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Abstract: Small area estimation is a topic of increasing importance in official
statistics. Although the classical EBLUP method is useful for estimating the
small area means efficiently under the normality assumptions, it can be highly
influenced by the presence of outliers. Therefore, Sinha and Rao (2009; The
Canadian Journal of Statistics) proposed robust estimators/predictors for a
large class of unit- and area-level models. We confine attention to the basic
unit-level model and discuss a related, but slightly different, robustification.
In particular, we develop a fast algorithm that avoids inversion and multiplica-
tion of large matrices, and thus permits the user to apply the method to large
datasets. In addition, we derive much simpler expressions of the bounded-
influence predicting equations to robustly predict the small-area means than
Sinha and Rao (2009) did.

Zusammenfassung: Der zunehmende Einsatz von Methoden der Small Area
Estimation in der Amtlichen Statistik ist Ausdruck eines paragdigmatischen
Wandels, der die Bedeutung modell-unterstützer Schätzmethoden unterstre-
icht. Mitunter beruhen die Methoden auf den strikten parametrischen Vertei-
lungsannahmen Gemischt-Linearer Modelle und sind daher nicht robust bei
Ausreisserkontamination. Sinha und Rao (2009; The Canadian Journal of
Statistics) haben eine vielbeachtete Robustifizierung der unit- und area-level
Modelle vorgeschlagen, die jedoch hinsichtlich numerischer Stabilität und
Anwendbarkeit für die, in der Amtlichen Statistik üblichen Stichprobengrös-
sen, ungeeignet ist. In diesem Artikel wird eine, zu Sinha–Rao’s Methode
äquivalente, robuste Methode entwickelt und ein Algorithmus dafür beschrie-
ben. Die Performance der Methode wird in einer kleinen Simulation nachge-
wiesen.
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1 Introduction
Small are estimation (SAE) has become of great importance in official statistics due to
the growing demand for reliable small-area statistics (e.g., estimates on the level of Bun-
desländer/Kanton or communities). Sample surveys provide a cost-effective way of ob-
taining estimates for characteristics of interest at both population and subpopulation (or
domain) level. An estimator of a domain characteristic is called direct if it is based only
on data from sample units in the domain. In most practical applications, however, domain
sample sizes are not large enough, or even zero for unplanned domains, to allow direct
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estimation. In this context, small area estimation refers to a subpopulation for which re-
liable statistics of interest cannot be produced due to certain limitations of the available
data or because the estimates have extremely large sampling errors.

When direct estimation is not possible (or very unreliable), one has to rely upon alter-
native methods that depend on the availability of population-level auxiliary information
(e.g., census or administrative data). The methods are commonly referred to as indirect
or model-based estimation methods. Among the model-based SAE methods, the class
of (generalized) mixed linear models (MLM) has received considerable attention because
these models explain between-area variation in the target variable using auxiliary infor-
mation and include area-specific random effects to account for between-area variation
beyond that explained by the auxiliary information (see e.g., Jiang and Lahiri, 2006). In
this context, the small-area means (and totals) can be expressed as linear combinations of
fixed and random effects, which are obtained by (empirical) best linear unbiased predic-
tion (BLUP; EBLUP) estimators. In general, model-based estimation procedures enlarge
the effective area-specific sample size and yield a smaller mean square (prediction) error
of the statistic under consideration compared to direct estimation methods (Rao, 2003,
chap. 5). However, such models depend on parametric assumptions as well as requiring
specification of the random part of the model.

Although the EBLUP method is useful for estimating the small-area means efficiently
under normality assumptions, it can be highly influenced by the presence of outliers in
the data or departures from the assumed normal distribution of the random effects. In
the presence of contamination, the bias of non-robust methods (e.g., maximum likelihood
estimators) can be arbitrarily large and renders these estimators extremely inefficient.
Sinha and Rao (2009) therefore introduced the robust EBLUP method (REBLUP), based
on M -estimators for MLMs (Richardson and Welsh, 1995; Welsh and Richardson, 1997),
into the field of small area estimation.

AlthoughM -estimators for MLMs are theoretically convincing, no reliable algorithms
have been available so far (Chambers and Tzavidis, 2006). Sinha and Rao (2009) pro-
posed to obtain robust parameter estimates by a Newton–Raphson type (NR) numerical
optimization method—but they did not indicate how to initialize the method. Moreover,
the NR method is well-known – e.g., from robust regression analysis (Maronna, Martin,
and Yohai, 2006, chap. 9.1; Huber, 1981, chapters 6.7 and 7.8) – to be rather unreli-
able. Notably, Richardson (1995) reports significant convergence problems of NR and
similar numerical optimization methods (i.e., Anderson’s method (T. W. Anderson, 1973;
Miller, 1977) and the EM algorithm) in the context of M -estimators for MLMs. More-
over, Chaubey and Venkateswarlu (2002) report convergence failure in computing robust
ML estimators in 5.8 %–25.8 % of all Monte Carlo trials in their simulation study.

Computational problems arise, though, already in the exercise of computing ML esti-
mates for unbalanced data when no contamination is present at all. Searle, Casella, and
McCulloch (1992) phrase it as follows: “[t]here are myriad difficulties involved in actu-
ally implementing these methods [i.e., ML and REML estimators in mixed linear models;
ts] including, but not limited to, stability of numerical methods applied to the matrices
involved, methods of avoiding the inversion of large matrices and the details of diagnos-
ing convergence [...].” (Searle et al., 1992, p.312). The exercise of robustly fitting MLMs
introduces further difficulties, such as (among others) the choice of robust starting val-
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ues. The lack of suitable software has led to extensive efforts to study M -quantile-type
methods in the field of SAE; see e.g., Chambers and Tzavidis (2006).

We focus on the basic unit-level SAE model (see Rao, 2003, chap. 7.2). The main
contribution of this article is a numerically stable and fast algorithm (even for very large
datasets) in order to compute (robust) M -estimates of the model parameters. In addition,
we develop a method for robustly predicting the small-area means, which is much simpler
and therefore considerably faster than the proposal of Sinha and Rao (2009).

This article is organized as follows. Section 2 introduces the model of interest, the
ML estimator, and the EBLUP method. In Section 3, we discuss the robustification of
the EBLUP and derive a numerically stable and fast algorithm. Subsequently, we derive
robust predicting equations, based on the proposal of Copt and Victoria-Feser (2009),
in order to robustly predict the small-area means. A bootstrap method for estimating
the mean square prediction error (MSPE) of the estimated/predicted small-area means –
paralleling the ideas of Sinha and Rao (2009) – is discussed in Section 4. In Section 5,
we present the results of a simulation study. Finally, Section 6 draws together the main
findings.

2 Preliminaries, Definitions and the Model
Let us first introduce some terminology and notation. Consider a finite survey population
U whose units are labeled 1, . . . , N . The population U is assumed to be partitioned into
g subsets U1, . . . , Ug, called small areas. Let Ni be the size of Ui and assume that U =∪g

i=1 Ui, then we have N =
∑g

i=1Ni. We are interested in estimating the domain-specific
means of the variable of interest, y, from the data of the domains Ui, i = 1, . . . , g. Let Ȳi
be the population mean of y based on Ni units in area i (i = 1, . . . , g).

Suppose that Ȳi is related to the p-vector xij = (xij1, . . . , xijp)
T of auxiliary data on

the unit level. In what follows, we assume that this relationship is given at the population
level by the so-called basic unit-level model (Rao, 2003, chap. 7.2), through a nested-error
linear regression (Battese, Harter, and Fuller, 1988) of the form

yij = xT
ijβ + ui + eij , j = 1, . . . , Ni ; i = 1, . . . , g , (1)

where the area-specific random effects ui are assumed to be independent N (0, σ2
a), and

independent of the unit-level errors eij which are assumed to be independent N (0, σ2
e).

The variance components σ2
e and σ2

a are stacked in θ = (σ2
e , σ

2
a)

T .
A sample of ni ≥ 1 of units is assumed to be drawn (e.g., in a survey) from each area,

i = 1, . . . , g. The sampling is assumed to be ignorable such that the population model (1)
also holds in the sample. The latter assumption is satisfied under simple random sampling
from each area or more generally for sampling designs that use the auxiliary information
xij in the selection of the samples; see Rao (2003, pp. 78–80) for more details. The
following definition specifies the model based on sample data.

Definition 1. Marginally, the basic unit-level model is defined as

yi ∼ N (Xiβ,Ωi(θ)) , i = 1, . . . , g , (2)
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with θ = (σ2
e , σ

2
a)

T and Ωi(θ) = σ2
eIi + σ2

a1i1
T
i , where Ii is the (ni× ni) identity matrix,

1i the ni-vector of ones, and yi a ni-vector.

Whenever no confusion can arise, we suppress the functional dependence of Ωi(θ)
on θ. Note that the area-specific response vectors yi (i = 1, . . . , g) can be of different
length (i.e., un-balanced data). For notational simplicity, it is sometimes useful to work
with the stacked vectors/matrices: y = (yT

1 , . . . ,y
T
g )

T , X = (XT
1 , . . . ,X

T
g )

T , and Ω =
diag(Ω1, . . . ,Ωg). In addition, we impose the following assumptions (restrictions) on the
definition of model (2).

Assumption 1. The parameter space of model (2) is Θ = Θβ×Θθ with Θβ = {β ∈ Rp}
and Θθ = {θ ∈ R2

+|σ2
e > 0, σ2

a ≥ 0}.

Note that we allow for the possibility that the random-effect variance, σ2
a, can be zero.

Assumption 2. The first column of the (ni × p) matrices Xi consists of ni ones, ∀i =
1, . . . , g.

As a consequence, the first element of β refers to the (regression) intercept.

Assumption 3. The (ni × p) matrices Xi have full rank p, ∀i = 1, . . . , g.

This assumption is imposed to simplify the discussion of the proposed algorithm. All
results in this paper remain valid if Assumption 3 does not hold; however, the computa-
tional details are more involved.

The estimators considered in this article have to be computed by a numerical method
in an iterative manner. On the sth iteration (s = 1, 2, . . . ) of an algorithm for producing
an estimate of, say, β, the current value for the estimate is converted into a new value. By
way of example, denote by {β}(s) the parameter estimates of β on the sth iteration, and,
for any quantity f which is a function of β, we use {f}(s) to represent the value of f at
{β}(s).

2.1 EBLUP Method
Suppose for the time being that β and ui (i = 1, . . . , g) are known. For Ni large and the
sampling fraction fi = ni/Ni small (for all i), it follows that the area-specific means Ȳi
can be estimated/predicted by

Ȳi ≈ µi = x̄T
i•β + ui , i = 1, . . . , g , (3)

where x̄i• is the p-vector of known population means for area i. Note that x̄i• is the mean
of xij based on all j = 1, . . . , Ni units of area i in population U . In the case of non-
negligible sampling fractions (i.e., if Ni ≫ ni does not hold), we cannot take the small
area mean Ȳi as x̄T

i•β + ui. However, we can write Ȳi as

Ȳi = fiȳi + (1− fi)ȳnsi , (4)

where ȳi is the sample mean and ȳnsi is the mean of the non-sampled values of y in area i.
Under the population model, we replace the unobserved ynsij by its estimator (xns

ij )
Tβ+ui,
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where xns
ij is the p-vector of auxiliary data associated with ynsij , and compute the means ȳnsi

(Rao, 2003, p. 142). Sinha and Rao (2009) indicate that this approximation may not be
adequate in the presence of representative outliers (Chambers, 1986), although adequate
under the Gaussian mixed linear model.

Now, since the fixed effects, β, and the variance components, θ, (and the realizations
of the random effect ui) are unknown in a real-word application, the predicting equation,
(3), is of limited value. For known θ, however, the best linear unbiased estimator (BLUE),
β̃, is given by

β̃(θ) =

( g∑
i=1

XT
i Ω

−1
i (θ)Xi

)−1( g∑
i=1

XT
i Ω

−1
i (θ)yi

)
. (5)

Appealing to well-known results of BLUE estimation, we obtain the best linear unbiased
prediction (BLUP) estimator (Rao, 2003, pp. 96–98)

µ̃i(θ) = x̄T
i•β̃(θ) + σ2

a1
T
i Ω

−1
i (θ)

(
yi −Xiβ̃(θ)

)
, i = 1, . . . , g . (6)

In practice θ has to be estimated as well. This can been accomplished by several
methods, each of which has advantages and more or less severe disadvantages (Harville,
1977; Miller, 1977); see below for a discussion of the ML estimates. Once we have
computed θ̂, the empirical BLUP (EBLUP), µ̂i(θ̂), is obtained replacing θ in (6) by θ̂.

While EBLUP is fairly easy to obtain, estimation of a reasonable measure of uncer-
tainty for the area-level predicted means is a challenging problem. In the context of finite
population sampling, a variance estimate of a direct domain estimator of the mean (e.g.,
domain-specific Hajek estimator) is readily obtained, appealing to well-known results of
randomization inference and the fact that the estimator is design unbiased (see e.g., Särn-
dal, Swensson, and Wretman, 1992, chap. 10.3). These result do, however, not carry over
to (E)BLUP estimation and we have to resort to mean square (prediction) error estimation.
In their seminal paper, Prasad and Rao (1990) studied a second-order approximation to the
mean square prediction error (MSPE) of the EBLUP. Datta and Lahiri (2000) extended
the Prasad–Rao setting to a wider range of variance estimators, including the ML esti-
mator. We focus on the promising (also with regard to robustness properties) parametric
bootstrap discussed in Lahiri (2003); see Section 3.4 for further details.

2.2 Maximum Likelihood Estimator
To start with, it will prove useful to study the maximum likelihood (ML) estimator of the
model parameters β and θ. Subsequently, we shall derive a robustification of the Fisher-
score functions. For model (2), the non-constant part of the log-likelihood, l(τ ,X,y), is
given by

−2l(τ ,X,y) =
g∑

i=1

log |Ωi|+
g∑

i=1

(yi −Xiβ)
TΩ−1

i (yi −Xiβ) , (7)

where τ = (βT ,θT )T . Whenever no contamination is supposed to be present, estimates
of the parameter vector τ shall be obtained by means of ML. The ML estimator τ̂ is
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defined as l(τ̂ ,X,y) = supτ∈Θ l(τ ,X,y), provided τ is an interior point of Θ. It will
prove useful to express the covariance matrix Ωi (i = 1, . . . , g) as follows

Ωi = σ2
eIi + σ2

aJi = v(Ii + dJi) = vVi , (8)

where v = σ2
e , say, and d = σ2

a/σ
2
e ≡ a/v (the notation has been chosen for ease of

simplicity—notably, it spares us from writing squared terms); cf. Hartley and Rao (1967)
for the parametrization of the covariance matrix in terms of variance components ratios.
The primary advantage of the Hartley–Rao parametrization is that we obtain a separate
equation for v. Thus, on rewriting the log-likelihood, we obtain

−2l(τ ,X,y) =
g∑

i=1

log |Vi|+
n∑

i=1

ni log v +
1

v

g∑
i=1

(yi −Xiβ)
TV−1

i (yi −Xiβ) . (9)

Provided the maximum is not attained on the boundary, the maximum likelihood estimates
β̂, v̂, and d̂ are a solution to the system of Fisher-score equations, respectively,

−2(1/v)
g∑

i=1

XT
i V

−1
i (yi −Xiβ) = 0 , (10)

g∑
i=1

ni

v
− (1/v2)

g∑
i=1

(yi −Xiβ)
TV−1

i (yi −Xiβ) = 0 , (11)

g∑
i=1

1T
i V

−1
i 1i − (1/v)1T

i V
−1
i (yi −Xiβ)(yi −Xiβ)

TV−1
i 1i = 0 . (12)

It is easy to see that the MLE of v is given by

v̂ = 1
n

g∑
i=1

(yi −Xiβ)
TV−1

i (yi −Xiβ) , (13)

where n =
∑g

i=1 ni. Lindstrom and Bates (1988) (among others) take advantage of (13)
and propose the variance-profile log-likelihood substituting (13) back into (9). This leads
to an equivalent maximization problem with v eliminated. That is, the variance-profile
log-likelihood function, lp(τ ∗,X,y), with τ ∗ = (βT , d)T is an economical dimension-
reduced parametrization. At first sight, the effect of parametrizing the variance compo-
nents in terms of ratios and the implied simplification of the maximization problem seem
to be rather limited, since only one parameter can be eliminated. From the perspective of
computation, however, even such a small reduction simplifies the numerical optimization
problem considerably. This parametrization brings along another good property in terms
of numerical optimization: observe from (13) that estimates of v are non-negative.

Equations (10) and (12), on the other hand, do not feature a closed-form expression
(for unbalanced data) and have to be solved by means of some (iterative) numerical opti-
mization methods.

A criticism of ML estimators of variance is that they are biased downward because
they do not take into account the loss in degrees of freedom from the estimation of β.
The REML estimators correct for this deficiency; see e.g., Harville, 1977 for the details.
Nonetheless, we focus on ML and robustM -estimators; see Richardson and Welsh (1995)
for robust REML estimation.
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3 Robust EBLUP
Although the classical EBLUP method is useful for estimating the small area means ef-
ficiently under normality assumptions, it can be highly influenced by the presence of
outliers in the data. Furthermore, mixed linear models have, unlike location-scale or re-
gression models, no nice invariance structure. Notably, this means that the parameters
cannot be estimated consistently in the presence of contamination—there is an unavoid-
able asymptotic bias. In the presence of contamination, any method estimates the param-
eter at the core model plus an unknown bias. In the case of ML estimators, the bias can be
arbitrarily large and renders these estimators extremely inefficient (Welsh and Richardson,
1997).

A large number of authors proposed methods for robust analysis in mixed level mod-
els, ranging from rather algorithmic approaches (Rocke, 1983, 1991; Stahel and Welsh,
1997) over robustification of Henderson’s mixed-model equations (Fellner, 1986) to re-
placing the Fisher scores by robust Fréchet-differentiable statistical functionals (Bednarski
and Zontek, 1996). Copt and Victoria-Feser (2006) have proposed an S-estimator and
provide software for balanced data (cf. supporting website of Heritier, Cantoni, Copt,
and Victoria-Feser, 2009). The M -estimator-type methods, based on either a robustified
likelihood (RML 1; Richardson and Welsh, 1995; Stahel and Welsh, 1997) or bounded-
influence estimating equations (RML 2; Richardson and Welsh, 1995; Welsh and Richard-
son, 1997), have received considerable attention in the literature. Notably, we focus on the
RML 2 method (Richardson and Welsh, 1995) because it embodies a natural way of re-
stricting the influence of outliers in the response variable and is very closely related to the
ML approach. Further, the RML 2 method is equivalent to the proposal of Sinha and Rao
(2009). For these estimators, the potential bias is bounded, the efficiency is reasonable if
the model holds, and the estimators are much more efficient than e.g., ML estimators, if
it does not (Welsh and Richardson, 1997).

The following assumptions are crucial to all robust estimators.

Assumption 4. Outliers occur only in the response variable. No attempt is made to
limit the effect of outliers in the model/design space of the model (i.e., influential/leverage
observations).

In order to limit the influence of outliers in both the response variable (y) and the
design matrix (X), one has to resort to generalized regression M-estimators (GM ) in
the context of linear models (e.g., Mallows- or Schweppe-type estimators). Richardson
(1997) extended the notion of GM -estimators to include MLMs. Although theoretically
convincing, GM -estimators for the MLMs lack numerical stability (Richardson, 1995,
chap. 6.5).

3.1 Robust M -Estimator EBLUP
In the presence of contamination, the ML estimates can be severely biased. It is therefore
reasonable to replace the system of Fisher-score functions (10-12) by estimating equations
(EE) whose influence functions are bounded—i.e., so-called bounded-influence estimat-
ing equations (BIEE).
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3.1.1 BIEE for β

For the fixed effects, β, (10) shall be replaced by the BIEE

g∑
i=1

(1/
√
v)XT

i V
−1/2
i ψk

[
(1/
√
v)V

−1/2
i (yi −Xiβ̂

R
)
]
= 0 , (14)

where ψk(zi) = [ψk(zi1), . . . , ψk(zini
)]T with ψk denoting a bounded, odd function in-

dexed by some robustness tuning constant k. Without loss of generality we will assume
that ψk denotes the Huber ψ-function in what follows (or any other bounded, monotone
function). Equivariance considerations indicate that it is useful to studentized the esti-
mator by an appropriate scale, paralleling the concept of regression M -estimators. Note
from (2) that at the Gaussian core model, the (marginal) law yi ∼ N (Xiβ, vVi) holds.
Hence, the ni-vector of residuals in (14) is scaled by (1/

√
v)V

−1/2
i =: Bi, say, since

BT
i Bi = vVi and Bi(yi − Xiβ) ∼ N (0, 1). The specific definition of V−1/2

i will be
discussed later; for the time being, it is sufficient to assume that the square root of V−1

i

exists.
The Solution of (14) shall be obtained by an iteratively re-weighted least square

(IRWLS) algorithm which is the workhorse for computing M -estimates of regression
(Maronna et al., 2006, pp. 104–105). Notably, the IRWLS approach is numerically much
more stable than the Newton-Raphson approach (Schoch, 2011a). Denote by {β}(s) the
estimate of β produced by the algorithm on the sth iteration (s = 1, 2, . . . ). An updated
estimate is obtained from

{β}(s+1) =

( g∑
i=1

(
{Wi}(s){V−1/2

i }(s)Xi

)T{Wi}(s){V−1/2
i }(s)Xi

)−1

×
( g∑

i=1

(
{Wi}(s){V−1/2

i }(s)Xi

)T{Wi}(s){V−1/2
i }(s)yi

)
, (15)

where Wi = diag(wi), with wi = (wi1, . . . , wini
)T , wij = [ψk(rij)/rij]

1/2, and ri =

(1/
√
v)V

−1/2
i (yi −Xiβ). Put X̃i = (1/

√
v)WiV

−1/2
i Xi and ỹi = (1/

√
v)WiV

−1/2
i yi,

then we may write

{β}(s+1) =

( g∑
i=1

{X̃T
i }(s){X̃i}(s)

)−1( g∑
i=1

{X̃T
i }(s){ỹi}(s)

)
. (16)

Now, since (16) is a standard least squares problem, we obtain (iteratively) updated es-
timates of β by standard regression technique. First we note that by Assumption 3,
X̃i has full rank given that wi is not the null vector. Put X̃ = (X̃T

1 , . . . , X̃
T
g )

T and
ỹ = (ỹT

1 , . . . , ỹ
T
g )

T , which are of size (n × p) and (n × 1), respectively, where n =∑g
i=1 ni. Hence, we shall decompose X̃ by means of the “skinny” QR-factorization (see

e.g., Gentle, 2007, pp. 188–189 and p. 226). Write X̃ = QR, where R = (RT
1 ,0

T )T ,
with R1 an (p× p) upper triangular matrix. Q is an (n× n) orthogonal matrix which can
be partitioned likewise: Q = (Q1,Q2), where Q1 is an (n × p) matrix whose columns
are orthonormal. This enables us to write X̃ = Q1R1. Consequently, the overdetermined
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linear system X̃β = ỹ can be expressed as R1β = QT
1 ỹ. Since R1 is an (p×p) triangular

matrix, the system is easy to solve: β = R−1
1 QT

1 ỹ. The IRWLS algorithm now consists
of solving

{β}(s+1) = {R−1
1 }(s){QT

1 }(s){ỹ}(s) (17)

in an iterative manner. The final value is regarded as the estimate β̂
R

.

3.1.2 BIEE for v

A bounded-influence EE for v that replaces the non-robust Fisher score (11) is obtained
– in the spirit of Huber’s proposal 2 (Huber, 1964) – as the solution v̂R to the bounded-
influence estimating equation[ g∑

i=1

ni

]−1
1

δk

g∑
i=1

ψk

(
V

−1/2
i ri√
v̂R

)T

ψk

(
V

−1/2
i ri√
v̂R

)
= 1 , (18)

where ψk(zi) = (ψk(zi1), . . . , ψk(zini
))T and δk = E[ψk(u)

2] is a consistency cor-
rection term that ensures consistency of the estimate at the Gaussian core model with
u ∼ N (0, 1) (where expectation is w.r.t. the model). From the perspective of computa-
tion, it is worth to consider another representation of the BIEE. The solution of (18) can
be expressed as a weighted estimator, paralleling the concept of computing M -estimates
of scale (cf. Maronna et al., 2006, pp. 40–41). Define a weight function

wk(z) =

{
ψk(z)

2/z2 if z ̸= 0 ,

ψ′
k(z) if z = 0 ,

where ψ′
k denotes the first derivative and put Wi = diag(wk(ui1), . . . , wk(uini

)), with
ui = (1/

√
v)V

−1/2
i ri. An updated estimate, {v}s+1, is given by

{v}s+1 =
1

nδk

g∑
i=1

{Wi}s{rTi }s{V−1
i }s{ri}s , (19)

where n =
∑g

i=1 ni. The fact that all elements of the diagonal matrix Wi are non-
negative, implies that the quadratic form in (19) and therefore the estimates of v are non-
negative as well. This is in sharp contrast compared to the estimates obtained by (the
inherently unconstrained) NR approach of Sinha and Rao (2009).

3.1.3 BIEE for d

For the estimator of d, we also have to replace the non-robust Fisher-score function (12)
by a bounded-influence estimating equation. In contrast to v, the BIEE of d has no closed-
form solution. If we put ui(d) = (1/

√
v)Vi(d)

−1/2[yi −Xiβ], then a robust estimate of
d, say d̂R, is obtained as the solution to

g∑
i=1

1T
i Vi(d̂

R)−11i − 1T
i Vi(d̂

R)−1/2ψk

[
ui(d̂

R)
]
ψk

[
ui(d̂

R)
]T
Vi(d̂

R)−1/21i = 0 . (20)
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Note that – for ease of simplicity – we highlighted only the functional dependence on d,
i.e., Vi(d)

−1/2, instead of reporting all parameters, Vi(β, v, d)
−1/2.

Among all available methods for finding the root of (20) (i.e., a root of a real-valued,
continuous function in d), bisection is arguably the most reliable approach, but quite slow.
The method of regula falsi has been found to converge at a faster rate than linear. However,
it can go quite wrong in the case the function is not approximately linear over the inter-
val (Small and Wang, 2003, pp. 43–45).1 The Newton-Raphson method is well-known to
converge with a quadratic convergence rate within some neighborhood of the root, but has
the severe drawback of being very unreliable. In particular, the neighborhood of the root
can be very small and (still more important) is not known beforehand. Divergence of the
NR algorithm is a severe drawback and happens more frequently than many of the refer-
ences admit (see also Jiang, Luan, and Wang, 2007). Chaubey and Venkateswarlu (2002),
for instance, report convergence failure in 25.8 % of their Monte Carlo trials. Moreover,
NR does not explicitly take into account that the problem at hand is constrained (i.e., d
must be≥ 0). Obviously, one may deploy a watchdog function which prevents d (through
modifying search direction and/or step length) from becoming negative. However, this in-
tervention may impede superlinear convergence.

We propose to solve (20) by means of Brent’s root-finding algorithm (Brent, 1973,
chap. 4). The search for a root is constrained to the interval (0, a] (where a > 0 has
to be chosen), and thus ensures non-negativeness of d and σ2

a = σ2
ed. Brent’s method

combines the sureness of bisection with the speed of a higher-order method. It keeps
track of whether a supposedly superlinear method is actually converging the way it is
supposed to, and, if it is not, it intersperses bisection steps so as to guarantee at least linear
convergence. This kind of super-strategy requires attention to bookkeeping detail, and
also careful consideration of how roundoff errors can affect the guiding strategy (Press,
Teukolsky, Vetterling, and Flannery, 1986, pp. 352–354). Hence, we use (a modification
of) Brent’s “zeroin” Fortran 77 code.

3.2 Estimation Bounds

Given some initial values, β0, v0, and d0, we may consider updating these estimates
by solving equations (17), (19), and (20) in some sequential order right away. From a
theoretical point of view, there is no objective against doing so. From the perspective of
computation, however, it will prove useful to introduce two (pre-) estimation bounds for
the variance components. As d is concerned, we have to consider two limiting situations:
d = 0 and d → ∞. Accordingly, we obtain vzero and v∞, respectively. These two cases
depict a lower and an upper bound of estimates of v. It is easy to prove that the following
relations hold

v∞ ≤ vML ≤ vzero , (21)

1Speed of convergence: Suppose the sequence {ϑ}(s) converges to ϑ0 (s = 1, 2, . . . ). In numerical
analysis, the speed at which a convergent sequence approaches the limit is determined by the values c and
p in ∥ϑ(s+1) − ϑ0∥ ≤ c∥ϑ(s) − ϑ0∥p. For 0 < c ≤ 1 and p = 1, we shall say that the algorithm converges
linearly. Likewise, we call the convergence superlinear, if p > 1 (given that a c > 0 exists). Note that
convergence of order p means that the number of correct decimal places is roughly p times the number of
iterations (see e.g., Small and Wang, 2003, chap. 3.1).



T. Schoch 253

where vML denotes the ML estimator (see e.g., Demidenko, 2004, pp. 78–79). From
the perspective of numerical optimization, these bounds are extremely useful since they
determine the range of plausible values, which may guide the choice of initial values and
indicate potential run-away values. Subsequently we shall study robust estimators of vzero
and v∞.

3.2.1 Case I: Robust Estimate of vzero

In the first case, we have d = 0 which implies that Ωi(v, d) = v(Ii + dJi) reduces to
vzeroIi (i = 1, . . . , g). As a consequence, the estimator of β collapses to the Ordinary
Least Squares (OLS) estimator, β̂0, and the corresponding estimator v̂zero of vzero is an
estimator of the residual variance. A robust estimate of vzero, say, v̂Rzero, comes along with
e.g. least trimmed squares (LTS) regression (Rousseeuw, 1984) or an M - or S-estimator
of regression (see e.g., Maronna et al., 2006, chap. 5). This robust regression exercise not
only yields an estimate of vzero but also provides us with a starting value for β in order to
initialized the iterative algorithm (see below). From the perspective of computation, the
fast LTS method of Rousseeuw and Van Driessen (2006) offers a good trade-off between
robustness and computation time for sample sizes up to about 20,000 (this limit depends
heavily on the number of auxiliary variables). For larger data, a regression S-estimator is
considerably faster.

3.2.2 Case II: Robust estimate of v∞

In the second case, we consider letting limd→∞ V−1
i (v, d), and obtain limd→∞[Ini

−d/(1+
dni)Jni

] = [Ini
− (1/ni)Jni

], i = 1, . . . , g. Note that letting the random-effect variance,
d, approach infinity, corresponds to treating the ui, i = 1, . . . , g, in (1) as if they were
fixed effects. Indeed, we shall consider the fixed-effects model as an alternative to the
mixed linear model. Now, let the model matrix be partitioned as [1n,X], as well as the
corresponding parameter vector, β = (α,γT )T (cf. Assumption 2). The fixed-effects
model writes

yi = α1ni
+Xiγ + 1ni

ui + εi , i = 1, . . . , g , (22)

where the {ui; i = 1, . . . , g} are, in contrast to (2), unknown, but fixed parameters (not
realizations of the area-level random effects). Model (22) is traditionally called 1-way
classification model for the analysis of covariance (Searle, 1987, chap. 11.2).

If we put K = [1n|Z], where Z = diag(11, . . . ,1g), then model (22) can be written as
a general linear model, y = Xγ +Kd+ ε, where d = (α,uT )T with u = (u1, . . . , ug)

T ;
and ε = diag(ε1, . . . , εg). On rewriting the first equation of the normal equations,[

KTK KTX
XTK XTX

] [
d
γ

]
=

[
KTy
XTy

]
, (23)

of the general linear model, we obtain (denoting the generalized inverse by the superscript
“-”)

d = (α,uT )T = (KTK)−KT (y −Xγ) , (24)

which can be substituted into (23) to yield

XTP∗Xγ = XTP∗y , with P∗ = I−K(KTK)−KT , (25)
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where P∗ is both symmetric and idempotent (Searle, 1971, pp. 341–42). Note that, al-
though (KTK)− is not unique (since KTK has not full rank), it enters only in the form
K(KTK)−KT , which is invariant to whatever generalized inverse, G, is used. Thus the
non-full rank property does not itself lead to manifold solutions of γ. However, for rea-
sons of numerical stability, we will avoid computing a brute-force generalized inverse.
Instead we derive a very simple variant of G as follows. First, note that (24) is not in-
variant to the particular choice of G := (KTK)−. However, since any linear combination
of d, say, λTd, is estimable when λT = tTK for some t, we deliberately put one ele-
ment of d equal to zero, and cross out the corresponding element in the normal equations
(Searle, 1971, pp. 232–33). The obvious element to equate to zero in (24) is α. Thus, our
generalized inverse shall be given by

G =

[
0 0T

0 (ZTZ)−1

]
, where (ZTZ)−1 = diag(1/n1, . . . , 1/ng) . (26)

Substituting G into (24) yields d = (α,uT )T with α = 0 (by assumption) and u =
(ZTZ)−1ZT (y −Xβ). In addition, we replace P∗ in (25) by

P = I− Z(ZTZ)−1ZT , (27)

because it is computationally much simpler than P∗. Note that pre-multiplying a ma-
trix by P corresponds to centering the particular matrix by its column-wise arithmetic
means. In the present context, column-wise centering corresponds to centering by the
area-specific means. By symmetry and idempotency of P we shall use

γ̂ =
[
(PX)TPX

]−1
(PX)TPy (28)

instead of (25), where γ is based on the centered data, PX and Py.
It is evident from (28) that the influence of outliers in y on the estimates is unbounded.

Thus we obtain robust estimates of γ, say γ̂R, by means of M -estimation of regression,
which is defined by the estimating equations

(PX)Tψk

[
(Py −PXγ̂R)/Ŝ

]
= 0 , (29)

where Ŝ = 1.481 · median
(
|rij|; rij ̸= 0

)
is the (normalized) median absolute deviation

(MAD) of the non-null residuals of (29) about zero. The condition of taking only non-null
residuals prevents from underestimating the scale, which becomes an issue if the number
of auxiliary variables is relatively large (cf. Maronna et al., 2006, p. 100). By ψk(·) we
denote the Huber ψ-function indexed by the tuning constant k. Another approach could
be to estimate regression and scale simultaneously.

It is fruitful to note that Py can be expressed as y − Zµ, where µ is the g-vector
of area-specific means, (ȳ1, . . . , ȳi, . . . , ȳg)T with ȳi = (1/ni)

∑ni

j=1 yij , i = 1, . . . , g.
This representation indicates that the breakdown point of (29) may be much lower than
the one of a regular M -estimator of regression. This is a consequence of the centering
procedure: centering the within-area units in a particular area i by the mean may turn (ni−
1) ordinary observations into outliers (typically with a reversed sign) if the area contains
one single heavy outlier. From the perspective of breakdown point, a simple remedy is
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to center the data by the area-specific median instead of the mean. This corresponds to
replacing Py in (29) by ȳmed = y−Zη, where η is the g-vector of area-specific medians,
(medi=1(y1j), . . . ,medi=g(ygj))

T . This approach resembles the “median polish” strategy,
which has been proposed for the 2-way analysis of variance (Tukey, 1977).

Now, in order to obtain the robust variance pre-estimation bound, v∞, we have to solve
(29) with Py replaced by ȳmed and obtain v̂R∞ from

v̂R∞ = Ŝ2 . (30)

An alternative approach has been proposed by Birch and Myers (1982). They obtain
M -estimates for γ and {ui, i = 1, . . . , g}, solving the system of EE, respectively,

g∑
i=1

ni∑
j=1

ψk(rij/S)xij = 0 , (31)

ni∑
j=1

ψk(rij/S) = 0 , i = 1, . . . , g , (32)

where rij = yij−ui−xT
ijγ and S is the normalized MAD of the residuals. In essence, this

strategy consists of computing a relatively large number of M -estimates which is rather
time consuming and therefore not the optimal strategy in order to compute pre-estimation
bounds.

3.3 Algorithmic Details
Up to this point, we studied estimating equations and pre-estimation bounds. In this
subsection we focus on implementation and algorithmic issues.

3.3.1 Computational Issues

As concerned with computing speed, memory allocation, and floating-point arithmetic
considerations, we arranged all vector and matrix operations to make them rich in level-
1 procedures—i.e., procedures which operate on vectors of size n and involve O(n)
floating-point operations (cf. Golub and Loan, 1996).2 With respect to elementary opera-
tions, we rely on the procedures in BLAS (Blackford et al., 2002) and LAPACK (E. An-
derson et al., 2000). Further, we avoid computing any brute-force matrix inverse and use
the expressions

|Vi| = |Ii + d1i1
T
i | = 1 + dni and V−1

i = Ii −
d

1 + dni

1i1
T
i (33)

for determinant and inverse of the matrix Vi, i = 1, . . . , g, (see e.g., Searle et al., 1992,
p. 79). In addition, we obtain a closed-form expression of V−1/2

i as follows. Denote by
LiDiL

T
i the eigenvalue decomposition of the (ni×ni) matrix Vi, where Li is the (ni×ni)

matrix whose columns correspond to the eigenvectors of Vi; Di = diag(λ1, . . . , λni
) is

2Level-2 matrix procedures involve arrays of size mn and are of order O(mn).
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the (ni × ni) matrix of the eigenvalues λj (j = 1, . . . , ni). It is not difficult to see
that Vi has only two distinct eigenvalues: the first eigenvalue is λ1 = 1 + dni (with
multiplicity one) and the remaining (ni − 1) eigenvalues are one. Now, we define a real-
valued function f of the matrix Vi that corresponds to a function of a scalar as f(Vi) =
Lidiag(f(λ1), . . . , f(λni

))LT
i . Some straightforward computations with f(u) = u−1/2

give

V
−1/2
i =

1

n

(
1√

1 + dni

− 1

)
1i1

T
i + Ii . (34)

The formulas (33) and (34) simplify computation considerably.
Alternatively, one may define V

−1/2
i := Ai, where the upper triangular matrix Ai,

with positive diagonal elements, is obtained from the Cholesky decomposition, AT
i Ai =

V−1
i . Sinha and Rao (2009), on the other hand, use U−1/2

i [yi−Xiβ], instead of V−1/2
i [yi−

Xiβ], where Ui is a diagonal matrix with elements ujj , j = 1, . . . , ni, equal to the diag-
onal elements of the covariance matrix of yi (for all i = 1, . . . , g).

3.3.2 Initialization

The choice of starting values is crucial in terms of speed and numerical stability of the
algorithm. Extensive simulation showed that the method is best initialized by the choice

βT
0 ←

(
0, γ̂R

)
, v0 ← v̂R∞ , d0 ← 200 , (35)

where γ̂R and v̂R∞ are obtained from the pre-estimation–bound exercise in (29) and (30),
respectively. For d0 to be a reasonable starting value, it is sufficient to choose a relatively
large number (200 works for most applications).

3.3.3 Algorithm

Given the starting values β0, v0, and d0, [say, τ T
0 = (βT

0 , v0, d0)], we consider solving the
estimating equations iteratively. The core part of the algorithm is a series of nested loops.
Denote by i = 0, 1, 2, . . . , the running index of the main loop. Define the termination-
rule constants δ, δβ, and δv such that ϵ1/2 ≤ δ < 0.001, ϵ1/2 ≤ δβ < 0.001, and ϵ1/2 ≤
δv < 0.001, where ϵ = 2.2× 10−16 is the machine epsilon (in the 64-bit double precision
floating-point model; on most modern computers).

For i = 0, 1, 2, . . . , I Do

1. On the ith iteration, given βi, vi, and di, put β0
i ← βi and compute an update:

βj+1
i ← f(βj

i ; ·) while looping over j = 0, 1, 2, . . . , where f denotes (17). If
∥βj+1

i − βj
i∥p ≤ δβ, then stop and put βi+1 ← βj+1

i .

2. On the ith iteration, given βi+1, vi, and di, put v0i ← vi and compute an update:
vj+1
i ← f(vji ; ·) while looping over j = 0, 1, 2, . . . . Here, f denotes (19). If
|vj+1

i − vji | ≤ δv, then stop and put vi+1 ← vj+1
i .

3. At the outset of the ith iteration, we have βi+1, vi+1, and di. Solve di+1 ← f(di; ·)
by means of Brent’s algorithm, where f denotes (20).
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If ∥τ i+1 − τ i∥p+2 ≤ δ, then stop.
The sketch of the algorithm comprises only the most important elements. The nu-

merical tests whether an updated value behaves well (e.g., lies within the pre-estimation
bounds), have been omitted in the above display. The final estimates are given by:
β̂

R
← βi+1, [σ̂2

e ]
R = v̂R ← vi+1, and d̂R ← di+1. By means of identity (8), we ob-

tain [σ̂2
a]

R = [σ̂2
e ]

Rd̂R.

3.4 Robust Prediction
Up to this point we have dealt with (robustly) estimating the model parameters β and θ.
Now, we consider robustly predicting the random effects (and subsequently the small-area
means). We assume that Ni ≫ ni (∀i = 1, . . . , g) holds. On rewriting (6) using (8), the
area-level predicting equations are given by

µ̂i = x̄T
i•β̂ + ûi , i = 1, . . . , g , (36)

with
ûi = â1T

i Ωi(v̂, â)
−1
[
yi −Xiβ̂

]
, (37)

where Ωi(v̂, â)
−1 ≡ (1/v̂)Vi(d̂)

−1. If Ni ≫ ni does not hold we may proceed as in
Section 2.1. From the mathematical display, it is apparent that replacing β̂, v̂, and â by
robust estimates is not sufficient in order to robustly predict µi. As Sinha and Rao (2009)
indicate ûi has to be replaced by a robustly predicted random effect, ûRi , as well. They
therefore propose to solve Fellner’s robust mixed-model equation (Fellner, 1986)

1T
i

1√
v
ψk

(
1√
v
(yi −Xiβ − 1iû

R
i )

)
− 1√

a
ψk

(
1√
a
ûRi

)
= 0 , (38)

for ui. In order to solve (38), Sinha and Rao (2009) use a Newton-Raphson algorithm
using another first-order Taylor series expansion of (38) w.r.t. ui. Consequently, com-
putation is very involved. In particular, we may encounter all the numerical difficulties
associated with the NR method (as discussed above) here as well.

However, one can obtain robust predictions far more easily (cf. Copt and Victoria-
Feser, 2009). If we put ψc(ui) =

(
ψc(ui1), . . . , ψc(uini

)
)T , where ψc(·) is the Huber

ψ-function indexed by the robustness tuning constant c, then we may write

ûRi = κ
âR√
v̂R

1T
i V

−1/2
i (d̂R)ψc

[
1√
v̂R

V
−1/2
i (d̂R)[yi −Xiβ̂]

]
, (39)

where κ = [−2cϕ(c)+2Φ(c)−1+2c2(1−Φ(c))]−1/2, with ϕ and Φ the pdf and cdf of the
standard normal distribution, respectively. Note that κ is kind of a consistency correction
term which has been chosen in order ûRi to behave similarly to ũi at the core model. In
essence, we follow Heritier et al. (2009) and impose the (implicit) moment conditions that
E[ûRi ] = 0 and var[ûRi ] = var[ũi] (Heritier et al., 2009, pp. 113–114). Thus, the robust
predictor of the area mean, µ̂R

i (i = 1, . . . , g), – referred to as robust EBLUP (REBLUP)
of µi – is given by µ̂R

i = x̄T
i•β

R + ûRi .
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Some issues of the robust prediction method are noteworthy to comment on. First,
note that pre-multiplying the area-specific vector of residuals, ri = yi − Xiβ̂, in (39)
by V

−1/2
i from (34) will transmit the effect of even one single outlying residual, rij =

yij−xT
ijβ̂, say, to the vector of all other within-area residuals. That is, on pre-multiplying

ri, the first term of (34) yields the mean of ri (times a constant), which is non-robust
per se. Thus, from the perspective of robustness (and with regard to breakdown point
considerations), the term V

−1/2
i ri with ri = yi −Xiβ̂ in (39) should be replaced by(

1√
1 + dni

− 1

)
1ir̄

med
i + ri , (40)

r̄med
i denoting the median of ri. Alternatively, and by Assumption 4 it is sufficient to use
ȳmed
i − (1/ni)1

T
i Xiβ̂, where ȳmed

i is the median of yi, instead of r̄med
i in (40).

Second, ψc(·) in (39) can be replaced by any other non-redescending, odd, bounded
function. The restriction on non-redescending functions is crucial since redescending ψ-
functions lead, for sufficiently large residuals in (39), to realizations of ui equal to zero
(i.e., mimicking a synthetic estimator) which is not meaningful under model (2). Third,
the choice of c can, in principle, be different from the choice of k in the BIEEs.

4 Mean Squared Error Estimation
Estimation of mean squared prediction error (MSPE) is a very challenging problem.
Given the complex nature of the REBLUP estimators and the lack of knowledge on the
underlying distribution of the ui and eij , Sinha and Rao (2009) noted that is not possible
to adopt the existing methods used for MSPE estimation. We follow the proposal of Sinha
and Rao (2009) and adopt a parametric bootstrap (see Lahiri, 2003 and Hall and Maiti,
2006 for more details on bootstrap estimates in SAE) based on the robust quantities β̂

R

and θ̂
R

to estimate
MSPE(µ̂R

i ) = E{µ̂R
i − µi}2 . (41)

The method works as follows.

1. For the given β̂
R

and θ̂
R

= (v̂R, âR)T , generate area-specific random effects u∗i
and random errors e∗ij from N (0, âR) and N (0, v̂R), respectively. Then we create a
bootstrap sample from the model

y∗ij = Xiβ̂
R
+ u∗i + e∗ij , j = 1, . . . , ni ; i = 1, . . . , g , (42)

2. Generate b = 1, . . . , B bootstrap samples {y∗[1],y∗[2], . . . ,y∗[B]} from the bootstrap
population model (42). For each bootstrap sample y∗[b] (b = 1, . . . , B), compute
the robust bootstrap estimates β̂

R[b]
, θ̂

R[b]
, and ûR[b] and robustly predict/estimate

µ̂
R[b]
i = x̄T

i•β̂
R[b]

+ û
R[b]
i .

3. Compute a bootstrap estimate of MSPE{ûRi } as

MSPEB{ûRi )} =
1

B

B∑
b=1

(
µ̂R
i (β̂

[R[b]
, θ̂

R[b]
, û

R[b]
i )− µi(β̂

R
, θ̂

R
, û

∗[b]
i )

)2

. (43)
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This method works remarkably good with respect to computing time and in terms of
providing a reasonably precise estimate of the uncertainty associated with predicting the
area-level means. However, the method tends to slightly underestimate the true MSPE.
The underestimation results mainly because the uncertainty of estimating β has not been
taken into account.

5 Simulation
We implemented a small model-based simulation study to investigate the performance
of the proposed method.The proposed algorithm is implemented in the R-package rsae

(Schoch, 2011c); see R Development Core Team (2011) for more details on the R language
and environment for statistical computing.

The data were generated from model

yij = (1, xij)
T (1, 1) + ui + eij , j = 1, . . . , n ; i = 1, . . . , g ,

where xij ∼ N (0, 1). Each Monte Carlo sample comprises g = 20 areas and n = 5
within-area units (overall, N = 80 observations; balanced data). In line with Stahel
and Welsh (1997), we allow for contamination (by means of a normal mixture, (1 − ε) ·
N (0, 1) + ε · N (0, γ), where γ can be chosen) in either or both of the random effect
distributions, producing four combinations:

(0,0) no contamination; eij ∼ N (0, 1) and ui ∼ N (0, 1),

(e,0) eij ∼ (1− ε) · N (0, 1) + ε · N (0, 41) and ui ∼ N (0, 1),

(0,u) eij ∼ N (0, 1) and ui ∼ (1− ε) · N (0, 1) + ε · N (0, 41),

(e,u) eij ∼ (1− ε) · N (0, 1) + ε · N (0, 41) and ui ∼ (1− ε) · N (0, 1) + ε · N (0, 41).

The simulation study in this paper serves primarily as a proof of concept. We there-
fore provide only a small number of contamination scenarios. The relative amount of
contamination is ε = 0.05 for all simulations. Each scenario is evaluated by 1000
Monte Carlo (MC) simulation trials. The simulated MC distribution of an estimator of
ϑ, say ϑ̂, is summarized by the average bias, B(ϑ̂), and mean square error, MSE(ϑ̂),
and the robust analogues based on medians, respectively, rB(ϑ̂) = med[ϑ̂ − ϑ∗] and
rMSE(ϑ̂) = med[|ϑ̂ − ϑ∗|], where ϑ∗ denotes the true value. For ease of simplicity (and
by equivariance considerations), it is sufficient to set the true parameters equal to one, i.e.,
β∗ = (1, 1)T , [σ2

e ]
∗ = 1, and [σ2

a]
∗ = 1.

We report only the simulation results for the variance components σ2
e and σ2

a (Table
1 and 2). For the scenario of uncontamined data, (0, 0), we also report the results of the
maximum likelihood method of the “lme” function (i.e., gold-standard function) in the
R-package “nlme” (Pinheiro, Bates, DebRoy, Sarkar, and R Core Team, 2009; denoted
by “lme(ml)” in Tables 1 and 2). Note that the M -estimator (denoted by “huberm” in the
tables) with robustness tuning constant k = 2000 mimics the ML estimator.

The findings of the small simulation exercise can be summarized as follows.
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• The “huberm” method converged in all 1000 Monte Carlo trials for each simulation
configuration (i.e., contamination scenario and choice of k). This is in sharp con-
trast to the results reported by Richardson (1995) and Chaubey and Venkateswarlu
(2002) (among others). The proposed algorithm may, on the other hand, fail to
converge when the amount of contamination, ε, is larger than the breakdown point
(which can be rather low in the case of unbalanced data; see Schoch (2011b)).

• The results of the “huberm” method mimicking the ML estimator are equal (up to
the 6th or 7th decimal place) with those of the gold-standard method “lme”.

• In the presence of contamination, the M -estimator has a smaller bias than the cor-
responding ML estimator. Even more important, the MSE is considerably smaller.
In contrast, the loss of efficiency of the M -estimator in the absence of contamina-
tion is almost negligible. These findings remain valid if one considers the robust
criteria (rB and rMSE in Table 2). In the presence of contamination, rMSE tends to
be smaller than MSE which indicates that the MC distribution is skewed.

• Contamination of the model error, eij , affects the robust estimates of σ2
a very little,

since the contamination affects the diagonal elements of the variance of yij but not
the off-diagonal elements. Contamination of the area-specific random effects, ui,
affects both diagonal and off-diagonal elements of the variance (see also Welsh and
Richardson, 1997, p. 348). When both components are contaminated, the effects on
the estimates are the combination of the effects of contaminating the components
one at a time (see also Stahel and Welsh, 1997, p. 315).

• In the simulation exercise, we had focused on two choices of the tuning constant k.
It goes without saying that one may obtain better estimates (i.e., better in terms of
a reasonable risk/loss function) trying different choices. Our experience supports
the finding of Stahel and Welsh (1997) that fine tuning pays more in estimating
these models than it does with simpler models (p. 315). Nonetheless, the gains in
efficiency are large.

• Computing the robust estimates based on data consisting of g = 500 areas, each of
which has n = 20 units (i.e., 500× 20 = 10000 observations), takes on average 1.3
seconds on an ordinary desktop computer (computing on a single core of an x86 64
processor, 2.83 GHz, 4 GB RAM; R v.2.13.1; openSUSE Linux 11.4).

6 Conclusion
In this paper, we developed a robust method for the basic unit-level model which is based
on M -estimators in mixed-linear models (Welsh and Richardson, 1997) and therefore
conceptionally equivalent, but slightly different, to the proposal of Sinha and Rao (2009).
In contrast to Newton–Raphson- or Fisher-scoring-type algorithms, the proposed algo-
rithm is numerically stable and fast (also for very large datasets). Notably, the estimates of
the variance components are non-negative in contrast to those from e.g., the NR method.
In sharp contrast to other algorithms (cf. Chaubey and Venkateswarlu, 2002; Jiang et al.,
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Table 1: Bias and MSE estimates of the variance components for the four contaminations
scenarios

(e, a) method k B(σ̂2
a) MSE(σ̂2

a) B(σ̂2
e) MSE(σ̂2

e)

(0, 0) lme(ml) – −0.0801 0.1437 −0.0018 0.0348
huberm 2000 −0.0801 0.1437 −0.0018 0.0348
huberm 1.4 −0.0463 0.1655 −0.0235 0.0453
huberm 1.2 −0.0701 0.1793 −0.0235 0.0462

(0.05, 0) huberm 2000 −0.1027 0.2834 1.9474 2.0677
huberm 1.4 −0.0764 0.2301 0.2587 0.0700
huberm 1.2 −0.0450 0.2579 0.2164 0.0834

(0, 0.05) huberm 2000 1.7364 7.1491 −0.0097 0.0352
huberm 1.4 0.6322 0.6821 −0.0321 0.0428
huberm 1.2 0.4996 0.5373 −0.0204 0.0545

(0.05, 0.05) huberm 2000 1.8484 9.7617 2.0203 2.1784
huberm 1.4 0.7560 1.4080 0.2628 0.0734
huberm 1.2 0.6732 1.0512 0.2521 0.0838

Notes: each criterion is computed based on 1000 Monte Carlo replications; (e, a) de-
notes the contamination scheme, where a, e ∈ (0, 0.5]; k is the robustness tuning con-
stant of the Huber-type M -estimator; R packages: nlme (v. 3.1-96) and rsae (v. 0.1-3).

Table 2: Robust bias and robust MSE estimates of the variance components for the four
contamination scenarios

(e, a) method k B(σ̂2
a) MSE(σ̂2

a) B(σ̂2
e) MSE(σ̂2

e)

(0, 0) lme(ml) – −0.1064 0.2707 −0.0134 0.1279
huberm 2000 −0.1064 0.2707 −0.0134 0.1279
huberm 1.4 −0.0920 0.2824 −0.0329 0.1490
huberm 1.2 −0.1460 0.3064 −0.0318 0.1509

(0.05, 0) huberm 2000 −0.1675 0.3790 1.6308 1.6308
huberm 1.4 −0.1579 0.3401 0.2525 0.2630
huberm 1.2 −0.1330 0.3427 0.1902 0.2230

(0, 0.05) huberm 2000 0.8582 0.8582 −0.0177 0.1277
huberm 1.4 0.4690 0.5333 −0.0526 0.1448
huberm 1.2 0.3645 0.4583 −0.0365 0.1632

(0.05, 0.05) huberm 2000 0.7833 0.8540 1.6719 1.6719
huberm 1.4 0.5175 0.5856 0.2540 0.2642
huberm 1.2 0.4392 0.5256 0.2300 0.2451

Notes: each criterion is computed based on 1000 Monte Carlo replications; (e, a) de-
notes the contamination scheme, where a, e ∈ (0, 0.5]; k is the robustness tuning con-
stant of the Huber-type M -estimator; R packages: nlme (v. 3.1-96) and rsae (v. 0.1-3).

2007) the Monte Carlo simulation study showed that the method converges always (given
that the amount of contamination is lower than the breakdown point). Further, we derived
a much simpler (thus considerably faster) method for robustly predicting the small-area
means than Sinha and Rao (2009) did. All the methods of this paper are implemented in
R (R Development Core Team, 2011), R-package: rsae, see Schoch (2011c).
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