4%
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Discussion

• no bias reduction

• alternative variance estimators

• robust against misspecifications

• not computationally intensive

• theoretical results

• also applicable to study h(β̂) via Monte Carlo Simulation

• works without defining some y∗
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