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How many cases do we miss when we screen human populations for disease?

the problem

a motivating problem

the idea of screening

I human populations are screened for specific diseases

I the aim is to detect the disease early when it is easier to treat
and cure

I an example is screening for bowel cancer
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How many cases do we miss when we screen human populations for disease?

the problem

a motivating problem

screening for bowel cancer

I bowel cancer can develop without any early warning signs

I a test called a FOBT can detect small amounts of blood in
the bowel motion

I this might be indicative for a problem such as cancer but also
something else such as polyps or nothing
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How many cases do we miss when we screen human populations for disease?

the problem

screening study on bowel cancer in Sydney

I from 1984 onwards about 50000 subjects were screened for
bowel cancer in Sydney

I the screening test comprises a sequence of 6 binary
diagnostic tests

I all are self-administered on successive days

I each records the absence or presence of blood in faeces

I details in Lloyd and Frommer (2008)
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How many cases do we miss when we screen human populations for disease?

the problem

screening study on bowel cancer in Sydney

I out of exactly 49927, 46553 tested negatively on all six tests
and were not further assessed (diagnosis: not diseased)

I out of the other 3374 subjects who tested positively at least
once, 3106 were examined and their true disease status
determined

I results could be: healthy, polyps, cancer

I the other 268 subjects who tested positively were lost to the
study
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How many cases do we miss when we screen human populations for disease?

the problem

screening study results in the following table:

Table: screening of 49927 subjects in Sydney for bowel cancer with
partial verification of disease status

status 0 1 2 3 4 5 6

healthy ? 1123 264 103 35 25 17
polyps ? 772 245 108 72 45 69
cancer ? 46 27 26 33 39 57
marginal 46553 1941 536 237 140 109 143
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

the problem in statistical terms

I X number of positive tests per subject

I px = P(X = x) is the probability that exactly x tests are
positive for x = 0, 1, ..., 6

I p0, p1, p2, ..., p6

I observed is f1, ..., f6, but f0 is unobserved
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

the problem in statistical terms

I let N = f0 + n = f0 + f1 + f2 + ... + f6
I then

E (n) = N(1− p0)

so that a moment estimator gives

I

N̂ = n/(1− p0)

if p0 would be known
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

how to estimate p0?

1. completely nonparametrically?

2. parametrically?

3. semi-parametrically?
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

completely nonparametrically?

I interest in: p0, p1, p2, ..., p6

I observed is f1, ..., f6, but f0 is unobserved

I so that only an estimate of the zero-truncated distribution

fj/n → pj/(1− p0)

is available which carries no information on p0
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

how to estimate p0?

1. completely nonparametrically?

2. parametrically?

3. semi-parametrically?
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

parametrically?

I X number of positive tests per subject out of m = 6

I one could think of the binomial distribution

px = P(X = x) =

(
m

x

)
θx(1− θ)m−x

where m = 6 is the number of tests per subject

I with p0 = (1− θ)m the Horvitz-Thompson estimator is

N̂ =
n

1− p̂0
=

n

1− (1− θ̂)m
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

parametrically?

I clearly possible

I but simple parametric models like the binomial are seldom
appropriate

I and certainly not appropriate in the situation we have here

I because ...
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

a property of the binomial

I consider ratios

px+1

px
=

( m
x+1

)
θx+1(1− θ)m−x−1(m

x

)
θx(1− θ)m−x

I

=
m!x!(m − x)!

m!(x + 1)!(m − x − 1)!

θx+1(1− θ)m−x−1

θx(1− θ)m−x
=

m − x

x + 1

θ

1− θ

I hence

ax
px+1

px
=

x + 1

m − x

px+1

px
=

θ

1− θ
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

a diagnostic device for the binomial

I hence x → ax
px+1

px
is a horizontal line

I estimate ax
px+1

px
by

ax
fx+1/N

fx/N
= ax

fx+1

fx

where fx is the frequency of count x and N = f0 + f1 + ... + fm
I x → ax

fx+1

fx
is a diagnostic device for the binomial and is

called the ratio plot
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

543210
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

application to Sydney screening study:

Table: screening of 49927 subjects in Sydney for bowel cancer with
partial verification of disease status

status 0 1 2 3 4 5 6

healthy ? 1123 264 103 35 25 17
polyps ? 772 245 108 72 45 69
cancer ? 46 27 26 33 39 57
marginal 46553 1941 536 237 140 109 143
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

how to estimate p0?

1. completely nonparametrically?

2. parametrically?

3. semi-parametrically?
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

semi-parametrically?

I consider the nonparametric mixture

px =

∫ 1

0

(
m

x

)
θx(1− θ)m−xg(θ)dθ

I where g(θ) is some arbitrary mixing density
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

semi-parametrically?

I it was expected that this approach would lead to some great
flexibility and would give consistent estimators of N for a wide
class of situations:

I

N̂ =
n

1−
∫ 1
0 (1− θ)m ĝ(θ)dθ

where ĝ(θ) would be found on the basis of f1, ..., fm
I maximizing the so-called zero-truncated mixture likelihood

(Böhning and Schön 2005)
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

semi-parametrically?

I unfortunately, some things are too beautiful to be true

I Link (2003) showed a lack of identifiability of the approach
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

Example by Link (2003) on lack of identifiability

under binomial mixture:

pj =

∫ 1

0

(
4

j

)
θj(1− θ)4−j g(θ)dθ

j = 0, 1, 2, 3, 4.

two mixing distributions:

I uniform g(θ) ∼ U(a, b) with a = 0.026 and b = 0.80

I discrete two-component mixture
g(θ) ∼ 0.576421× δ0.286245 + 0.423579× δ0.676474
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

the following table from Link (2003)

Table: untruncated and truncated count distributions

count j
model probability 0 1 2 3 4

uniform pj 0.227 0.255 0.243 0.190 0.085
pj/(1− p0) - 0.329 0.315 0.246 0.110

2 pt. mixture pj 0.154 0.279 0.266 0.208 0.093
pj/(1− p0) - 0.329 0.315 0.246 0.110
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How many cases do we miss when we screen human populations for disease?

issues with existing approaches

Consequences of lack of identifiability

I suppose n = 100 observed

I using uniform: N̂ = n/0.227 = 440

I using 2 point mixture: N̂ = n/0.154 = 650

I very different values, but both distributions are
indistinguishable as truncated, observable distributions

26 / 68



How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

ratio plot: evidence for binomial mixture

I evidently, the semi-parametric class is too large

I but how to find a more appropriate class of models?

I we suggest a regression approach

I starting point is once more the ratio plot
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

ratio plot: evidence for binomial mixture

I because: if

px =

∫ 1

0

(
n

x

)
θx(1− θ)n−xg(θ)dθ

I then
a0

p1

p0
≤ a1

p2

p1
≤ a2

p3

p2
≤ ...

(Böhning, Baksh, Lerdsruwansri, Gallagher JCGS 2011)

I hence ratio plot is monotone increasing
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

from the ratio plot to a regression problem

x → ax
px+1

px
:= rx

monotone increasing suggests to look at a generalised linear
model

ax
px+1

px
= g−1(β′x)

where x is a vector containing several functions of x and g−1(.) is
the link-function

Example:

ax
px+1

px
= g−1(β0 + β1x) = exp(β0 + β1x)
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

every distribution is a regression model

look at the binomial distribution

ax
px+1

px
=

θ

1− θ
= β0

or
x → ax

px+1

px
= β0
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

every distribution is a regression model

look at the beta-binomial distribution

px =

∫ 1

0

(
m

x

)
θx(1− θ)m−x

Γ(α+β)
Γ(α)Γ(β)

θα−1(1−θ)β−1︷︸︸︷
g(θ) dθ

=

(
m

x

)
Γ(α + β)

Γ(α)Γ(β)

Γ(x + α)Γ(m − x + β)

Γ(m + α + β)
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

every distribution is a regression model

leads to

x → ax
px+1

px
=

Γ(x + 1 + α)Γ(m − x − 1 + β)

Γ(x + α)Γ(m − x + β)
=

x + α

m − x − 1 + β
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

every distribution is a regression model

1. every count distribution leads via the ratio plot to a regression
model

2. but does every regression model lead to a count distribution
(under regularity assumptions)?
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

every regression model is a distribution

look at the regression model

ax
px+1

px
= g−1(β′x)

or
px+1

px
= g−1(β′x)/ax := rx

or
px+1 = rxpx

for x = 0, 1, ..., n − 1
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

Theorem
Let rx > 0 be given for x = 0, 1, ...,m − 1. Then there exists a
unique count distribution px for x = 0, ...,m with the properties

1.
px+1 = rxpx

for x = 0, 1, ...,m − 1

2.

p0 =
1

1 + r0 + r0r1 + ... +
∏m−1

x=0 rx
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

Proof:
Let rx > 0 be given. Then, using 1.

1 = p0 + p1 + ... + pn = p0 + p0r0 + p0r0r1 + ... + p0

n−1∏
x=0

rx

= p0(1 + r0 + r0r1 + ... +
n−1∏
x=0

rx)

has to be satisfied. Ultimately, we get

p0 =
1

1 + r0 + r0r1 + ... +
∏n−1

x=0 rx
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

from the ratio plot to a regression problem

an estimate for ax
px+1

px
is

ax
fx+1

fx

so that ultimately the model of interest

g(ax
fx+1

fx
) = β′x + εx,

where error εx has potentially non-diagonal covariance matrix Σ
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

model fitting

fit the model (in β)

g(ax
fx+1

fx
) = β′x + εx,

for x = 1, 2, ..., n − 1 using weighted least squares and finding
fitted values

ax
f̂x+1

f̂x
= g−1(β̂′x),

for x = 0, 1, 2, ..., n − 1

38 / 68



How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

finding the fitted distribution from the fitted regression
model

1.
r̂x = g−1(β̂′x)/ax

2.
p̂x+1 = r̂x p̂x

for x = 0, 1, ...,m − 1

3.

p̂0 =
1

1 + r̂0 + r̂0r̂1 + ... +
∏m−1

x=0 r̂x
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

reasonable model: log(ax
fx+1

fx
) = α + β log(x + 1) + εx

543210
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

the log-linear model and GOF

consider the log-linear model

log

(
ax

px+1

px

)
= α + β log(x + 1)

competitors:

the beta-binomial model

px =

∫ 1

0

(
n

x

)
θx(1− θ)n−x

Γ(α+β)
Γ(α)Γ(β)

θα−1(1−θ)β−1︷︸︸︷
g(θ) dθ

=

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)

Γ(x + α)Γ(n − x + β)

Γ(n + α + β)

41 / 68



How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

competitors:

the discrete mixture model

px =
J∑

j=1

(
n

x

)
θx
j (1− θj)

n−xwj

where w1, ...,wJ ≥ 0 and w1 + ... + wJ = 1

identifiable mixture models

I Mix2: J = 2

I ZIMix2: J = 3, but θ1 = 0
(zero-inflation model)
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

GOF for various models

Table: Observed and fitted frequencies of the marginal Sydney
screening data with various models fitted: log-linear, binomial model,
beta-binomial, two-component mixture, and zero-inflated mixture with
two free components

model 0 1 2 3 4 5 6 χ2

binomial 44236.6 5164.6 251.2 6.5 0.1 0.0 0.0 > 109

beta-bin. 46842.8 1403.9 633.2 363.0 221.5 131.1 63.6 398.9
Mix2 46718.9 1804.1 311.8 388.1 295.6 120.1 20.3 1053.2
ZIMix2 46549.0 1881.6 639.4 160.7 137.3 175.3 100.9 97.5

log-linear 46418.7 1968.5 443.1 235.7 202.8 211.2 178.9 96.4
observed 46553 1941 536 237 140 109 143 -
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

screening study results in the following table:

Table: screening of 49927 subjects in Sydney for bowel cancer with
partial verification of disease status

status 0 1 2 3 4 5 6

healthy ? 1123 264 103 35 25 17
polyps ? 772 245 108 72 45 69
cancer ? 46 27 26 33 39 57
marginal 46553 1941 536 237 140 109 143
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

prediction of frequency of zero counts f0
after having fitted the model

ax
f̂x+1

f̂x
= g−1(β̂′x),

for x = 1, 2, ..., n − 1: two ways of predicting f0

1. using a Horvitz-Thompson approach

2. using a non-parametric, data-oriented approach
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

prediction of frequency of zero counts f0: Way I

after having fitted the model

f̂x+1

f̂x
= g−1(β̂′x)/a− x =: r̂ − x,

for x = 1, 2, ..., n− 1, do the prediction for x = 0: g−1(β̂′x0) (x0 is
associated vector for x = 0) leading to a fitted distribution via
p̂x+1 = r̂x p̂x

p̂0, p̂1, ..., p̂m

from where the Horvitz-Thompson estimator arises:

N̂ =
n

1− p̂0

46 / 68



How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

prediction of frequency of zero counts f0: Way II

after having fitted the model

ax
f̂x+1

f̂x
= g−1(β̂′x),

for x = 1, 2, ..., n − 1

note that for x = 0

a0
f̂1

f̂0
= g−1(β̂′x0)

now, replacing f̂1 by observed f1 leads to

f̂0 = a0
f1

g−1(β̂′x0)
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

the log-linear model

I

log(ax
fx+1

fx
) = α + β log(x + 1) + εx

I cov(ε) = Σ not necessarily diagonal

I weighted least squares of α and β easily available so that

log(a0
f̂1

f̂0
) = α̂ + β̂ log(1) = α̂

I and will provide estimate of the missing frequency of zeros

f̂0 = a0f1 exp(−α̂)
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How many cases do we miss when we screen human populations for disease?

using regression to estimate a probability distribution

the model
but is the model developed for the marginal frequencies
appropriate for the frequencies of the partially classified
subpopulations:

I with no disease

I with polyps

I with cancer
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using regression to estimate a probability distribution
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using regression to estimate a probability distribution
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using regression to estimate a probability distribution
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How many cases do we miss when we screen human populations for disease?

predicting the missing cases

the prediction

all is needed is a model fit and the prediction for x = 0 for the
partially classified subpopulations:

I with no disease

I with polyps

I with cancer
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predicting the missing cases
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predicting the missing cases
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predicting the missing cases
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How many cases do we miss when we screen human populations for disease?

predicting the missing cases

prediction results for the Sydney screening study:

Table: screening of 49927 subjects in Sydney for bowel cancer with
partial verification of disease status; predictions using the log-linear
model are in red; for comparison, Chao’s estimator f̂0 = m−1

m
f 2
1

2f2
is

given in brackets in blue

status 0 1 2 3 4 5 6

healthy 15937(1990) 1123 264 103 35 25 17
polyps 10638(1014) 772 245 108 72 45 69
cancer 332(33) 46 27 26 33 39 57
total 26907(3037) 1941 536 237 140 109 143
total 46553 1941 536 237 140 109 143
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How many cases do we miss when we screen human populations for disease?

discussion

how well does the method work in practice?

there are fully classified data available

I Lloyd and Frommer (2004) present a table with fully classified
data

I a subset of 125 of the positive patients with confirmed cancer
agreed to repeat the procedure 4 to 10 days after the primary
test (secondary data)

I hence for all test results including the test-negatives the
disease status is known
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How many cases do we miss when we screen human populations for disease?

discussion

results of for fully classified data

Table: distribution of count of test-positives for a repeated diagnostic
testing of 125 subjects with cancer

status 0 1 2 3 4 5 6

cancer 25 8 12 16 21 12 31
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discussion
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How many cases do we miss when we screen human populations for disease?

discussion

results of for fully classified data

Table: distribution of count of test-positives for a repeated diagnostic
testing of 125 subjects with cancer (second row includes the predicted
number of test-negatives using the model - in brackets Chao’s
estimator is given)

status 0 1 2 3 4 5 6

cancer 25 8 12 16 21 12 31
prediction 21(2) 8 12 16 21 12 31
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How many cases do we miss when we screen human populations for disease?

discussion

identifiability?

easy to check

I let Y = (Y0,Y1, ...,Ym−1)
T and write model as

I

Y = Xβ + ε

where X is the design matrix

I identifiability can be checked if the design matrix is of full
rank

I hence, identifiability is reduced to the question of the
identifiability of the regression model under consideration
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How many cases do we miss when we screen human populations for disease?

discussion

example of Link (2003)

Table: untruncated and truncated count distributions

count j
model probability 0 1 2 3 4

uniform pj 0.227 0.255 0.243 0.190 0.085
pj/(1− p0) - 0.329 0.315 0.246 0.110

2 pt. mixture pj 0.154 0.279 0.266 0.208 0.093
pj/(1− p0) - 0.329 0.315 0.246 0.110
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How many cases do we miss when we screen human populations for disease?

discussion

regression approach can help to select suitable
distributions

I need to restrict class of distributions under consideration

I regression approach can help to select the more plausible
model

I as we see here ...
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discussion
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discussion
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discussion
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