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Motivating example

Data set “yarn”: density of 28 pet yarns, measured at 268 wavelength
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Motivating example

First two PCA loadings:
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Motivating example

First two Sparse PCA loadings:
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Projection-pursuit PCA

Given: n observations x1, . . . ,xn ∈ IRp, collected in the rows of X.
The first PCA direction is given by

a1 = argmax
‖a‖=1

V (atx1, . . . ,a
txn).

V is a variance measure:

• classical case: V is the empirical variance (Var)
=⇒ a1 corresponds to the first eigenvector of the sample covariance
matrix.

• robust case: V is squared MAD or squaredQn estimator (Rousseeuw
and Croux, 1993)
=⇒ a1 is the direction of the first robust PC.
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Projection-pursuit PCA

Suppose the first j − 1 PCA directions have already been found (j > 1).
The jth direction (j ≤ p) is defined as:

aj = argmax
‖a‖=1,a⊥a1,...,a⊥aj−1

V (atx1, . . . ,a
txn)

Loadings matrix for the first k PCs: Ak = (a1, . . . ,ak),

Scores matrix of the first k PCs: Zk = XAk with elements zij = atjxi
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PCA and sparsity

. . . add an L1 penalty in the objective function (see Tibshirani, 1996):

SCoTLASS criterion (Jolliffe et al., 2003):
jth sparse PCA direction (1 ≤ j ≤ p):

max
‖a‖=1,a⊥a1,...,a⊥aj−1

atΣ̂a, subject to ‖a‖1 ≤ t,

with L1 norm ‖a‖1 =
∑p
j=1 |aj|, and Σ̂ the empirical covariance matrix.

Equivalent formulation:

max
‖a‖=1,a⊥a1,...,a⊥aj−1

atΣ̂a− λ1‖a‖1,

with the tuning parameter λ1.

• L1 penalty forces some of the loadings to become exactly zero;

• Σ̂ necessary as input −→ robust estimation??? p > n???
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Projection-pursuit PCA and sparsity

First sparse PCA direction:

ã1 = argmax
‖a‖=1

V (atx1, . . . ,a
txn)− λ1‖a‖1.

• Setting λ1 = 0 −→ unconstrained first PCA direction a1;

• increasing λ1 −→ sparsity gains importance compared to (robust)
variance maximization.
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Projection-pursuit PCA and sparsity

jth sparse PCA direction (1 < j ≤ p):

ãj = argmax
‖a‖=1,a⊥ã1,...,a⊥ãj−1

V (atx1, . . . ,a
txn)− λj‖a‖1

λj is a tuning parameter, possibly different from λ1.

If V = Var−→ SCoTLASS and projection-pursuit definitions are the same.

Projection-pursuit approach: PCs are computed sequentially; stop at a
desired number k < p.
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Projection-pursuit algorithm

• project data on a direction
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Projection-pursuit algorithm

• project data on a direction
• compute (robust) variance
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Projection-pursuit algorithm

• project data on a direction
• compute (robust) variance
• repeat for “many” directions
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Grid algorithm

Optimization is done on a regu-
lar grid in the plane:

• select Ng regular grid points
on the unit circle
• consider Ng candidate di-

rections of each grid point
through the center
• maximize the variance of

the projected data, mea-
sured by a measure V

=⇒ direction which gives
maximum (robust) variance

(Croux, Filzmoser, Oliveira, 2007)
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Grid algorithm for sparse PCA

Assume that the first j − 1 sparse PCA directions ãj−1 are already
obtained and collected in the columns of Ãj−1, with 1 ≤ j ≤ k − 1.

Compute ãj:

• Ã
⊥
j−1 contains orthonormal basis of the subspace orthogonal to

Ãj−1.

• Project data into this space by x(j−1)
i = (Ã

⊥
j−1)

txi, for i = 1, . . . , n.

• Use objective function

f (a) = V (atx(j−1)
1 , . . . ,atx(j−1)

n )− λj‖Ã
⊥
j−1a‖1

with ‖a‖ = 1.

• Cycle through all pairs of variables using the Grid algorithm; update
optimal direction iteratively.
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Selection of the tuning parameter

The tuning parameter λj regulates the degree of sparseness.

We want to have similar degree of sparseness in the different PCs

=⇒ take λj := λV(X(j)),

where X(j) = XÃ
⊥
j−1, and V denotes the total robust variance, defined

for any matrix Y = (y1, . . . ,yp) as

V(Y ) =
p∑

i=1

V (yi).
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Selection of the tuning parameter λ

BIC type criterion:

BIC(λ) =
R̃V
RV

+ df(λ)
log(n)

n
,

with

• R̃V = V(X − XÃkÃ
t
k) . . . total robust variance of residuals from

sparse PCA

• RV = V(X − XAkA
t
k) . . . total robust variance of residuals from

unconstrained PCA

• df(λ) . . . number of non-zero loadings when using λ.

Select λ by minimizing BIC(λ) over a grid [0, λmax], where λmax results
in full sparseness.
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Example car data set

Car data (Kibler et al., 1989): 205 different car models; 26 variables
containing technical and insurance-related data

−→ only continuous variables, no missings: data set of size 195× 14

Compare classical (V = Var) and robust (V = Q2
n) approach.

(a) Standard Scree−plot
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Example car data set

“Tradeoff curve” for sparse robust PCA:
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Example car data set

Robust PCA (λ = 0) Robust sparse PCA (λ = 2.36)
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

symboling -0.03 -0.04 0.03 -0.17 0 0 0 0
wheel-base 0.24 0.25 0.08 0.16 0 0.50 0 0

length 0.29 0.18 -0.05 0.04 0.24 0 0.85 0
width 0.26 0.16 0.14 0.03 0.21 0 0 0

height 0.08 0.39 -0.26 0.32 0 0.87 0 0
curb-weight 0.24 0.13 0.12 0.00 0.32 0 0 0

bore 0.24 0.16 -0.25 0.04 0.21 0 0.03 0
stroke 0.00 -0.24 0.29 -0.58 0 0 0 0

compression-ratio -0.47 0.61 0.49 -0.11 -0.45 0 0.53 0
horsepower 0.36 -0.01 0.16 -0.20 0.43 0 0 0

peak-rpm 0.08 -0.38 0.60 0.64 0 0 0 1.00
city-mpg -0.31 0.04 -0.02 0.14 -0.30 0 0 0

highway-mpg -0.33 0.07 -0.04 0.14 -0.35 0 0 0
price 0.33 0.31 0.34 -0.12 0.40 0 0.06 0

EV % 49.20 15.54 10.12 5.97 45.73 8.32 6.03 4.16
Cumulative EV % 49.20 64.74 74.85 80.82 45.73 54.05 60.08 64.24
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Example car data set
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(b) Robust PCA
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(c) Standard sparse PCA
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(d) Robust sparse PCA
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Example yarn data set

Yarn data, with 3 outlying spectra added
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Example yarn data set
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R code

Implementation in R package pcaPP:

• Unconstrained PCA with Grid algorithm:

PCAgrid(x, k = 2, method = c ("mad", "sd", "qn"),

maxiter = 10, splitcircle = 25, scores = TRUE, zero.tol = 1e-16,

center = l1median, scale, trace = 0, store.call = TRUE, control, ...)

• Sparse PCA with Grid algorithm:

sPCAgrid(x, k = 2, method = c ("mad", "sd", "qn"), lambda = 1,

maxiter = 10, splitcircle = 25, scores = TRUE, zero.tol = 1e-16,

center = l1median, scale, trace = 0, store.call = TRUE, control, ...)
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Summary

Sparse robust PCA . . .

• compromise between maximizing robust variance and simplifying
interpretability

• determination of PCA directions is not affected by outliers

Projection-pursuit approach . . .

• robust estimation also possible for p > n

• components are extracted sequentially (stop after k)

• robust variance estimator and sparsity criterion can easily be changed
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