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Discriminant Analysis (DA): Example

Haemophilia data: 30 normal persons and 22 obligatory carriers of hemophilia A
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Notation

Given n observations of training data, measured at p variables.

Observations originate from

• k different populations G1, . . . , Gk,

• according to prior probabilities π1, . . . , πk, where
k∑

j=1
πj = 1,

• with sample sizes n1, . . . , nk, where
k∑

j=1
nj = n.

• Usual assumption: Observations are distributed according to a normal

distribution N(µj,Σj), with mean µj and covariance matrix Σj, j =

1, . . . , k.
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DA: Classification and Prediction

Find a classification function f based on the training data that assigns a new,

unlabelled observation to one (and only one) of the k groups:

f : Ωp → {1, . . . , k}

Bayes Rule: Given an observation x, the posterior probability for group Gj equals

P (Gj|x) =
p(x|Gj) · πj∑k
i=1 p(x|Gi) · πi
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Bayesian DA Rule

A test set observation x is assigned to that population Gj, for which

lnP (Gj|x) is a maximum over all groups j = 1, . . . , k.

⇒ f(x) = arg max
j

(
ln(P (Gj|x))

)
= arg max

j

(
ln(p(x|Gj) · πj)

)

Quadratic Discriminant Analysis:

fQDA(x) = arg max
j

(
−

1

2
ln(det Σj)−

1

2
(x− µj)>Σ−1

j (x− µj) + lnπj

)

Linear Discriminant Analysis: assume Σ1 = . . . = Σk = Σ, and use

fLDA(x) = arg max
j

(
µ>j Σ−1x−

1

2
µ>j Σ−1µj + lnπj

)
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Parameter Estimation

The essential elements of the LDA rule are the group centers and the common group

covariance matrix.

Estimate group centers and the common group covariance matrix by

• the sample means and pooled sample covariance matrix.

• robust estimators of location and covariance, like the MCD estimators.

• regularized (sparse) estimators of location and covariance.

Robust estimators lead to robust DA rules!
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Maximum Likelihood

Given a data sample X, the log-likelihood function of joint location µ and inverse

scatter Θ := Σ−1 is given by

L(µ,Θ) = log(det(Θ))−
1

n

∑
x∈X

(x− µ)>Θ(x− µ)

⇒ Maximization leads to classical estimators:

µ̂ =
1

n

∑
x∈X

x

Θ̂ = Σ̂−1 = (
1

n

∑
x∈X

(x− µ̂)(x− µ̂)>)−1
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Regularization

Problem: If n < p, Σ̂ is singular and the maximum likelihood estimator for Θ

does not exist!

Solution: Penalization of log-likelihood function based on penalty term λ > 0 and

L1 Norm ‖.‖1:

L(µ,Θ) = log(det(Θ))−
1

n

∑
x∈X

(x− µ)>Θ(x− µ)− λ‖Θ‖1

‖Θ‖1 =
∑
l,m

|θlm|

The maximization problem can be solved by an algorithm called graphical lasso. λ

governs sparseness of Σ̂ and Θ̂!

package: glasso (Friedman, Hastie, Tibshirani, 2007).
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Example

Simulated three-dimensional data, X ∼ N(0, I3), n = 100:

> solve(cov(X))

[,1] [,2] [,3]

[1,] 1.179 -0.039 -0.088

[2,] -0.039 0.835 -0.147

[3,] -0.088 -0.147 1.100

> glasso(cov(X), rho=0.2)$wi

[,1] [,2] [,3]

[1,] 0.948 0.0 0.000

[2,] 0.000 0.7 0.000

[3,] 0.000 0.0 0.879

λ = 0.2 leads to sparse estimate of concentration matrix!
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Example

Problem: glasso not robust!

Adding 10 outliers distributed according to N(10, I3) leads to

> glasso(cov(X), rho=0.2)$wi

[,1] [,2] [,3]

[1,] 0.504 -0.224 -0.283

[2,] -0.224 0.504 -0.216

[3,] -0.283 -0.216 0.552

Idea: Combine regularization of glasso with robust techniques!
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Regularized MCD estimator

Croux and Haesbroeck (2010):

Improvement: Adapt MCD idea and integrate it into log-likelihood function:

L(H, (µ,Θ)) = log(det(Θ))−
1

h

∑
i∈H

(xi − µ)>Θ(xi − µ)− λ‖Θ‖1

with

H ⊆ {1, . . . , n}, |H| = h < n

Maximization of L(H, (µ,Θ)) means to find an index subset Hopt for which

max
(µ,Θ)

L(Hopt, (µ,Θ)) ≥ max
(µ,Θ)

L(H, (µ,Θ))

∀H ⊆ {1, . . . , n} : |H| = h
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Regularized MCD estimator

Problem:
(
n
h

)
subsets to check. Not applicable to large n.

Improvement: C-Step Algorithm: Let Hk be the subset derived at iteration k and

(µ̂Hk, Θ̂Hk
) be the corresponding estimates maximizing L(Hk, (µ,Θ)).

Compute Mahalanobis distances with respect to (µ̂Hk, Θ̂Hk
):

d
(k)
i (xi, µ̂Hk, Θ̂Hk

) =

√
(xi − µ̂Hk)

>Θ̂Hk
(xi − µ̂Hk)

Define next subset Hk+1 as

Hk+1 =
{
i ∈ {1, . . . , n} : d(k)

i ∈ {d(k)
(1), . . . , d

(k)
(h)}

}
where d

(k)
(j) are the ordered distances.

⇒ L(Hk, (µHk,ΘHk
)) ≤ L(Hk+1, (µHk+1

,ΘHk+1
))
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Algorithm

The regularized MCD estimator is computed using the following algorithm:

1. Draw initial subset H0

2. Maximize penalized likelihood function (glasso) to obtain (µ̂H0
, Θ̂H0

)

3. Compute ordered Mahalanobis distances w.r.t. (µ̂H0
, Θ̂H0

)

4. Choose next subset containing h observations with smallest distances

5. Repeat steps 2-4 until convergence to obtain (µ̂, Θ̂)

⇒ A local maximum of the likelihood value is reached. Algorithm can be repeated

several times with different initial subsets.
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LDA and RegMCD

How to apply LDA with the regularized MCD estimator in the multi group setting:

X = {xij : i = 1, . . . , nj; j = 1, . . . , k}

• Compute robust location estimates tj for j = 1, . . . , k

• Compute centered observations Z = {zij} with zij = xij − tj

• Apply the regularized MCD algorithm to Z to obtain common estimates

(µ̂, Θ̂)

• Correct location estimates: µ̂j = tj + µ̂

• Apply LDA using parameters µ̂1, . . . , µ̂k, Θ̂
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Centering
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The penalty parameter λ

How to choose the penalty parameter λ:

• Based on test error rates: Cross Validation

• Based on a model selection criterion: AIC, BIC

BIC criterion:

BIC(Γ) = −2 · logL(Γ) + κ(Γ) logn

L(Γ) . . . Likelihood function of the model

κ(Γ) . . . Number of parameters in the model
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The penalty parameter λ

BIC(λ) is small if

• the value of the likelihood function L(Hopt, θ̂) is high

• the number of parameters in the model is small

⇒ Choose λ according to

λopt = arg min
λ
BIC(λ)

Best compromise between likelihood and sparseness!
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Example: Fruit Data

• Three different sorts of the same fruit (cucumis melo)

• 256 different spectra measured

• Outliers due to different illumination systems

• Partition of data into 60% training and 40% test set

• Test errors measured for each group separately
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Example: Fruit Data, BIC

BIC and AER suggest a small λ value!
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Example: Fruit Data, Results

• Outliers in the third group lead to poor results for LDA.

• RRLDA remains stable!

ErrTest1 ErrTest2 ErrTest3
RRLDA (λ = 0.001) 0.02 0.03 0.01

GLASSO (λ = 0.001) 0.04 0.03 0.03
LDA 0.01 0.01 0.14
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Example: Golub Data, Results

• 38 training samples and 34 test samples from two cancer classes.

• Absolute test errors were measured for various variable subsets.

• Variable selection was done according to the nearest shrunken centroids method.

p LDA GLASSO RRLDA
41 7 3 3
86 8 3 1

111 6 2 1
142 4 2 1
174 5 2 2
221 6 2 2
290 4 3 1
392 5 2 2
476 5 3 1
625 7 4 2
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Simulated Example

• Two groups (k = 2) both consisting of 100 observations and p variables with

p ∈ {30,100,300,500,1000}

• Discrimination occurs in variables 1 and 2.

• Variables 3 - p are uncorrelated noise according to standard normal distributions.

µ1 =

(
0

1.9

)
µ2 =

(
0
−1.9

)

Σ =

(
1 0.7

0.7 1

)
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Simulated Example
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Simulated Example, BIC, p=30
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Simulated Example, Outliers

Simulate contamination by adding 10% shift outliers to the data.

• Variables 3 - p are distributed like non-outliers.

• Mean of variable 1 is shifted.

• Means of variable 2 are swapped.

µ̃1 =

(
10
−1.9

)
µ̃2 =

(
10
1.9

)
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Simulated Example, Outliers
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Results without contamination
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Results with contamination
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Computation Times
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Conclusions

• RRLDA is a combination of regularization and robust methods.

• RRLDA is a good choice if data contain either outliers or many noisy

variables or both.

• Penalty parameter λ is chosen according to an adapted BIC criterion.
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