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Abstract: At the core of this paper is a simple geometric object, namely the
risk set of a statistical testing problem on the one hand and f-divergences,
which were introduced by Csiszar (1963) on the other hand. f-divergences
are measures for the hardness of a testing problem depending on a convex
real valued function f on the interval [0, c0). The choice of this parameter f
can be adjusted so as to match the needs for specific applications.

One of these adjustments of the parameter f is exemplified in Section 3 of
this paper. There it is illustrated that the appropriate choice of f for the
construction of least favourable distributions in robust statistics is the convex
function f(u) = v/1 4 u? — (14 u)/+/2 yielding the perimeter of the risk set
of a testing problem.

After presenting the definition, mentioning the basic properties of a risk set
and giving the integral geometric representation of f-divergences the paper
will focus on the perimeter of the risk set.

All members of the class of f-divergences of perimeter-type introduced and
investigated in Osterreicher and Vajda (2003) and Vajda (2009) turn out to
be metric divergences corresponding to a class of entropies introduced by
Arimoto (1971).

Without essential loss of insight we restrict ourselves to discrete probability
distributions and note that the extension to the general case relies strongly on
the Lebesgue-Radon-Nikodym Theorem.

Zusammenfassung: Den Kern dieses Artikels bilden einerseits ein einfaches
geometrisches Objekt, ndmlich die Risikomenge eines statistischen Testpro-
blems, und andererseits die von Csiszar (1963) eingefiihrten f-Divergenzen.
Letztere sind GroBen, welche die Schwierigkeit eines Testproblems messen
und die durch eine konvexe reellwertige Funktion f auf dem Intervall [0, co)
parametrisiert sind. Die Wahl des Parameters f kann den Bediirfnissen spezi-
fischer Anwendungen angepasst werden.

Eine von diesen Anpassungen des Parameters f wird in Abschnitt 3 dieses
Artikels beschrieben. In diesem wird namlich illustriert, dass es fiir die Kon-
struktion von ungiinstigsten Verteilungen in der robusten Statistik zweckmi-
Big ist, als Parameter die konvexe Funktion f(u) = v/1 +u2 — (1 +u)/V2
zu wihlen, welche den Umfang der Risikomenge des Testproblems liefert.

!Dedicated to the Memory of Igor Vajda (1942-2010)
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Nachdem Definition und grundlegende Eigenschaften der Risikomenge eines
Testproblems gegeben und die integralgeometrische Darstellung von f-Diver-
genzen prasentiert werden, konzentriert sich der vorliegende Artikel auf den
Umfang der Risikomenge.

Alle Elemente der Klasse von f-Divergenzen vom Umfangstyp, welche in
den Arbeiten von Osterreicher and Vajda (2003) und Vajda (2009) eingefiihrt
und untersucht werden, stellen sich als metrische Divergenzen heraus, die
einer von Arimoto (1971) eingefiihrten Familie von Entropien entsprechen.

Ohne Verlust von Einsicht beschrianken wir uns hier auf diskrete Wahrschein-
lichkeitsverteilungen und merken an, dass die Fortsetzung auf den allge-
meinen Fall auf dem Satz von Lebesque-Radon-Nikodym beruht.

Keywords: Testing Problem, Risk Set, Dissimilarity Measure ( f-divergence),
Integral-geometric Representation, Least Favourable Distribution, Metric Di-
vergence.

1 Introduction

What is basic for this paper is a (simple versus simple) testing problem (P, ), which is
a pair of probability distributions P and () defined on a set Q = {z1, x5, ...} of at least
two elements.

In Section 2 the central entity of this paper, namely the risk set of a testing problem,
and its properties are presented:

Let A C Q) be a (nonrandomized) test. Then the convex hull of all pairs (P(A), Q(A°)),
A C €, of the probabilities P(A) and Q(A°) of type I and type II error satisfying
P(A) + Q(A°) < 1 is the risk set R(P, () of the testing problem (P, (). Expressed
colloquially, its essence may be summarized as follows: The "bulkier’ its risk set the ’eas-
ier’ the testing problem. Section 3 is devoted to f-divergences. Subsection 3.3 contains
their precise definition and their basic properties.

Motivation 1: The most widely used measure of the deviation of two probability distri-
butions in statistics is Pearson’s y?-divergence

XZ(Q7P) _ Z (Q(x) _p('r))Q )

z€Q

Another well-known measure of deviation, originally designed for applications in crypt-
analysis and later used both in information theory and statistics is the /- or Kullback-
Leibler divergence

q(z)

Q| P) ZZQ(w)logm-

Another measure of deviation is the total variation distance

Q- Pll/2 =53 laf@) ~ p(x)].

€
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These and many other measures of deviation of two probability distributions are special
cases of f-divergences

@) =3 1 (45 vlo)

z€Q

defined in terms of a convex function f : [0,00) — R continuous at 0 and introduced by
Csiszdr (1963). So x?-, I-divergence and total variation distance are the f-divergences
with the convex function f(u) = (u — 1)?, f(u) = ulogu and f(u) = |u — 1|/2,
respectively.

Subsections 3.1 and 3.2 deliver the integral-geometric approach to f-divergences which
is based on the risk set of a testing problem:

The ’Representation Theorem’, the main result of this subsection, states that every
f-divergence is a certain way of measuring the ’bulkiness’ of the risk set. The most
natural measure of its ’bulkiness’ is perhaps its perimeter: It turns out that the latter is the
f-divergence given by the convex function

fluw)=vV1itu2—(1+u)/V2. (1)

More generally, the "parameter’ f of an f-divergence is nothing but a certain function
for the weights of the breadths of the corresponding risk set measured for all different
directions.

By the way, the area of the risk set — the well-known Gini coefficient — is not an
f-divergence. Subsection 3.4 is entitled "Metric f-Divergences’.

Motivation 2: Pearson’s y*-divergence x*(Q, P) is obviously not apt to define a metric
divergence. However, the square root of its symmetrized version

(@, (P +Q)/2) = %Z (g(x) = p())?

e

is a metric. This divergence, which is defined in terms of the convex function f(u) =
g(‘; jl)j and which goes back to Sanghvi (1953) is studied in detail by Puri and Vincze
(1988). Thus, from the mathematical point of view it is very natural to ask which prop-
erties of a convex function f are sufficient for an f-divergence to be a metric divergence.

Theorems 4 and 5 answer this question.

Remark 1: Metric divergences do not only fulfil the symmetry property
1y(Q, P) = 1;(P,Q),
i.e. that f is *-self conjugate, but also the property
I1(Q,P) <2f(0) < o0 with equality if and only if P 1 @,

whereby f(0) < oo is crucial for
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e establishing bounds for the error probabilities of a sequence (P",Q"), n € N,
of testing problems (i.e. in case of n iid observations with distribution P and @),
respectively) and

e the characterization of an entirely separated sequence P,, ,,, n € N, of probability
distributions (cf. e.g. Chapter 11. Various statistical applications of f-divergence in
Vajda, 1989).

Section 4 is devoted to robust testing: We are given a simple versus composite testing

problem (P, Q), where
Q={Q": Q' —Qll/2< ¢}

is the set of all probability distribution with total variation distance < ¢ from a given
probability distribution @ and let P ¢ Q. A least favourable distribution is a distribution
Q* € Q, which is "closest’ to P. In early papers on robust testing least favourable distri-
butions were characterized by f-divergences. In this section, we show how to construct
a least favourable distribution (*. This is done in geometric terms: We construct the
intersection of risk sets

R(P,Q) :=n{R(P,Q"): Q" € Q}

and select the element Q* € Q which satisfies R(P, Q*) = R(P, Q). Therefore, in order
to construct least favourable distributions the appropriate choice of the convex function f
of the f-divergence is the one which gives rise to the perimeter of the risk set of the testing
problem, i.e. the one given by (1). f-divergences are obviously used in several areas of
statistics, furthermore in proving limit theorems in probability theory, in analyzing the
limiting behavior of Markov chains, in information theory and quantum physics.

Section 5 is devoted to the class of f-divergences of perimeter type, introduced and
studied in Osterreicher and Vajda (2003) and Vajda (2009). It is based on the class of
entropies due to Arimoto (1971) and contains, next to the f-divergence given by (1), the
total variation distance and a symmetrized version of the /-divergence also the squared
Hellinger distance (with f(u) = (y/u — 1)?) and the squared Puri-Vincze distance. All
f-divergences of this class are metric divergences.

2 Risk Sets

Let Q = {x1, 2, ... } be a set with at least two elements, () the set of all subsets of 2
and P the set of all probability distributions P = (p(x) : = € ) on (.

A pair (P,Q) € P? of probability distributions is called a (simple versus simple)
testing problem. A subset A C (2 is called a (simple) test. It is associated with the
following decision rule: one decides in favour of the hypothesis () if x € A is observed
and in favour of P if x € A° = Q\ A is observed.

Then P(A) and Q(A°) is the probability of type I error (probability of a decision
in favour of () although P is true), and the probability of type II error (probability of a
decision in favour of P although () is true), respectively.

Two probability distributions P and () are called orthogonal (P_1Q) if there exists a
test A C 2 such that P(A) = Q(A°) = 0. (In this extreme case only one observation
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is needed to decide between P and () and the probabilities of committing both errors
vanish.)

A testing problem (P, QQ) € P? is called least informative if P = () and is called most
informative if P_1Q).

Let 0 < 7 < 1 and let (m,1 — 7) be a prior distribution on the set {P,Q} C P
associated with the testing problem (P, ). Then the quantity

7P(A)+ (1 — m)Q(A°)

is called Bayes risk of the test A with respect to the prior distribution (7, 1 — 7). Since the
Bayes risk enables us to order the pairs (P(A), Q(A°)), A € B(2) of error probabilities,
it is straightforward to ask for tests which provide the minimal Bayes risk. In fact, as can
be easily checked, it holds

TP(A)+ (1 —m)Q me p(x), (1 —7)q(x))
zeN
+ Z(Wp(m) — (1 = m)q(@) L angmp>(1-m)q)
e
+ (1= ma(@) = mp(@)) Lacnfa-msmp}
e

where the two latter terms are nonnegative and vanish iff {(1 — 7)g > 7mp} € A C
{(1 —m)g > mp}.

In order to summarize lett = "~ A, = {q > tp}, A = {q¢ > tp} and let b;(Q, P) =
> co min(q(z), tp(x)) be the (1 + t)-multlple of the minimal Bayes risk with respect to

the prior distribution (14, 117). Then

Q(A) +tP(A) > b(Q, P) YA€ PB(Q)
with equality iff A, C A C A;.

Definition 1: Let (P, Q) € P2 be a testing problem. Then the set

R(P,Q) = co{(P(A),Q(A%)) : A € B(Q), P(A) + Q(A°) < 1}
is called the risk set of the testing problem (P, ()), whereby co stands for "the convex hull
of’.
The geometric object of the risk set R(P, () provides a qualitative measure for the

deviation of P and (. In fact, the family of risk sets define a uniform structure on the set
P (cf. Linhart and Osterreicher, 1985).

2.1 Properties of Risk Sets

(R1) R(P,Q) is a convex subset of the triangle A = {(a,3) € [0,1]? : a + 8 < 1}
containing the diagonal D = {(«a, 8) € [0,1]* : @+ 8 = 1}. More specifically,

DCR(P,Q)CA
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holds with equality iff P = () and P_L(), respectively.

(R2) Let ¢ > 0 and b:(Q, P) be the (1 + ¢)-multiple of the minimal Bayes risk with

respect to the prior distribution (1%, %H) Then the risk set R(P, Q) of a testing problem

is determined by its family of supporting lines from below, namely

B=0,(Q,P)—ta, t>0.

Consequence of (R2): Let (P, Q) and (P, Q) be two testing problems. Then

P

Simple Example (Testing a fair tetrahedron versus a biased one):

Q={1,2,3,4}

P = (1/4,1/4,1/4,1/4)

Q= (5/8,1/4,1/8,0)
Although the number of simple tests for a set {2 with m elements is [F(£2)| = 2™, we need
only m + 1 pairs (P(A), Q(A°)), A € P(Q) in order to determine the risk set R(P, Q)

economically. It is advisable to proceed as follows:
Order the set €2 so that the likelihood ratios are decreasing, i.e.

dw) | ales) o )
p(z1) ~ plas) p(Tm)
take the tests
A — %] for: =0
YA,y forie {1,...,m} "’

assign the set S = {(P(4;), Q(A?))} i € {0,1,...,m}} of the pairs of error probabili-
ties and form the convex hull co(S) of this set. Then co(S) = R(P, Q).

For our example the tests A; and the corresponding pairs (P(A;), Q(AS)) of error
probabilities are given in the following table.

A; (P(Ai), Q(AD))
%) (0,1)
{1} (1/4,3/8)

{1,2} (1/2,1/8)
{1,2,3} (3/4,0)
Q (1,0)

Remark 2: For the special case P = (=,..., =) and Q = (qi,...,¢n), such that ¢; >
G2 > -+ > qm, the lower boundary of the set

co{(P(4;),Q(4;)) :i€{0,...,m}},
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Figure 1: Risk set of above testing problem.

is the so-called Lorenz curve. It was already used by Lorenz (1905) in order to measure
the inequality of the distribution of wealth within a given population. The translation of
the following quotation from Lorenz’ paper into our context describes exactly the purpose
of the risk set.

”We wish to be able to say at which point a community is placed between the two
extremes, equality on the one hand, and the ownership of all wealth by one individual on
the other.”

3 f-Divergences

3.1 Geometric Approach

In order to define a quantity for the "hardness’ of a testing problem (P, ) we proceed,
after the qualitative step which assigns the “hardness’ of a testing problem (P, )) to the
"bulkiness’of the corresponding risk set R(P, () by a first quantitative step.

To this end let b;(Q, P) be the (1 + ¢)-multiple of the minimal Bayes risk with respect
to (14, %H) of the testing problem (P, )) and let b;( P, P) = min(1, t) be the correspond-
ing quantity for the least informative testing problem (P, P). Then the differences

min(1,t) — b(Q, P), t>0

compare the "bulkiness’ of the risk set R(P, ) with that of the risk set R(P, P) = D of
the least informative testing problem. The parameters ¢ > 0 are the absolute values of the
slopes of the supporting lines of the risk set from below.
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Figure 2: Differences min(1, t)-b,(Q, P).

In a second quantitative step weights for the parameters ¢ > 0 are assigned in terms
of a suitable monotone function F': [0, 00) — [—00, 00) so that the integral

/Ooo[min(l, t) — b(Q, P)|dF(t)

provides an essential extension of the above family of measures of the *bulkiness’ of the
risk set. Due to the richness of the class of parameters F' these weighted measures can be
adjusted so as to match a given type of application.

3.2 The Perimeter of the Risk Set

In this subsection we are going to describe an interesting special case related to the well-
known fact from integral geometry that the perimeter of a finite convex subset of R? is the
integral of its breadths.

Since max(1,t) — b:(Q, P) is the vertical part of the breadth of R(P, ()) in direction

of the vector (747, 133) of the prior distribution,

(max(1,t) — b:(Q, P)) cos(p(t)) with o(t) = arctan(t) € [0,7/2)

is its breadth. Since the breadth of the risk set with respect to ¢ € [7/2,7) is (cos(m —
@) +sin(m — ¢)) and f;r/z(COS(ﬂ' — ) +sin(m — ¢))dp = 2 the perimeter Per(R(P,Q))
of the risk set is

/2
Per(R(P,Q)) = /0 max(1, arctan(y)) — barctan(p) (@, P)] cos(p)dy + 2

= /Oo[max(l, t) — b(Q, P)](1+ tz)_3/2dt +2,
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whereby, by virtue of cos(go(t))dz—gf) = (1 + ¢*)7%/2, the density 1j9/2)(¢) of uniform
weight is transformed to the density (1 + ¢2)73/2 in the parametrization by ¢ € [0, c0).
Since the perimeter of the risk set R(P, P) = D of the least informative testing problem

is obviously
Per(R(P, P)) = / [max(1,t) — min(1,)](1 +2)32 +2 = 22
0
the difference
Per(R(P,Q)) — Per(R(P, P)) = / [min(1,2) — b,(Q, P)](1 + *)~%2dt
0

is the special case of our family of measures given by the density (1 + #2)73/2,

The above approach to define a family of measures of the ’hardness’ of a testing
problem, which stresses modelling, relies on the following representation theorem for
so-called f-divergences [;((), P) given by Feldman and Osterreicher (1981). In this set-

ting the weight function ' introduced above is the right-hand side derivative D, f of a
continuous convex function f on the interval [0, 00).

Representation Theorem:

1;(Q,P) = /Ooo[mm(u) — b,(Q, P)|dD4 (1) .

In the following section we will present the original definition of f-divergences by Csiszar
(1963), a number of examples and the basic properties.

3.3 Definition and Basic Properties

Let Fy be the set of convex functions f : [0,00) — (—00,00] continuous at 0 (i.e.,
f(0) = lim,yo f(u)) satisfying f(1) = 0 and (without loss of generality) f(u) > 0
Vu € [0,00) and let D f denote the right-hand side derivative of f. Further, let f* € Fy,
defined by

fr(u) =uf(M/u),  we(0,00),

the *x-conjugate (convex) function of f and let a function f € F satisfying f* = f be
called *-self conjugate. Then

z-f(0)==x-f(0/z)=0-f*(z/0) for z € (0, 00)
y-f10) =y 7 (0/y) =0- f(y/0)  fory e (0,00)
0-f(0/0) =0-f*(0/0) =

Definition 2 (Csiszar, 1963; Ali and Silvey, 1966): Let P, () € P. Then

14Q.P) = Y pa)f (M)

e p(x)
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is called the f-Divergence of the probability distributions ¢ and P.

Examples: Total Variation Distance (f(u) = |u — 1|/2 = f*(u))

1@ P) = [Q ~ Pll/2= 5 3 lalx) ~ p(a)|

zeN

Squared Hellinger Distance (f(u) = (v/u — 1)? = f*(u))

I;(Q,P) = H*Q,P) = > (Va(z) = /p(x

e
x2-Divergence (f(u) = (u —1)2, f*(u) = @)

1Q.P) = (Q.p) = 3 WD 2@ _ 1 )

el

Kullback-Leibler Divergence (f(u) = ulogu, f*(u) = —logu)

~—

= S 4@ log(1D) = 1:(P.Q)

e ($

~—

Squared Puri-Vincze Distance (f(u) = (u — 1)2/2(1 4 u) = f*(u))

(4(2) - p(a))?
Q. Py = 22 p(@) + 4(a)

Squared Perimeter Distance (f(u) = v/1+u? — (1 4+u)/v/2 = f*(u))
= V@) +¢3x) - V2

z€Q

Remark 3: Note that

11(Q, P) = fO)P({ : q(x) =

z:q(x)p(x)>0

and that P({x : ¢(x) = 0}) is the amount of singularity of the distribution P with respect
to @ and Q({z : p(x) = 0}) is the amount of singularity of the distribution () with
respect to P. Therefore, f(0) = oo and f*(0) = oo imply I¢(Q, P) = oo unless {z €
Q:q(x)p(x) > 0} =, i.e., all probabilities are positive.

Range of Values Theorem (Vajda, 1972): Let f € F,. Then

0 < I;(Q.P) < f(0) + [(0) VQ,PeP.
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In the first inequality, equality holds if/iff () = P. The latter provided that
(1) f is strictly convex at 1.
In the second, equality holds if/iff () L P. The latter provided that

(iii) £(0) + f*(0) < oo.

Characterization Theorem (Csiszér (1974)): Given a mapping [ : P? — (—o0, 00| then
the following two statements are equivalent:
(%) I is an f-divergence,
i.e. there exists an f € Fy such that I(Q, P) = I;(Q, P) V(P,Q) € P?
() I satisfies the following three properties:
(a) I(Q, P) is invariant under permutation of €).
(b) Let A = (A;,7 > 1) be a partition of 2 and let

Py=(P(A;),i=21) and Qa=(Q(A;),i=1)
be the restrictions of the probability distributions P and () to .A. Then

1(Q, P) = I(Qa, Pa)

with equality holding if Q(A;) x p(x) = P(A;) x q(x) Vz € A;, i > 1.
(c) Letw € [0, 1] and Py, P, and ()1, Q2 probability distributions on 2. Then

IaPi 4+ (1 = a)Py,aQr + (1 — a)Q2) < al (P, Q1) + (1 — a)I(FP,Q2) .

3.4 Maetric f-Divergences

Let us now concentrate on those (further) properties of the convex function f which allows
for metric divergences.
As we know already (@, P) fulfils the basic property (M1) of a metric divergence,
namely
I;(Q,P)>0 VP,QcP withequality iff Q = P, M1)

provided (i) f is strictly convex at 1.
In addition ;((), P) is symmetric, i.e. satisfies

I(Q, P) = 1;(P,Q) VP,QeP (M2)

iff (i1) f is x-self conjugate, i.e. satisfies f = f*.

It turns out that, in addition to the rather natural conditions (i) and (ii), the condition
(iii) f(0) + f*(0) < oo, which is used to characterize () L P, is crucial for metric diver-
gences. However, since it cannot be expected in general that an f-divergence fulfils the
triangle inequality we have to look for suitable powers to do so.

From the following two theorems given in Kafka, Osterreicher, and Vincze (1991)
Theorem 4 offers a class (iii, o), « € (0, 1] of conditions which are sufficient for guaran-
teeing the power [/ (@), P)]* to be a distance on P. Theorem 5 determines, in dependence
of the behaviour of f in the neighbourhoods of 1 and of g(u) = f(0)(1 + u) — f(u) in
the neighbourhood of 0, the maximal « providing a distance.
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Theorem 4: Let o € (0, 1] and let f € Fy fulfil, in addition to (ii), the condition
(iii, o) the function h(u) = (1 — u®)¥*/ f(u), u € [0, 1), is non-increasing.
Then
pa(@, P) = [1;(Q, P)]*

satisfies the triangle inequality

Pa(Q, P) < pa(Q, R) + pa(R, P) VP,Q,REP, (M3, a)
which effects, together with (M1) and (M2), that p,, is a metric.
Remark 4: The conditions (ii) and (iii, ) imply both (i) and (iii).

Theorem 5: Let (i) and (ii) hold true and let oy € (0, 1] be the maximal « for which (iii, «)

is satisfied. Then the following statement concerning o holds. If for some kg, k1, ¢, c1 €
(0, 00)

F(0) - (14 ) = F(u) ~ co - u'
Fw) ~eq-Ju— 11,

then kg < 1, k; > 1 and ap < min(ko, 1/k;) < 1.

Finally we present a version of the refinement of the Range of Values Theorem which
matches the assumptions (i), (ii) and (iii) which are necessary to allow for metric diver-
gences.

Refinement of the Range of Values Theorem (Feldman and Osterreicher, 1989): Let
[ € Fy satisty the conditions (i), (ii) and (iii), € [0, 1] and let the function ¢, : [0, 1] —
[0, 00) be defined by

exta) = (o (1)

14+
Then
cr([1Q — PlI/2) < 1;(Q, P) < ¢(1) - [|Q — PJ|/2,

where ¢ satisfies ¢f(0) = 0 and ¢;(1) = 2f(0) < oo and is convex, strictly increasing
and continuous on [0, 1].

Remark 5: Note that this theorem implies that any metric defined in terms of an f-
divergence is equivalent to the total variation distance.

4 Construction of Least Favourable Distributions

Huber and Strassen (1973) proved the existence of least favourable pairs of distribu-
tions for composite versus composite testing problems under the assumption that both
hypotheses are majorized by two-alternating capacities and characterized them in terms
of f-divergences with strict convex functions f. The author restated the definition of least
favourable pairs in terms of risk sets and demonstrated (1982) that their perimeter can
be used to construct least favourable pairs. For further references in this context see e.g.
Osterreicher (1983).
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For an application of the perimeter of the risk set for goodness of fit tests see Reschenhofer
and Bomze (1991).

Definition 3: Let
R(Pa Q) = mQ’EQR(Pa Q/)

be the risk set of a simple versus composite testing problem, which is a pair (P, Q) of an
element P and a nontrivial subset Q of P.

We will illustrate the construction of a least favourable distribution (Q* € Q for the
simple case

Q=U(Q.e)={Q eP: | -Qll/2<¢}
={QeP:QA) <QA)+e VAeP(Q)}

of a total variation neighbourhood.

Theorem 7: Let P,Q € P and let Q = U(Q,¢), ¢ € (0,1) be a total variation neigh-
bourhood of ) which does not contain P. Let furthermore R(P, Q) + (0, £) be the risk set
of the simple versus simple testing problem (P, ()) having been shifted upwards by the
amount ¢ and let finally ¢ < 1 < t be the absolute values of the slopes of the supporting
lines onto R(P, Q) + (0, ) through the points (1,0) and (1, 0), respectively.

Then the least favourable distribution Q* € Q for (P, U(Q,¢)) is given by the cen-
sored version

¢ (x) = max(t - p(z), min(q(z), t - p(x)))
of the density q.

Simple Example (Continuation): In order to illustrate Theorem 7 let us continue our
simple example from Section 2 by replacing the distribution () by the total variation
neighbourhood

Q= U(Q.1/8) = {Q € P: Q'(4) < Q(A) + 1/8VA € P}

When comparing the distribution () in the center of the variation neighborhood Q =
U(Q, 1/8) with the least favourable distribution Q* € Q

Q= (5/8,1/4,1/8,0)
Q" =(4/8,1/4,1/8,1/8)

notice that the probability 1/8 is shifted from the most probable element to the least
probable.

Remark 6: For the specialcase Q = {1,...,n},P=(1/n,...,1/n)and Q = (q1, ..., qn)
the above theorem has the following econometric interpretation.

If the distribution () of income (with total amount 1) of a population of n individuals
has to be redistributed so that the inequality in income is minimized under the constraint
that the portion of income of no group of the population is cut or raised more than ¢, one
has to proceed as follows: If a person’s income exceeds a certain amount ¢/n, her or his
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Figure 3: Modification of the risk set.

income has to be cut to this bound. The total amount € of income collected that way must
be allotted to those persons, whose income is smaller than a certain lower bound ¢/n so
that every person is guaranteed the minimal income ¢ /n.

The principle of income transfer was first clearly described by Dalton (1920) as fol-
lows:

”If there are only two income receivers and a transfer of income takes place from
the richer to the poorer, inequality is diminished. There is, indeed, an obvious limiting
condition. The transfer must be so large as to more than reverse the relative position of
the two income receivers, and it will produce its maximum result, that is to say, create
equality, when it is equal to the half of difference between the two incomes. And, we
may safely go further and say that, however great the number of income receivers and
whatever the amount of their incomes, any transfer of the two of them or, in general, any
series of such transfers, subject to the above condition, will diminish inequality. It is
possible that, in comparing two distributions, in which both the total of the income of the
number of the income receivers are the same, we may see that one might be able to be
evolved from the other by means of a series of transfers of this kind. In such a case we
would say that the inequality of one was less than that of another.”

5 Divergences of Perimeter-Type

If both the arc length of the lower boundary of the risk set and the diagonal D are measured
in terms of the /,-norm in R? then the ordinary case (p = 2) can be extended to the



E Osterreicher 17

perimeter-type family

3 cald? (@) + pP ()] —2YP forp € (1, 00)
In(@.F) = { 5 10(@) - pla)] for p— o

(cf. Osterreicher, 1996). In taking the (1 — 1/p)-th part of the corresponding convex
function (1 4 u?)'/? —2Y/7=1(1 4 ) we make a second step of generalization yielding the
family of f-divergences defined by the convex functions

(L u?) P = 2V (1 4 ) if p € (0,00)\{1}
Jo(u) = ¢ (14 u)log(2) + ulog(u) — (14 u)log(l+u) ifp=1 ;
lu—1]/2 if p=o00

where both cases p = 1 and p = oo are limiting cases. As a matter of fact, this family
relates due to

foluw) = (L4 w)hayp(1/2) = hayp(u/(L+w))], € [0,00),
to the class of entropies investigated by Arimoto (1971)

s L= (@ + (1= 0)2)] if e (0,00)\{1}

ho(t) =< —[tlogt+ (1 —t)log(l —t)] ifa=1
min(t, 1 —t) ifa=0

Note that our class of f-divergences includes, in addition to the case for p > 1 already
discussed for the case p = 1/2 (fi2(u) = (y/u — 1)?), the squared Hellinger distance
H?*(Q, P) and forp = 1

I5,(Q, P) = I(Q,(P+Q)/2) + I(P,(P+ Q)/2)
=2H((P+Q)/2) - [H(P)+ H(Q)],

where [ and H is the classical Kullback-Leibler divergence (f-divergence for f(u) =
u log u), respectively Shannon’s entropy.

Theorem 8 (Osterreicher and Vajda, 2003): This class of f-divergence provides the dis-
tances

1}, (Q, P)™™®2) forp € (0,00) and ||Q — P||/2 for p = oo.

For further results, including those in connection with possible applications for minimum
f-estimation, we refer to the paper mentioned above.

Vajda extended this family of divergences — in rechanging the parameter from p to
a=1/p—to

a(tl) = Slgri(‘zj (1+u/™) — 20741 +0)],  aeR\{0,1}

with the limiting cases g = f, and ¢; = f; and Theorem 8§ to
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Theorem 9 (Vajda, 2009): This class of f-divergence provides the distances

1, (Q, P)]Y/ (@) for o € R\{0} and ||Q — P||/2fora =0.

This family includes for a = —1 also the function
(u—1)*
4 . _ = -
p-(u) 2(1 + u)

yielding the well-known divergence

2

X(Q, (P+Q)/2) = %Z %

introduced by Sanghvi (1953). This divergence again, was extended to the family of
metric divergences defined by the convex functions

u — 1}

el = Sy

for o € [1, 00)

by Puri and Vincze (1988).
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