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Motivating example

Phase III Study in 2nd line PH+ Chronic Myeloid Leukemia (CML)
in Chronic phase

Original objective of study:
Non-inferiority of dose 100mg/day on Major Cytogenetic Response

Factorial design:
2 Doses (100 vs 140mg/day) of Dasatinib and 2 schedules (QD vs BID)

Here variable of interest:
Time from Complete Cytogenetic response (CCyR) to Major Molecular response

(MMR)

670 subjects randomized
Sample restricted to 213 subjects with CCyR and MMR
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Motivating Example

Multiple measures of strength of disease in PH+ CML

Measurements taken in bone marrow and blood

Cytogenetic response: no new diseased cells in bone marrow

Molecular response: response at gene level in blood

MMR more accurate measure of disease strength
⇒ MMR occurs after CCyR

Response levels and time to achieve response (CCyR and MMR
separately) were similar across two doses
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Motivating Example

Questions

- Estimate time between CCyR and MMR

- Is time between CCyR and MMR similar across doses?

Questions are of interest for treatment management:
When did subject reach maximum treatment benefit?

Disease sequence:
D ⇒ HR ⇒ CR ⇒ MR ⇒ LMR ⇒ LCR ⇒ LHR ⇒ AB
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Motivating Example

Issue

- CCYR and MMR measured every 3-6 mths

- Exact time of CCYR and MMR not known

Classical situation in oncology, e.g. duration of tumor response

Usually dealt with by assuming data right censored
event/censoring time= end of observed interval
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Motivating Example

Typical data collected

Subject Dose Uli Uri Vli Vri

1 100 mg/m2 0 3 2 9
2 100 mg/m2 0 3 0 3
3 100 mg/m2 0 3 3 9
4 140 mg/m2 3 6 12 15
5 140 mg/m2 4 5 3 6

Uli ,Uri , Vli and Vri are in months

These data are not the real data (confidentiality reasons)
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Right censored data

We observe min(T ,C ) with
T = time of interest
C = censoring time

Main methods:

Kaplan-Meier (KM): Estimation of distribution

Product limit estimator
Also maximum likelihood estimator

Cox Proportional Hazard (PH)

ST (t|X ) = ST (t|X = 0)eβX

Partial likelihood estimation of β
Breslow estimator (MLE) for baseline survival function ST (t|X = 0)
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Interval censored data

We observe [Tl ,Tr ], with T ∈ [Tl ,Tr ] (closed interval)

Main methods:

Turnbull: Distribution

Maximum likelihood estimator

Estimated using EM algorithm (self-consistency algorithm):

Determine regions of positive (probability) mass

Estimate mass

Pan = extension of PH: Distribution with covariates

Multiple Imputation approach
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Turnbull estimate-1

Intervals of possible mass

58 Survival Analysis with Interval-Censored Data: A Practical Approach

to a set of intervals {[pj , qj ]}mj=1, such that the estimate is constant outside
of these intervals and that the mass assigned to each of these intervals is
well determined but no information is provided as to how that mass is as-
signed within that interval. These intervals are called regions of possible mass
because it are only these regions to which possible mass is assigned. The
adjective “possible” refers to the fact that still no mass might be assigned to
some of these intervals. Peto (1973) and Turnbull (1976) suggested a simple
reduction algorithm to identify the intervals of possible mass from the data.
Namely, given the observations [li, ui] (i = 1, . . . , n), rank the time points {li}
and {ui} in increasing order and keep track of whether the point is a left or
a right endpoint. The regions of possible mass are then the intervals with a
left endpoint immediately followed by a right endpoint. This observation fa-
cilitates the non-parametric estimation of the survivor function considerably.
Using 4 hypothetical observations [1, 3], [2, 5], [4, 7] and [6,∞], the reduction
process is illustrated in Figure 3.1. When moving from left to right, the first
endpoint at 1 is a left endpoint. The following endpoint at 2 is also a left end-
point. Hence, no region of possible mass is yet found. At 3, a right endpoint
is given. Because the interval [2, 3] is formed by a left endpoint immediately
followed by a right endpoint, we have found our first region of possible sup-
port. Similarly, two more regions of possible report are found, namely [4, 5]
and [6, 7]. The 3 bold lines on the bottom of the graph indicate the 3 regions
of possible support. Like in our example, Peto (1973) and Turnbull (1976)
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FIGURE 3.1: Determination of regions of possible support for the Turnbull
estimate from observations [1, 3], [2, 5], [4, 7] and [6,∞]. The bold lines on the
bottom indicate the 3 regions of possible support.

used closed intervals. However, for the determination of the regions of pos-
sible support, is it important to note whether closed or semi-open intervals
are used. This is easily seen from the following simple example: the obser-

Estimating the survival distribution for interval-censored observations 61
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FIGURE 3.3: Breast Cancer study. NPMLE of the cumulative distribution
function (upper panel) and NPMLE of the survival function with the addi-
tional assumption that the hazard is constant within each region of support
(lower panel) for the radiotherapy-only group.
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Turnbull estimate-2

Maximization part of algorithm

Estimating the survival distribution for interval-censored observations 59

vations [1, 2] and [2, 3] give rise to only one region of support namely [2, 2]
but observations (1, 2] and (2, 3] will return the original intervals as possible
regions of support. The reduction algorithm described above still applies it
the endpoints are ordered appropriately. This means that at the same time
point a left open endpoint appears after a right closed endpoint and a right
closed endpoint appears after a left closed endpoint. The two situations are
illustrated in Figure 3.2.

Interval 1
Interval 2
Ordering

(L1 R1]
(L2 R2]

[L1 R1]
[L2 R2]

(L1 R1] (L2 R2] [L1 [L2 R1] R2]

FIGURE 3.2: Ordering of two interval observed observations ⌊L1, R1] and
⌊L2, R2] with tied endpoints R1 and L2 in the reduction algorithm to deter-
mine the regions of possible support.The ordering for half open and closed
intervals is depicted on the left and right hand side, respectively.

Once in a first step the regions of possible support are calculated, the mass
assigned to each of these intervals must be estimated in a second step.

For half open or closed intervals the above reduction algorithm gives rise to a
set of intervals {⌊pj , qj ]}mj=1. Define sj = S(pj−)−S(qj+), j = 1 . . . ,m. Then

the vector s = (s1, . . . , sm)T where
∑m

j=1 sj = 1 and sj ≥ 0, j = 1 . . . ,m,
defines equivalence classes in the space of distribution functions S which are
flat outside of

∪m
j=1⌊pj , qj ]. Thus, the search for the MLE of the function S

can be restricted to these classes and reduces to maximizing

L =
n∏

i=1




m∑

j=1

αijsj


 ,

where

αij =





1 if ⌊pj , qj ] ⊂ ⌊li, ui]

0 otherwise.

Therefore, the NPMLE of S can be estimated by constrained maximization
of the likelihood L with linear constraints

1−
m∑

j=1

sj = 0,

sj ≥ 0 (j = 1, . . . ,m).

This can be accomplished with a variety of algorithms such as the self-consistency
algorithm of Turnbull (1976) which can be regarded as an application of
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Doubly interval censored data

We observe:
Time to CCYR= U: interval censored

Time to MMR = V > U and interval censored

Time from CCYR to MMR = T = V − U (Gap time)

0 Ul Ur Vl Vr

True unobserved U

True unobserved V

Observed interval for U Observed interval for V

T : Time of interest

Assume non-informative censoring of U and V

Double interval censored ⇔ doubly censored
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Doubly interval censored data

Areas of application

HIV research: time between onset of HIV to onset of AIDS

Dental research: time between emergence of tooth to caries

Emergency medicine: time that kidney function deteriorates (below
critical level) to time that kidney function recovers

Oncology (example here): but interval censoring must often ignored
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Doubly interval censored data

Purpose:

Estimate the distribution (with covariates) of T

under independence of U and T
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Current Methods
Reduced likelihood methods

1) Reduced Likelihood methods

Methods reduce the problem to single/right interval censoring by
transforming the data

Based on single interval censored methods

Ignoring distribution of U
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Reduced likelihood methods

Maximal interval

Compute t̃li = vli − uri and t̃ri = vri − uli

Apply interval censored data methods (Turnbull/Pan PH) on [t̃li , t̃ri ]

Midpoints for U and V

Compute ũi = uli +uri

2 and ṽi = vli +vri

2

Compute t̃i = ṽi − ũi

Apply right-censored data methods (KM/Cox PH) on t̃i

Midpoints for U
Compute ũi = uli +uri

2

Compute intervals t̃li = vli − ũi and t̃ri = vri − ũi

Apply interval censored data methods (Turnbull/Pan PH) on [t̃li , t̃ti ]
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Compute ũi = uli +uri
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Compute ũi = uli +uri
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Example
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Reduced likelihood methods

When are these methods acceptable?

Parameter estimates:

1 When intervals for U and T are small

2 When T stochastically larger than U: FU(x) << FT (x)

True for mid point U and MI methods

Reduced likelihood and full likelihood close for FU ,FT ∼ exp(λ)

Simulations show that it can be generalized to all distributions

Variability of parameter estimate:

Underestimation of variability of basic data

Standard errors of parameter estimates underestimated
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Reduced likelihood methods

Mean integrated Mean integrated
Scenario Estimator error2 bias2 * 104

1 Full likelihood - DeG 0.02 118
T not Maximal interval 0.08 211
stoch. greater Mid point for U 0.12 865

Mid-point for U and V 0.43 4254
2 Full likelihood - DeG 0.01 66
T stoch. Maximal interval 0.03 61.15
much greater Mid point for U 0.03 102

Mid-point for U and V 0.15 1461
3 Full likelihood - DeG 0.24 4582.99
Very small Maximal interval 0.01 10
intervals Mid point for U 0.01 2

Mid-point for U and V 0.01 28

De Gruttola: reference (Full Likelihood method) - discussed later

FU << FT implies acceptable estimation by MI and mid point U
For mid point U and V not much improved

Small intervals implies acceptable estimation by reduced likelihood methods

Identifiability problems with De Gruttola on small intervals
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Current Methods
Full likelihood methods

2) Full Likelihood methods

Methods taking distribution of U into account

Assume independence between U and T

2 types of methods:

1 Based on discretization of the distribution

2 Assuming continuous distributions
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Full likelihood methods

a) Methods based on discretization of the distribution

De Gruttola et al. (1989):
nonparametric approach

No covariates

Predefined mass points for U and V

Maximizes the likelihood to obtain
mass at each (and ONLY) mass points,
the rest is our own imagination

EM (self-consistency) algorithm
iterating between estimation of
marginal distribution of U and T

Problems: convergence + identifiability
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Full likelihood methods

a) Methods based on discretization of the distribution

Kim et al. (1993)

Extension of DeG to covariates

Assuming Cox PH model

Estimation by self consistency algorithm and direct maximization of likelihood

Both approaches (DeG + Kim)

Influenced by chosen/prespecified locations of the mass points
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Full likelihood methods
Issues with methods based on discretization

Not enough or too many points of mass → bias
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Example from De Gruttola et al. (1986) - 18 mass points
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Full likelihood methods

b) Methods for continuous distributions

Gomez et al. (1999): conditional ML approach without covariates
(not fully efficient)

Sun et al (1999): profile likelihood approach with covariates

Issues:
1 Based on right censored V

2 Not suitable for overlapping intervals

0 Ul UrVl Vr

Case 1

Case 2

Ul = Vl Ur

Ur = Vr

Case 3

Ul Vl

Ur = Vr

Case 4

Ul = Vl

Ul = VlUl = Vl

Vr

observed interval for U

observed interval for V

Here 50% overlapping

Unidentifiability when too
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Current Methods

3) Other approaches

Parametric methods

Bayesian semi-parametric methods

Extension to bivariate NPMLE

Parametric: mispecification issues

Bayesian semi-parametric methods:

Fitting AFT by a flexible mixture of normals using Bayesian approach
(Komárek & Lesaffre, 2006,2007,2008)

Poisson Dirichlet process (Jara et al, 2010) (Bayesian approach)
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Current Methods

Extension to bivariate NPMLE?
Bivariate interval-censored data 189

FIGURE 7.3: An artificial data set with 6 observed rectangles and their
corresponding 4 regions of support indicated in gray.

tificial example data set used in Betensky and Finkelstein (1999b). The 6
observed rectangles are graphically represented in Figure 7.3. Note that ob-
servation 6 is flat due to the fact the event in the second dimension is exactly
observed ([7, 8] × [3, 3]). The 4 regions of possible support are indicated in
gray.

In the appendix to their paper, Betensky and Finkelstein (1999b) provided
a simple algorithm to calculate the regions of possible support. The search
process is based on making pairwise intersections of all the observed rectangles
and keeping the (non-empty) intersections or the rectangle itself (if there is no
intersection with the other rectangles). This procedure is then iterated until
no more changes are observed in the list of rectangles of possible support. An
advantage of this algorithm is the easiness with which it can be implemented.

Problems
Not clear how to deal with U ≤ V
Analysis should be done in U and T
How to include covariates?
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Conclusions so far

Difficult to tackle the problem of DI data in a bivariate manner

All approaches work in 2 steps

For DI data all approaches assume pre-chosen mass points
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StEM

Motivation

In a clinical trial context:

Need for a more formal approach

Independent of prespecified mass points
to avoid subjectivity in estimate

Allowing for overlap of intervals
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StEM

Outline:

Introduction the concept - Based on EM

Justification of the need for iterative algorithm

Description of algorithm
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Concept

We have:

U (time to CCYR) is interval censored

V (time to MMR) is interval censored

Exact event times of U and V unknown (missing)

EM algorithm provides MLE in presence of missing data

Estimating the distribution of right censored data: KM estimator

KM is maximum likelihood

Assuming only U unknown + interval censoring is not better
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Concept

Observed data = [uli , uri ], [vli , vri ] (i = 1, . . . , n)

V = U + T

FT (t) given by KM likelihoods based on data ti : L(pi |ti ) (i = 1, . . . , n)

Parameters pi = KM mass at death time ti to be estimated

EM algorithm (subindex i runs over all observations)

E-step: compute the expected likelihood over missing data (U,T ),
given the observed data, given the estimate at previous iteration
At iteration k

Qk (pi , p
k−1
i ) = Eui ,ti [log L(pi |ti )|observed data, pk−1

i ]

=

∫

ui ,ti

log L(pi |ti )dF (ui , ti |[uli , uri ][vli , vri ], F̂
k−1
T (.))

M-step: maximize Qk to obtain F̂ k
T (.)
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Concept

Conditional distribution of missing data given observed data:

F ( u, t |[uli , uri ], [vli , vri ], F̂
k−1
T (.))

= FT ( t | u, [vli , vri ], F̂
k−1
T (.)) FU( u |[uli , uri ], [vli , vri ], F̂

k−1
T (.))

By independence of U and T

Note: FT ( t | u, [vli , vri ], F̂
k−1
T (.)) = F̂ k−1

T (.)

F̂T and F̂U are updated in EM iterations

Marginal FU estimated ONCE on [uli , uri ] (Turnbull)

⇒ Conditional density of U given data depends on V and F̂ k−1
T (.)

⇒ No closed expression for Qk(pi , p
k−1
i )

⇒ Iterative algorithm needed
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Concept

Qk has no closed form ⇒ use Stochastic EM algorithm

Replace integration on U and T by generating

(ū1, . . . , ūn)q out of

F̂U (u|[uli , uri ], [vli , vri ], F̂
k−1
T (.))

and (t̄1, . . . , t̄n)q from

F̂T (t|u, [vli , vri ], F̂
k−1
T (.))

for q = 1, . . . ,m (m generated datasets)

Maximize m likelihoods and average over m estimates to obtain
updated F̂ k

T (.)
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StEM algorithm

Initialization Estimate F 0
T (t) using mid-point of intervals

StE-step k (1) Generate (ū1, . . . , ūn)q from

F̂U( u |[uli , uri ], [vli , vri ], F̂
k−1
T (.)) =

1

cst

∫ u

uli

∫ vri−u

vli−u
dF̂ k−1

T (t)dF̂U(u)

where

cst =
∫ uri

uli

∫ vri−u
vli−u dF̂ k−1

T (t)dF̂U(u)

FU(u) estimated by Turnbull
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StEM algorithm

StE-step k (2) Generate (t̄1, . . . , t̄n)q from

F̂T ( t |u, [vli , vri ], F̂
k−1
T (.)) =

∫ t

vli−u
dF̂ k−1

T (t)/

∫ vri−u

vli−u
dF̂ k−1

T (t)

M-step Apply KM estimator based on (t̄1, . . . , t̄n)q

Maximize m likelihoods to obtain m estimates of FT

Average m estimates to obtain F̂ k
T (.)

xxx Repeat StE-step and M-step until convergence.
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StEM algorithm: Variance calculation

StEM Variance estimate has 2 components:

Average of m within-variances

Between-iteration variance

Formally, at a fixed time t, at final iteration k:

σ̂2(t) =
1

m

m∑

q=1

σ̂2
q(t) + (1 +

1

m
)

m∑

q=1

(F̂ k
T (t)q − F̂ k

T (t))2

where

F̂ k
T (t)q is the KM estimate on (t̄1, . . . , t̄n)q at iteration k

σ̂2
q(t) is the KM estimate of the variance at time t of F̂ k

T (t)q
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StEM algorithm: Cox PH model

Model

U ∼ FU(u)

T ∼ ST (t|X ) = ST (t|X = 0)eβX

Covariate acting on FT only

Notation: “baseline distribution” FT 0(t) = 1− ST (t|X = 0)(t)
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StEM algorithm: Cox PH model

StE-step k (1) Generate (ū1, . . . , ūn)q from

F̂U(u|[uli , uri ], [vli , vri ], F̂
k−1
T 0 (.|X ), βk )

StE-step k (2) Generate (t̄1, . . . , t̄n)q from

F̂T (t|X , u, [vli , vri ], F̂
k−1
T 0 (.), βk )

M-step Apply Cox PH estimator based on (t̄1, . . . , t̄n)q

Maximize m likelihoods to obtain m estimates of FT 0

and β

Average m estimates to obtain F̂ k
T 0(.) and β̂k

xxx Repeat StE-step and M-step until convergence.
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Simulations -Estimation of Distribution
Scen- Mean integrated

ario Distributions Estimator F̂ (p50) (std) (ste) bias2 MISE

1 U ≈ exp(λ = 10) Max int Turnbull 0.54 0.08 0.09 0.0044 0.0275
T ≈ exp(λ = 0.5) De Gruttola (Perc) 0.52 0.06 0.07 0.0010 0.0136

De Gruttola (Sun) 0.51 0.06 0.07 0.0008 0.0129
StEM 0.50 0.08 0.08 0.0005 0.0161

2 U ≈ Weibull(shape=2,scale=5) Max int Turnbull 0.42 0.18 0.24 0.0167 0.0551
T ≈ log normal(mean=2,sd=0.1) De Gruttola (Perc) 0.54 0.08 0.08 0.0190 0.0329

De Gruttola (Sun) 0.55 0.11 0.11 0.5093 0.5568
StEM 0.47 0.08 0.11 0.0085 0.0317

3 U ≈ Weibull(shape=1.7,scale=.83) Max int Turnbull 0.42 0.16 0.23 0.0114 0.0415
T ≈ log normal(mean=2.5,sd=0.05) De Gruttola (Perc) 0.56 0.08 0.08 0.0695 0.0899

De Gruttola (Sun) 0.56 0.11 0.11 1.2173 1.2860
StEM 0.50 0.08 0.11 0.0375 0.0687

4 U ≈ Weibull(shape=1.7,scale=.83) Max int Turnbull 0.54 0.11 0.11 0.0459 0.1134
T ≈ Weibull(shape=1.7,scale=.83) De Gruttola (Perc) 0.53 0.06 0.06 0.0058 0.0342

De Gruttola (Sun) 0.54 0.07 0.07 0.0240 0.0555
StEM 0.50 0.08 0.07 0.0008 0.0384

Bias better, MISE better / similar to De Gruttola estimator

Better than Turnbull based on [vri − uli , vli − uri ]

Large influence of prespecified mass points on De Gruttola estimator
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Simulations - Cox PH model

U ∼ exp(1) and T ∼ Weibull(1.7, 5.83)
Number of generated values: 20 for first 50 iterations, 100 after

95% coverage Power

Scenario β Estimator β̂ Probability

1 0.5 Mid point 0.07 0.16 0.08
Pan (Univ.) 0.58 0.81 0.79

StEM 0.52 0.91 0.80
2 -0.5 Mid point -0.34 0.84 0.72

Pan (Univ.) -0.58 0.9 0.82
StEM -0.53 0.9 0.88

4 -0.2 Mid point -0.13 0.95 0.13
Pan (Univ.) -0.22 0.94 0.23

StEM -0.22 0.97 0.23
5 0 Mid point 0.02 0.88 0.12

Pan (Univ.) 0.04 0.92 0.08
StEM 0.01 0.95 0.05

6(X cont.) -0.5 StEM -0.51 0.94 0.62

Univariate estimator not good

Shows acceptable bias and coverage probability
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Simulations - Cox PH model

U ∼ exp(1) and T ∼ Weibull(1.7, 5.83)
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Motivating example: time between CCyR and MMR
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Estimated distribution by StEM different from De Gruttola and
Turnbull (based only on T )

No difference between doses from separate estimation

No difference between doses from Cox PH model: β = −0.10(0.14)
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Example Introduction StEM Discussion

Discussion

Reduced Likelihood methods
Simple to implement (existing software available)
Work well under some conditions (small intervals/T stochastically
larger U)

Full Likelihood Methods
Based on discretizing the distribution
Issues with choice of location and number of mass points
Continuous methods
Restricted to right censored V
Do not allow overlapping

StEM
Not impacted by prespecified mass points
Allows overlapping / interval censored V
Similar/better performance compared to full likelihood methods
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The method is implemented in R by second author

Thank you for your attention!
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Publicity
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