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Binary data

I sequence y1, . . . , yN of binary data

I xi is a row vector of regressors, including 1 for the intercept

I β is an unknown regression parameter of dimension d

Binary logit regression model

Pr(yi = 1|β) = πi (β) =
exp(xiβ)

1 + exp(xiβ)
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RUM and dRUM representation
I to perform bayesian inference with data augmentation the logit

model can be rewritten as random utility model (RUM)
introduced by McFadden (1974) or as di�erence RUM

(dRUM)

I RUM: yuki is the utility of choosing category k = 0, 1, which is
assumed to depend on covariates xi ; category 1 is observed, if
yu1i > yu0i

I dRUM: choose category 0 as baseline and assume the
di�erences of the utilities yu1i − yu0i to depend on some
covariates xi ; category 1 is observed, if yu1i − yu0i > 0

I for both representations the logit regression model results as
marginal distribution of yi
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MCMC for Binary Logit Model

I Frühwirth-Schnatter and Frühwirth (2010) show for the binary
logit model that MCMC estimation based on the dRUM
representation is much more e�cient than MCMC estimation
based on the RUM representation

I How can we improve MCMC sampling for the binomial

logit model?
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Data

Binomial data

I y = (y1, . . . , yN) are conditionally independent data from a
binomial distribution with known repetition parameter Ni

Binomial logit regression model

yi |πi ∼ BiNom (Ni , πi ) , log
πi

1− πi
= log λi = xiβ (1)

I yi |πi ∼ BiNom (Ni , πi ) is considered as the marginal
distribution of an augmented model involving latent variables
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Data

Example

Titanic passenger data (Hilbe, 2007)

yi Ni intercept child female class 3 class 2

14 31 1 1 1 1 0

13 48 1 1 0 1 0

76 165 1 0 1 1 0

80 93 1 0 1 0 1

140 144 1 0 1 0 0

75 462 1 0 0 1 0

14 168 1 0 0 0 1

57 175 1 0 0 0 0

yi . . . number of survived passengers

Ni . . . number of exposed passengers in each group∑
Ni = 1286 observations ⇒ reduced to N = 8 covariate patterns
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Individual RUM representation

Individual RUM representation

I Frühwirth-Schnatter and Frühwirth (2007) consider each
observation yi as the aggregated number of successes of Ni

independet binary experiments with outcomes z1i , . . . , zNi ,i

I zni follows a binary logit model with the same log odds ratio
as in (1), i.e. Pr(zni = 1|πi ) = πi

I the binary outcomes z1i , . . . , zNi ,i can be reconstructed easily
from the binomial observation yi
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Individual RUM representation

Individual RUM representation
I for each binary observation zni we introduce the utilities yu0,ni

and yu1,ni of choosing category 0 or 1 as latent variables:

Individual RUM version

yu0,ni = ε0,ni , ε0,ni ∼ EV, (2)

yu1,ni = log λi + ε1,ni , ε1,ni ∼ EV (3)

zni = I{yu1,ni > yu0,ni},

I where i = 1, . . . ,N and n = 1, . . . ,Ni with independent
extreme value distributed errors ε0,ni , ε1,ni

I disadvantage: very high-dimensional latent variable
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Aggregated representations

Aggregated representations

I instead of the whole sequence yu1,1i , . . . , y
u
1,Ni ,i

we introduce a
single aggregated latent y?

i
for each binomial observation yi

I properties of an aggregated representation:

(1) latent equation should take the form of a regression-type model

y?
i

= log λi + εi

(2) error εi in the model has a distribution which depends on no or

only few parameters so that it can be approximated easily

(3) it should be easy to simulate from the posterior y?
i
|yi , λi

I Frühwirth-Schnatter et al. (2009): aggregated RUM

representation → the aggregation step is only applied to
equation (3), modeling the utility of choosing 1
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Aggregated dRUM representation

An alternative aggregated representation

I the aggregation step is also applied to equation (2), modeling
the utility of choosing 0

I we aggregate the individual utilities for each category:

e−y
?
0i =

Ni∑
n=1

exp(−yu0,ni ), e−y
?
1i =

Ni∑
n=1

exp(−yu1,ni ),

where e−y
?
0i , e−y

?
1i |λi are independent apriori, each following a

Gamma distribution
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Aggregated dRUM representation

Aggregation steps

I latent equations in form of a regression-type model:

y?0i = ε0i ,

y?1i = log λi + ε1i ,

where εki = − log ξki with ξki ∼ G (Ni , 1) follows the negative
log-Gamma distribution with shape parameter Ni for k = 0, 1

I the single aggregated latent variable is then de�ned as

y?i = y?1i − y?0i
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Aggregated dRUM representation

Aggregated dRUM representation

Aggregated dRUM version

y?i = log λi + εi , εi ∼ LG(Ni ), (4)

I where εi = ε1i − ε0i and LG(α) is the Type III generalized
logistic distribution with parameter α (see Balakrishnan, 1992)

I the �rst two moments are given by:

E(εi |Ni ) = 0, V(εi |Ni ) = 2ψ′(Ni )
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Independence MH

Data-augmented independence MH

I error εi in (4) is approximated by the normal distribution
N (0, 2ψ′(Ni ))

I the resulting posterior of β is used as proposal

I the proposal density is independent of the previous draw βold,
but depends on the latent variable z = (y?1 , . . . , y

?
N)

I high acceptance rate as the distribution of εi is approximately
normal N (0, 2Ni ) for large Ni
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Aux Mix

Auxiliary mixture sampler

I error εi in (4) is approximated by a scale mixture of normal
distributions, all component means equal to 0:

fLG(α) =
Γ(2α)e−αε

Γ(α)2(1 + e−ε)2α
≈ qα =

R(α)∑
r=1

wr (α)ϕ(0, s2r (α)),

where ϕ(0, s2) denotes a normal density with mean 0 and
variance s2

I the number of components R(α), the weights wr (α) and the
variances s2r (α) depend on α = Ni
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HAM sampler

Hybrid auxiliary mixture (HAM) sampling

I combining both data-augmented MH and auxiliary mixture
sampling

I in cases where the ratio yi/Ni is neither close to 0 nor close to
1, the normal approximation in the MH algorithm will give a
contribution αi to the acceptance rate α =

∏t
i=1 αi close to 1

I for extreme ratios yi/Ni ≤ clow and yi/Ni ≥ cup
(e.g. clow = 0.05, cup = 0.95) αi will be considerably smaller

I idea: use the mixture approximation only for extreme ratios of
yi/Ni and the normal approximation of the MH sampler
otherwise
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Application

I application of the MCMC samplers to the Titanic passenger
data and two simulated data sets to compare the di�erent
approaches

I MCMC details:

I independent standard normal prior for each regression

coe�cient

I starting value for β: OLS estimation of the utilities on the

covariates

I 10000 draws from the posterior distribution after a burn-in of

2000 iterations

I `quality criteria': runtime, e�ective sampling size, e�ective
sampling rate ESR, acceptance rate (MH & HAM sampler)
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Example Data

Titanic Data (d = 8, including interactions)
N = 8, minNi = 31, maxNi = 462,

∑
Ni = 1286

Sampler
α T med ESS med ESR

(%) (sec) (total draws) (draws/sec)

Indiv. dRUM-MH 55.8 16.1 1321.2 82.0
Agg. RUM-MH 93.8 4.4 741.0 168.0
Agg. dRUM-MH 99.6 4.4 1485.9 340.8
Agg. dRUM-Aux 7.1 1551.7 219.2
Agg. dRUM-HAM 99.6 8.5 1463.6 171.6

I HAM sampler: clow = 0.05 and cup = 0.95
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Simulated Data

I yi ∼ BiNom (Ni , πi ), where Ni and πi are independent

I balanced data set

Simulated Data A (d = 10)
N = 485, minNi = 1, maxNi = 116,

∑
Ni = 8731

Sampler
α T med ESS med ESR

(%) (sec) (total draws) (draws/sec)

Indiv. dRUM-MH 48.4 105.2 727.2 6.9
Agg. RUM-MH 73.6 11.3 367.0 32.4
Agg. dRUM-MH 94.9 12.9 889.6 69.1
Agg. dRUM-Aux 16.6 977.4 58.8
Agg. dRUM-HAM 97.2 18.6 964.0 51.9

I HAM sampler: clow = 0.01 and cup = 0.99
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Simulated Data

I yi ∼ BiNom (Ni , πi ), where Ni and πi are dependent
I for πi near 0 the group sizes Ni are small, for πi near 1 the

group sizes Ni are large ⇒ very extreme data set

Simulated Data B (d = 10)
N = 490, minNi = 1, maxNi = 126,

∑
Ni = 25803

Sampler
α T med ESS med ESR

(%) (sec) (total draws) (draws/sec)

Indiv. dRUM-MH 0.0 273.3 � �
Agg. RUM-MH 0.0 10.7 � �
Agg. dRUM-MH 0.0 11.0 � �
Agg. dRUM-Aux 16.2 889.8 54.8
Agg. dRUM-HAM 98.5 18.7 886.5 47.5

I HAM sampler: clow = 0.1 and cup = 0.9
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Results

Results

I the aggregation step yields a considerable reduction of
computing time compared to the individual dRUM

I the modi�cations in the aggregated dRUM lead to a
remarkable gain in e�ciency

I augmented MH sampler: unbeatable concerning runtime
and ESR compared to the other two methods, if it moves away
from the starting values and the markov chain converges to
the stationary distribution
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Results

If the augmented MH sampler doesn't work...

I HAM sampler: slightly slower than the auxiliary mixture
sampler as the algorithm has to compute mixture components
AND acceptance probability

I AuxMix sampler: the most time-consuming part of the
algorithm (sampling of the component indicators) is coded in a
quite e�cient way
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Outlook

Outlook

I improve the samplers as well for the multinomial regression
model

I modify the models and algorithms to applicate them to data
sets in economics and educational sciences (dissertation)
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