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Introduction
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Defective Count Data

Defective: too much and/or too few is counted, recorded,

reported ...

Most prominent example: Criminology

• Crimes associated with shame (sexual offences, domestic

violence)

• Theft of low-value goods

Likely to be not reported to the police, official numbers are too

low

→ Under-Reporting
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Defective Count Data

Less considered:

Insurance companies suspect that theft may be reported, but

only to make an insurance claim

Most popular with bicycles, skiing equipment

Likely to be reported to the police, official numbers are too high

→ Over-Reporting

More precisely:

→ Under-Reporting fraud

→ Over-Reporting theft
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Criminology: Bicycle Theft Data

Weekly counts of bicycle theft in an Austrian region
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Bicycle Theft ?
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Defective Count Data

Health data

Registers for infectious diseases (HIV), chronic diseases

(diabetes)

Cause of death registers (heart attack)

Any miss-classification will cause both errors

→ Under-Reporting in the right category

→ Over-Reporting in the wrong category
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Health: Heart Attack Data

Monthly counts of heart attack discharges from Styrian hospitals
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Defective Count Data

• Criminology

• Health data

• Insurance data: traffic accidents with minor damage

• Production: number of defective goods in production

• Warranty: number of goods sent back for warranty claim

• ...

Any sample of count data may be defective due to recording

failures
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Under-Reporting

How to estimate the total number of cases?
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Bernoulli Sampling

One observation λ observations

Case reported Case reported

Yes No Yes No

R 1− R Y D

R ∼ Bernoulli(π) Y =

λ∑

i=1

Ri ∼ Binomial(λ, π)

Y . . . (random) number of reported cases

D . . . (random) number of unreported cases

λ . . . total number of cases

π . . . reporting probability
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Binomial Model

Case reported

Yes No

Y D

Y =
λ∑

i=1

Ri ∼ Binomial(λ, π)

E(Y ) = µ = λπ

var(Y ) = σ2 = λπ(1− π)

Both λ and π have to be estimated
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Binomial Model

Case reported

Yes No

Y D

Y =

λ∑

i=1

Ri ∼ Binomial(λ, π)

E(Y ) = µ = λπ

var(Y ) = σ
2

= λπ(1− π)

Both λ and π have to be estimated

No longer a member of 1-parameter exponential family

Limitation to data with s2 < y
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Is iid Assumption Appropriate?
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Trend/Seasonality ⇒ Regression approach

Statistik Tage Graz, September 7-9, 2011 -13-



Regression Approach

Consider Yt
ind∼ Binomial(λt, π), t = 1, . . . , T ,

where

λt = exp(x′tβ) , β ∈ Rd ,

π =
exp(α)

1 + exp(α)
, α ∈ R ,

to ensure λt > 0 and 0 < π < 1

Likelihood contribution of yt

L(α, β|yt) =
(

λt

yt

)
πyt(1− π)λt−yt
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Maximum Likelihood Estimation

Sample Log-Likelihood

`(α, β|y) =
T∑

t=1

log L(α, β|yt)

=
T∑

t=1

log
[(

λt

yt

)
πyt(1− π)λt−yt

]

Score and observed Information are analytically evaluated

Newton-Raphson procedure till convergence
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Maximum Likelihood Estimation

Sample Log-Likelihood

`(α, β|y) =
T∑

t=1

log L(α, β|yt)

=
T∑

t=1

log
[(

λt

yt

)
πyt(1− π)λt−yt

]

Score and observed Information are analytically evaluated

Newton-Raphson procedure till convergence

Still problems with overdispersion!
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Randomized Parameter
Models
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Beta-Binomial Model

Randomize reporting probability π

Yt|Pt ∼ Binomial(λt, Pt)

Pt ∼ Beta(γ, δ)

Yt ∼ Beta-Binomial(λt, γ, δ)

We use the parameterization

θ = γ + δ and π =
γ

γ + δ
= E(Pt)

Hence E(Yt) = µt = λtπ and var(Yt) = µt(1− π)φ,

where φ = λ+γ+δ
1+γ+δ ≥ 1
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Poisson Models

Randomize total number of cases λ

Yt|Lt ∼ Binomial(Lt, π)

Lt ∼ Poisson(λt)

Yt ∼ Poisson(λtπ)

Model not identified

Winkelmann (2000): Pogit Model

Yt ∼ Poisson(λtπt)

λt = exp(x′tβ) and πt =
exp(z′tα)

1 + exp(z′tα)
with two (disjoint) sets of regressors xt and zt
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Negative Binomial Model

Randomize total number of cases λ

Yt|Lt ∼ Binomial(Lt, π)

Lt|Kt ∼ Poisson(Ktλt)

Kt ∼ Gamma(ωt, ωt)

Yt ∼ Negative Binomial(ωt, 1− π)

where ωt = λt(1− π) is the expected number of unreported cases

E(Yt) = µt = λtπ var(Yt) = µt +
µ2

t

ωt
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Beta-Poisson Model

Randomize π and λ

Yt|Lt, Pt ∼ Binomial(Lt, Pt)

Lt ∼ Poisson(λt)

Pt ∼ Beta(γ, δ)

Yt ∼ Beta-Poisson(λt, γ, δ)

We use the parameterization

θ = γ + δ and π =
γ

γ + δ
= E(Pt)

Hence E(Yt) = µt = λtπ and var(Yt) = µtφt,

where φt = 1 + λt(1−π)
1+γ+δ ≥ 1
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Estimation and Inference
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Estimation

We use Maximum Likelihood (ML), where the solution of score equations
∂

∂α
log

∏
t

L (ΩM |yt,xt) = 0 and
∂

∂β
log

∏
t

L (ΩM |yt,xt) = 0

ΩM the parameter vector of given model

is found by the Newton-Raphson algorithm

For the Beta-mixtures we also use the Hybrid algorithm

Cycle between

1. ML for α, β given θ, and

2. MoM for θ given α, β

Choice of starting values sometimes crucial
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Inference

Normality of parameter estimates

Simulation studies: for reasonable settings α̂ and β̂ approximately normal

Problems when

π → 0, i.e. Poisson limit

π → 1, perfect reporting system

Inference within distribution - usual model selection methods

e.g. t-values, LRT,...

Statistik Tage Graz, September 7-9, 2011 -24-



Inference

Inference between distributions - Non-nested testing (Allcroft and
Glasbey, 2003)

Comparison of various models M = (Mk), k = 1, . . . , K

1. find θ̂k for data y = (yt) by optimizing GoF criterion c = (ck(y))

2. simulate samples y(s)(θ̂k), s = 1, . . . , S, (e.g. S = 100) and obtain all S
matrices C(s) of dimension K ×K

3. obtain mean C̄ of S matrices and compare c to the k-th column c̄k by
multivariate normality assumption

If Dk ∼ χ2
K, Dk = (c− c̄k)′V −1

k (c− c̄k) ⇒ kth model correct
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Real Data Applications
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Bicycle Theft

Distribution log L Pearson BIC D p(D) π̂

Negative-Binomial -728.91 206.49 1521.63 1.92 0.59 0.61

Beta-Binomial -732.87 204.79 1529.57 9.59 0.02 0.32

Beta-Poisson -735.39 197.97 1534.60 9.85 0.02 0.63

Model selected: Negative Binomial

π̂ = 0.61, p(D) = 0.59
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Bicycle Theft Data
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Bicycle Theft Model
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Estimated mean (solid), estimated total number of thefts with confidence interval (dashed)
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Heart Attack Data

Distribution log L Pearson BIC D p(D) π̂

Negative Binomial -419.23 95.56 870.41 1.75 0.63 0.55

Beta-Binomial -417.64 95.60 871.79 77.61 <e-03 0.62

Beta-Poisson -419.82 88.00 876.16 36.17 <e-03 0.82

Model selected: Negative Binomial

π̂ = 0.55, p(D) = 0.63
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Heart Attack Data
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Estimated mean (solid), estimated total number of heart attacks with confidence interval

(dashed)
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Heart Attack Counts + Cause of Death Counts
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Estimated mean (black solid), estimated total number of heart attacks with confidence

interval (red dashed)
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Over-Reporting

How to estimate the correct number of cases?
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Cameron & Trivedi, 1998

Model dependence between the two Bernoulli variables

E = Event and R = Recording

Bivariate Binomial Random Variable

R = 0 R = 1

E = 0 T0 O N0

E = 1 U T1 N1

N − Y Y N

T0: true not reported
T1: true reported
O: over-reported
U : under-reported
Y : observed count
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Independent Sampling

In Criminology T0 does not exist. Therefore we consider independent
sampling.

R = 0 R = 1

E = 0 ××× R0

E = 1 U R1 N

and
Y = R0 + R1

Specify under-reporting model for R1 and a count model for R0

Model Y by convolution of both
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A Family of Poisson Convolutions

Assume that R1 is generated by under-reporting, i.e.

R1|N, P ∼ Binomial(N,P ),

and
R0 ∼ Poisson(α)

Then

p(Y = y = r0 + r1) =
r0∑

j=0

p0(j)p1(y − j) =
r1∑

j=0

p0(y − j)p1(j)

with

E(Y ) = µ0 + µ1 = α + λπ

var(Y ) = σ2
0 + σ2

1 = α + var(R1)
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Negative-Binomial-Poisson Convolution

For R1 ∼ Negative Binomial(ω, π)

Y ∼ Delaporte(λ, π, α), λ = ω/(1− π)

with

p(Y = y = r1 + r0) =
(1− π)ωαy exp(−α)

Γ(ω)
S

where

S =
r1∑

j=0

Γ(j + ω)
Γ(j + 1)Γ(y − j + 1)

(π

α

)j

and

E(Y ) = µ0 + µ1 = α + λπ

var(Y ) = σ2
0 + σ2

1 = α + λπ(1− π)−1
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Application to bicycle theft data
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Application to bicycle theft data
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Application to bicycle theft data

Averaged Results

R = 0 R = 1

E = 0 ××× Ê(R0) = 14.35

E = 1 Ê(U) = 5.08 Ê(R1) = 21.18 Ê(N) = 26.26

and
Ê(Y ) = Ê(R0 + R1) = 35.53

Reporting probability in the under-reporting model: π̂ = 0.77
Fraud rate: 14.35/35.53 = 0.40
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Conclusion

• highly relevant methodology for wide-spread applications

• models based on Bernoulli sampling

• conditional binomial models suitable for cases when var(Y ) > µ

• estimation relies on ML and Hybrid ML

• non-nested technique for model selection

Limitations

• π → 0, i.e. Poisson limit

• π → 1, perfect reporting system
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