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Abstract: This paper reviews the theory and applications related to fraction-
ally integrated generalized autoregressive conditional heteroscedastic (FIGA-
RCH) models, mainly for describing the observed persistence in the volatility
of a time series. The long memory nature of FIGARCH models allows to be a
better candidate than other conditional heteroscedastic models for modeling
volatility in exchange rates, option prices, stock market returns and inflation
rates. We discuss some of the important properties of FIGARCH models in
this review. We also compare the FIGARCH with the autoregressive frac-
tionally integrated moving average (ARFIMA) model. Problems related to
parameter estimation and forecasting using a FIGARCH model are presented.
The application of a FIGARCH model to exchange rate data is discussed. We
briefly introduce some other models, that are closely related to FIGARCH
models. The paper ends with some concluding remarks and future directions
of research.

Zusammenfassung: Dieser Aufsatz bespricht die Theorie und Anwendun-
gen im Zusammenhang mit Fractionally Integrated Generalized Autoregres-
sive Conditional Heteroscedastic (FIGARCH) Modellen, vor allem für die
Beschreibung der beobachteten Persistenz in der Volatilität einer Zeitreihe.
Die Long Memory Natur von FIGARCH Modellen ermöglicht es, ein besserer
Kandidat als andere bedingte heteroskedastische Modelle zur Modellierung
der Volatilität bei Wechselkursen, Optionspreisen, Aktienrenditen und In-
flationsraten zu sein. Wir diskutieren einige der wichtigsten Eigenschaften
von FIGARCH Modellen in diesem Review. Wir vergleichen auch das FI-
GARCH Modell mit dem Autoregressive Fractionally Integrated Moving Av-
erage (ARFIMA) Modell. Probleme im Zusammenhang mit der Parame-
terschätzung und der Prognose mit FIGARCH Modellen werden vorgestellt.
Die Anwendung eines FIGARCH Modells auf Wechselkursdaten wird disku-
tiert. Kurz werden einige andere Modelle vorgestellt, die eng mit FIGARCH
Modellen verwandt sind. Der Beitrag endet mit abschließenden Bemerkun-
gen und zukünftige Ausrichtung der Forschung.

Keywords: ARCH, ARFIMA, FIGARCH, GARCH, Long Memory Models,
Volatility Models.

1 Introduction
Volatility is a term that has been extensively used in financial applications. It refers to
the conditional standard deviation of the underlying asset return. Volatility modelling
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provides a simple approach of calculating value-at-risk of a financial position in risk
management. Furthermore, modelling the volatility of a time series can improve the
efficiency in parameter estimation and the accuracy of forecast. In time series litera-
ture, models which attempt to explain the changes in conditional variance are generally
known as conditional heteroscedastic models. Some of the volatility models that have
been extensively used in the literature are Autoregressive Conditional heteroscedastic
(ARCH) model of Engle (1982), Generalized Autoregressive Conditional Heteroscedas-
tic (GARCH) model of Bollerslev (1986), Integrated GARCH (IGARCH) model of Engle
and Bollerslev (1986) and Fractionally Integrated GARCH (FIGARCH) model of Baillie,
Bollerslev, and Mikkelsen (1996).

Under the ARCH framework, it is generally assumed that large shocks tend to follow
large shocks and similarly, the small shocks tend to follow small shocks, a phenomena
known as volatility clustering. Although the ARCH model is simple, it often requires
many parameters to adequately describe the volatility process of an asset return. There-
fore, some alternative models were introduced. Bollerslev (1986) proposed a very useful
extension of ARCH model, known as GARCH. The GARCH model is simply an infinite
order ARCH with exponentially decaying weights for distant lags.

If the AR polynomial of the GARCH representation has a unit root, then we have an
Integrated GARCH model (IGARCH), which was first introduced by Engle and Boller-
slev (1986). A key feature of IGARCH model is that the impact of the past squared
shock is persistent and the pricing of risky securities, including long-term options and
future contracts, may show extreme dependence on the initial conditions. Several stud-
ies report the presence of apparent long-memory in the autocorrelations of squared or
absolute returns of various financial assets. Motivated by these observations, Baillie et
al. (1996) introduced the Fractionally Integrated Generalized Autoregressive Conditional
Heteroscedastic (FIGARCH) process.

The primary purpose of introducing FIGARCH model was to develop a more flexible
class of processes for the conditional variance, that are capable of explaining and repre-
senting the observed temporal dependencies in financial market volatility. In particular,
the FIGARCH model allows only a slow hyperbolic rate of decay for the lagged squared
or absolute innovations in the conditional variance function. This model can accommo-
date the time dependence of the variance and a leptokurtic unconditional distribution for
the returns with a long memory behaviour for the conditional variances.

This paper has been framed in such a way that, in Section 2, we review the volatility
models that led to FIGARCH. We also introduce here the FIGARCH model and dis-
cuss some of its properties. In Section 3, parameter estimation procedures such as MLE,
QMLE for the FIGARCH model will be explained. Also in this section we briefly dis-
cuss forecasting with a FIGARCH model. Applications of FIGARCH model constitute
Section 4. In Section 5, we consider models which are very closely related to FIGARCH,
such as, adaptive-FIGARCH (A-FIGARCH), hyperbolic GARCH (HYGARCH), smooth
transition FIGARCH (ST-FIFARCH) and Asymmetric FIGARCH and explain how they
cover up some of the limitations of FIGARCH. The paper ends with some concluding
remarks and future research directions in Section 6.
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2 Conditional Heteroscedastic Models and FIGARCH

2.1 Conditional Heteroscedastic Models

Let ϵt denote a real-valued discrete-time stochastic process, and ψt be the information set
of all information up to time t, i.e., ψt = σ{. . . , ϵt−2, ϵt−1, ϵt}. The process {ϵt} is said to
be an ARCH(q), whenever

E(ϵt|ψt−1) = 0 and var(ϵt|ψt−1) = ht , (1)

with

ht = α0 +

q∑
i=1

αiϵ
2
t−i ,

where αi ≥ 0, i = 1, . . . , q. The conditional variance can be generally expressed as

ht = h(ϵt−1, ϵt−2, . . . , ϵt−q,α) ,

where h(·) is a nonnegative function of its arguments and α = (α0, α1, . . . , αq)
′ is a

vector of unknown parameters. The expression (1) is sometimes represented as

ϵt = h
1/2
t zt (2)

with E(zt) = 0, var(zt) = 1, where the zt’s are uncorrelated. It may be noted that the {ϵt}
process is serially uncorrelated with mean zero and the conditional variance ht, which is
changing over time.

Lots of research has been done to address various problems related to ARCH models
after its introduction by Engle (1982). Xekalaki and Degiannakis (2010) provide some of
the recent developments related to ARCH models.

In empirical applications of the ARCH model, a relatively long lag in the conditional
variance equation is often called for and to avoid problems with negative variance pa-
rameter estimates, a fixed lag structure is typically imposed on. Because of these reasons,
there is a practical interest to extend the ARCH class of models to permit for both a longer
memory and a more flexible lag structure.

The GARCH(p, q) process introduced by Bollerslev (1986) and Taylor (1986) (inde-
pendently of each other) is given by (1) along with the volatility equation

ht = α0 +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjht−j (3)

= α0 + α(L)ϵ2t + β(L)ht ,

where p > 0, q > 0, α0 > 0, αi ≥ 0, i = 1, . . . , q, βj ≥ 0, j = 1, . . . , p and α(L)
and β(L) are lag operators such that α(L) = α1L + α2L

2 + · · · + αqL
q and β(L) =

β1L + β2L
2 + · · · + βpL

p. For p = 0, the process reduces to an ARCH(q) and for
p = q = 0, ϵt is simply a white noise process.
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The GARCH(p, q) process as defined in (3) is wide stationary with E(ϵt) = 0 and
var(ϵt) = α0(1 − α(1) − β(1))−1. An equivalent ARMA type representation of the
GARCH(p, q) process is given by

ϵ2t = α0 +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjϵ
2
t−j −

p∑
j=1

βjνt−j + νt , (4)

where νt = ϵ2t − ht = (z2t − 1)ht and the zt’s are uncorrelated with E(zt) = 0 and
var(zt) = 1.

Huge amount of empirical and theoretical research work has been already done for
GARCH and related models. We refer to part 1 of Andersen, Davis, Kreis, and Mikosch
(2009) and Francq and Zakoian (2010), which deal with almost all developments related
to GARCH models. Rohan (2009) had given an excellent review on asymmetric GARCH
models. Also see Rapach and Strauss (2008), Smith (2008), Rohan and Ramanathan
(2012) and C. S. Li and Xiao (2011) for some of the recent developments on GARCH
models with structural breaks.

Engle and Bollerslev (1986) considered a particular class of GARCH models known
as integrated GARCH (IGARCH) models whose unconditional variance does not exist.

This occurs when
q∑

i=1

αi +
p∑

j=1

βj = 1 in a GARCH(p, q) model. Similar to ARIMA

models, a key feature of IGARCH models is that the impact of past squared shocks νt−i =
ϵ2t−i − ht−i for i > 0 on ϵ2t is persistent. An IGARCH(1, 1) model can be written as:

ϵt = zth
1/2
t , ht = α0 + β1ht−1 + (1− β1)ϵ

2
t−1 ,

where {zt} is defined as before and 0 < β1 < 1. However, it is interesting to note that
the IGARCH model can be strongly stationary even though it is not weakly stationary.
The IGARCH model implies infinite persistence of the conditional variance to a shock in
squared returns. On the other hand in most of the empirical situations the volatility process
is found to be mean reverting. Thus the IGARCH model seems to be too restrictive as it
implies infinite persistence of a volatility shock.

2.2 FIGARCH Process
From (4) we see that a GARCH(p, q) process may also be expressed as an ARMA(m, p)
process in ϵ2t , by writing

[1− α(L)− β(L)]ϵ2t = α0 + [1− β(L)]νt ,

where m = max{p, q} and νt = ϵ2t − ht. The {νt} process can be interpreted as the
“innovations” for the conditional variance, as it is a zero-mean martingale. Therefore, an
integrated GARCH(p, q) process can be written as

[1− α(L)− β(L)](1− L)ϵ2t = α0 + [1− β(L)]νt . (5)

The fractionally integrated GARCH or FIGARCH class of models is obtained by replac-
ing the first difference operator (1 − L) in (5) with the fractional differencing operator
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(1 − L)d, where d is a fraction 0 < d < 1. Thus, the FIGARCH class of models can be
obtained by considering

[1− α(L)− β(L)](1− L)dϵ2t = α0 + [1− β(L)]νt .

Such an approach can develop a more flexible class of processes for the conditional vari-
ance that are capable of explaining and representing the observed temporal dependencies
of the financial market volatility in a much better way than other types of GARCH models
(Davidson, 2004).

It may be noted that the fractional differencing operator (1 − L)d can be written in
terms of hypergeometric function,

(1− L)d = F (−d, 1, 1;L) =
∞∑
k=0

Γ(k − d)Γ(k + 1)−1Γ(−d)−1Lk . (6)

The ARFIMA(p, d, q) class of models for the discrete time real-valued process {yt}
introduced by Granger and Joyeux (1980); Granger (1980, 1981) and Hosking (1981) is
defined by

a(L)(1− L)dyt = b(L)zt , (7)

where a(L) and b(L) are polynomials in the lag operator of orders p and q respectively,
and {zt} is a mean-zero serially uncorrelated process. For the ARFIMA models, the
fractional parameter d lies between −1/2 and 1/2, (Hosking, 1981). The ARFIMA model
is nothing but the fractionally integrated ARMA for the mean process. Analogous to the
ARFIMA(p, d, q) process defined in (7) for the mean, the FIGARCH(p, d, q) process for
{ϵ2t} can be defined as

ϕ(L)(1− L)dϵ2t = α0 + [1− β(L)]νt , (8)

where 0 < d < 1, and all the roots of ϕ(L) and [1 − β(L)] lie outside the unit circle. In
the case of ARFIMA model, the long memory operator is applied to unconditional mean
µ of yt which is constant. But this is not true in the case of FIGARCH model, where it is
not applied to α0, but on squared errors.

Bordignon, Caporin, and Lisi (2004) have introduced a FIGARCH model with season-
lity, which allows for both periodic patterns and long memory behaviour in the conditional
variance. It can also merge these two aspects allowing the model to be both periodic and
having long memory components. Such a model is given by

ht = α0 + α(L)ϵ2t + β(L)ht + [1− (1− LS)d]ϵ2t ,

the first three terms in the conditional variance reproduce the general GARCH model, the
fourth term introduces a long memory component which operates at zero and seasonal
frequencies. The parameter S represents the length of the cycle, while d indicates the
degree of memory.

Rearranging the terms in (8), an alternative representation for the FIGARCH(p, d, q)
model may be obtained as

[1− β(L)]ht = α0 + [1− β(L)− ϕ(L)(1− L)d]ϵ2t . (9)
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From (9), the conditional variance ht of yt is given by

ht = α0[1− β(1)]−1 +
{
1− [1− β(L)]−1ϕ(L)(1− L)d

}
ϵ2t

= α0[1− β(1)]−1 + λ(L)ϵ2t , (10)

where λ(L) = λ1L + λ2L
2 + . . . . Of course, for the FIGARCH(p, d, q), for (8) to be

well-defined, the conditional variance in the ARCH(∞) representation in (10) must be
non-negative, i.e., λk ≥ 0 for k = 1, 2, . . . . Some sufficient conditions are available in
the literature. In the next subsection, we discuss them in detail.

2.2.1 Nonnegativity of Conditional Variance

A sufficient condition for the nonnegativity of the conditional variance of the FIGARCH
(1, d, 1) model is available from the literature. This condition was suggested by Baillie
et al. (1996) and by Bollerslev and Mikkelsen (1996) using the nonnegativity of the λk
coefficients of the FIGARCH(1, d, 1) model. In FIGARCH(1, d, 1),

ht = α0(1− β(1))−1 + [1− (1− β1L)
−1(1− ϕ1L)(1− L)d]ϵ2t ,

where

λ(L) = λ1L+ λ22L+ · · · = 1− [(1− β1L)
−1(1− ϕ1L)(1− L)d] .

Therefore, equating the coefficients

λ1 = ϕ1 − β1 + d

λ2 = (d− β1)(β1 − ϕ1) +
d(1− d)

2

λ3 = β1

[
dβ1 − dϕ1 − β2

1 + β1ϕ1 +
d(1− d)

2

]
+ d

1− d

2

(
2− d

3
− ϕ1

)
...

λk = β1λk−1 +

(
k − 1− d

k
− ϕ1

)
δd,k−1 , k = 2, 3, . . . ,

where δd,k = δd,k−1(k − 1 − d)k−1 refer to the coefficients in the series expansion of
(1− L)d for k = 2, 3, . . . . That is,

δd(L) =
∞∑
k=1

δd,kL
k ,

with δd,0 = 1. Using the non-negativity of λk’s, it is possible to derive inequalities which
are sufficient for all conditional variances ht to be non-negative:

β1 − d ≤ ϕ1 ≤
2− d

3
and d

(
ϕ1 −

1− d

2

)
≤ β1(d− β1 + ϕ1) .

Restrictions for lower order models can be derived similarly, while for higher order mod-
els such restrictions for the parameters cannot be derived easily (Caporin, 2003).
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When we estimate the parameters of FIGARCH model, occasionally it fails to satisfy
the Bollerslev and Mikkelsen (1996) condition that all parameters should be positive to
ensure the nonnegativity of conditional variance. This would lead any researcher to re-
ject the model according to these conditions. For this reason, Conrad and Haag (2006)
introduced another set of conditions that guarantees the nonnegativity of the conditional
variance in all situations.

Theorem 1: (Conrad and Haag, 2006). Let the coefficients gj and fi be the functions of
the fractional differencing parameter d such that gj = fj ·gj−1 =

∏j
i=1 fi with fj = j−1−d

j

for j = 1, 2, . . . and g0 = 1. Then the conditions are
ψ1 = d+ ϕ1 − β1 and ψi = β1ψi−1 + (fi − ϕ1)(−gi−1), i ≥ 2, or alternatively,
ψi = β2

1ψi−2 + [β1(fi−1ϕ1) + (fi − ϕ1)fi−1](−gi−2) for all i ≥ 3.

2.2.2 Impulse Response Function of FIGARCH

When the conditional variance is parametrized as a linear function of the past squared
innovations, the persistence of the conditional variance is simply characterized in terms
of the impulse response coefficients defined by

γk =
∂E(ϵ2t+k|ψt)

∂νt
−
∂E(ϵ2t+k−1|ψt)

∂νt

=
∂ht+k

∂νt
− ∂ht+k−1

∂νt
,

where νt = ϵ2t − ht. From the ARCH(∞) representation of FIGARCH given in (10),

∂ht+k

∂νt
= λ(L)

∂ϵ2t+k

∂νt
= λ(L) ∂

∂νt
{α0ϕ(L)

−1(1− L)−d + ϕ(L)−1(1− L)−d[1− β(L)]νt+k}
= λ(L)ϕ(L)−1(1− L)−d(−βk)
= −βk{1− [1− β(L)]−1ϕ(L)(1− L)d}ϕ(L)−1(1− L)−d

= −βkϕ(L)−1(1− L)−d + [1− β(L)]−1 .

Similarly,
∂ht+k−1

∂νt
= −βk−1ϕ(L)

−1(1− L)−d + [1− β(L)]−1 .

Therefore,
γk = (βk−1 − βk)ϕ(L)

−1(1− L)−d .

Generally for conditional variance models, the γi’s will depend on the time t information
set. However, for the FIGARCH class of models studied here, the impulse response
coefficients are independent of t, which indicate the persistence of conditional variance
(Baillie et al., 1996).

Analogous to the conventional impulse response analysis for the mean, the long-run
impact of past shocks for the volatility process may be assessed in terms of the limit of
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the cumulative impulse response weights; i.e.,

γ(1) = F (d− 1, 1, 1; 1)ϕ(1)−1[1− β(1)]

= γ0 + γ1 + . . .

= lim
k→∞

k∑
i=0

γi ,

where F is the hypergeometric function defined in (6). Since, F (d − 1, 1, 1, L) = (1 −
L)1−d, for 0 ≤ d < 1, we have F (d − 1, 1, 1; 1) = 0, so that for the covariance sta-
tionary GARCH(p, q) model and the FIGARCH(p, d, q) model with 0 < d < 1, shocks
to the conditional variance will ultimately die out. For d = 1, F (d − 1, 1, 1; 1) = 1,
the cumulative impulse response weights will converge to the nonzero constant γ(1) =
ϕ(1)−1[1−β(1)]. Thus, from a forecasting perspective, shocks to the conditional variance
of the IGARCH model persist indefinitely. For d > 1, F (d− 1, 1, 1; 1) = ∞, resulting in
an unrealistic explosive conditional variance process and γ(1) being undefined.

By analogy to the properties for the ARFIMA(0, d, 1) model, it is possible to find
the cumulative impulse response coefficients in ARCH(∞) representation (10) for the
FIGARCH(1, d, 0) model. The coefficients λk may be derived from

λ(L) = 1− (1− β1L)
−1(1− L)d .

This can be obtained as follows. Let {yt} be a stationary invertible ARFIMA(1, d, 0)
process

(1− ϕL)(1− L)dyt = ut .

Then the infinite autoregressive representation of {yt} is

∞∑
k=0

πkyt−k = ut ,

where the πk’s can be derived as follows:
∞∑
k=0

πkyt−k = (1− ϕL)(1− L)dyt

= (1− ϕL)(1− dL− 1/2d(1− d)L2 − 1/6d(1− d)(2− d)L3 − . . . )yt .

Expanding both sides and equating the coefficients of Lk, we get

πk =
(k − d− 2)!

(k − 1)!(−d− 1)!
{1− ϕ− (1 + d)/k} ∼ (1− ϕ)

(−d− 1)!
k−d−1 .

Now consider {yt} to be a stationary invertible ARFIMA(0, d, 1). Then the infinite
moving average representation of this model equals to the infinite autoregressive repre-
sentation of ARFIMA(1,−d, 0). Therefore, for ARFIMA(0, d, 1) we have

πk =
(k + d− 2)!

(k − 1)!(d− 1)!
{1− ϕ− (1− d)/k} ∼ (1− ϕ)

(d− 1)!
kd−1 .
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The FIGARCH(1, d, 0) is

(1− L)dϵ2t = α0 + (1− β1L)νt . (11)

In view of the analogy of (11) to ARFIMA(0, d, 1), we have

λk =
(k + d− 2)!

(k − 1)!(d− 1)!
{1− β1 − (1− d)/k} ,

which may be written as

λk = Γ(k + d− 1)Γ(d)−1Γ(k)−1{1− β1 − (1− d)k−1}

for k > 1, and λ0 = 1. Furthermore, it follows by an application of Stirling’s formula, for
higher lags k,

λk ≈ [(1− β1)Γ(d)
−1]kd−1.

Davidson (2004) had given some insight on the memory properties of the FIGARCH.
According to Davidson (2004), the degree of persistence of the FIGARCH model operates
in the opposite direction as that of ARFIMA, as the d parameter gets closer to zero, the
memory of the process increases. This is due to the inverse relationship between the
integration coefficient and the conditional variance. The memory parameter acts directly
on the squared errors, not on the ht, this particular behaviour may also influence the
stationarity properties of the process (Davidson, 2004). These observations are strictly
related to the impulse response analysis on the effects of a shock on a system driven by
a FIGARCH process. In such a system, a shock νt at time t, should be interpreted as
the difference between the squared mean-residuals ϵ2t at time t and the one-step-ahead
forecast of the variance ht, made at time t−1. That is, νt = ϵ2t −ht. This shock is exactly
the innovation in the ARMA representation of the FIGARCH process

ϵ2t = α0 + [1− β(L)][(1− L)dϕ(L)]−1νt .

The shock may be also interpreted as an unexpected volatility variation or as the forecast
error of the variance. It may be remembered that the squared residuals are proxy for the
variance and that the time t variance depends on time t − 1 information set and may be
viewed as a one-step-ahead forecast.

2.2.3 Stationarity of FIGARCH

Baillie et al. (1996) used the results of Nelson (1990) and Bougerol and Picard (1992) to
claim the strict stationarity and ergodicity of the FIGARCH(1, d, 0) model for 0 < d < 1.
They claimed that stationarity could be verified with a dominance type argument between
the sequence of coefficients of the ARCH(∞) representations of the FIGARCH(1, d, 0)
and of an appropriately chosen IGARCH(1,1). However, the FIGARCH equation has no
stationary solutions with Eϵ2t < ∞ (Giraitis, Leipus, and Surgailis, 2009). In general,
the question of the existence of a stationary solution for FIGARCH process with infinite
variance remains open. On the stationarity issue, the main works are those of Giraitis,
Kokoszka, and Leipus (2000), Kazakevicius and Leipus (2002) and Zaffaroni (2004). All
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the above cited authors tried to find necessary and sufficient conditions for stationarity of
the ARCH(∞) processes. Their approaches are not completely equivalent, and not all of
them are directly and easily applicable to the FIGARCH case. In a special case, Douc,
Roueff, and Soulier (2008) show that a non-zero stationary solution exists when {zt} is a
sequence of iid random variables, such that E(z20) = 1 and P{|z0| = 1} < 1. In such a
case there exists d∗ ∈ [0, 1) such that for all d ∈ (d∗, 1), the FIGARCH(0, d, 0) equation
has a unique causual stationary solution satisfying E[|ϵt|2r] < ∞ for all r < 1. However
the proof of stationarity in the general case of FIGARCH(p, d, q) is not yet available.

2.2.4 FIGARCH with NIG Distribution

In GARCH processes, it is commonly assumed that the tails of the empirical distributions
of financial market returns are thicker than in the normal case. Barndorff-Nielsen (1997),
Anderson (2001) and Jensen and Lunde (2001), have suggested the Normal Inverse Gaus-
sian (NIG) distribution for the errors in GARCH and stochastic volatility models. The
density function of an NIG distributed variable X is

NIG(x; a, b, µ, δ) =
a

πδ
exp

(√
a2 − b2 + b

x− µ

δ

)
×q

(
x− µ

δ

)−1

k1

(
aq

(
x− µ

δ

))
,

where q(y) =
√

1 + y2 with 0 ≤ |b| ≤ a, x, µ ∈ R and δ > 0 and k1(·) denotes
the modified Bessel function of the third order and index one (Abramowitz and Stegun,
1965). Jensen and Lunde (2001) showed that the NIG distribution for zt defined in (2)
can model better than the Student-t and standard normal distributions not only the tails
of the return distributions, but also the center, where it is relatively more peaked than the
standard normal distribution. Kilic (2007) introduced a FIGARCH with NIG distribution.
To present the FIGARCH-NIG model, let the return series rt be written as

rt = µ+
b
√
γ

a
σt + zth

1/2
t , t = 1, . . . , T ,

where the zt’s are uncorrelated with zero-mean and unit variance. Let the density of zt be
NIG distributed, that is,

zt ∼ NIG
(
a, b,

−b√γ
a

,
γ3/2

a

)
, γ =

√
a2 − b2 .

This way of specifying the NIG distribution implies that the conditional distribution of
returns rt will be NIG as well. That is,

rt|ψt−1 ∼ NIG
(
a, b, µ,

γ3/2

a
h
1/2
t

)
,

where ψt−1 is the information set, ψt−1 = σ(rt−1, rt−2, . . . ). The conditional expectation
and variance are given by

E(rt|ψt−1) = µ+ h
1/2
t

b
√
γ

a
, t = 1, . . . , T
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and
var(rt|ψt−1) = ht .

This parametrization of the NIG distribution allows to model the temporal dependence in
the conditional variance of the random variable to be given solely by ht. Let

ut = rt − E(rt|ψt−1)

= rt − h
1/2
t

b
√
a2 − b2

a
− µ

be the innovation of the return process. Then, the FIGARCH-NIG model is obtained by

ϕ(L)(1− L)du2t = α0 + [1− β(L)]νt ,

where νt = u2t − ht and 0 < d < 1 as mentioned before.
Davidson (2004) had shown that a FIGARCH model possesses more memory than

a GARCH or IGARCH model and hence the FIGARCH model with NIG errors can be
quite useful in modelling both hyperbolic memory and other salient features of the series.

3 Estimation and Forecasting
The estimation of parameters of FIGARCH model is generally carried out using the max-
imum likelihood method (which is most efficient) with normality assumption for zt. But
the normality assumption can be questioned with some empirical evidence and there-
fore the use of quasi-maximum likelihood estimator is preferred. The likelihood of a
FIGARCH(p, d, q) process based on the sample {ϵ1, ϵ2, . . . , ϵT} may be written as

logL(θ, ϵ1, ϵ2, . . . , ϵT ) ≃ −0.5T log(2π)− 0.5
T∑
t=1

[log(ht) + ϵ2th
−1
t ] , (12)

where θ′ ≡ (α0, d, β1, . . . , βp, ϕ1, . . . , ϕq). The likelihood function is maximized condi-
tional on the start-up values. In particular, we need to fix all the pre-sample values of ϵ2t
for t = 0,−1,−2, . . . in the infinite ARCH representation in (10) at the unconditional
sample variance.

For the FIGARCH(p, d, q) model with d > 0, the population variance does not ex-
ist. In most practical applications with high frequency financial data, the standardized
innovations zt = h

−1/2
t ϵt are leptokurtic and not normally distributed through time. In

these situations the robust quasi-MLE (QMLE) procedures discussed by Weiss (1986)
and Bollerslev and Wooldridge (1992) may give better results while doing inference.

Baillie et al. (1996) have claimed the asymptotic normality of the quasi-maximum
likelihood estimator θ̂T , when (ϵ1, . . . , ϵT ) form a sample from FIGARCH(1, d, 0) by
extending a similar result available for IGARCH(1,1), using a dominance-type argument.
They have used an upper bound for the infinite sequence of coefficients of the ARCH(∞)
representation of an IGARCH model. A similar argument was also used in claiming
the asymptotic properties of the quasi-maximum likelihood estimator for the FIGARCH.
Mikosch and Starica (2003) point out that Baillie’s claims were not completely correct.
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In fact, it is not possible to bound a hyperbolically decaying sequence (the ARCH(∞)
coefficients of any FIGARCH process) by an exponentially decaying sequence, which
affects the proof of the claim (see Caporin, 2003). The reported Monte Carlo experiment
in Baillie et al. (1996) and Bollerslev and Mikkelsen (1996) is still valid and can be used to
conclude the consistency and asymptotic normality of the QMLE estimators empirically.
However, the only model they have cosidered was FIGARCH(1, d, 0). The proofs of
consistency and asymptotic normality of the QMLE estimator is still not resolved for
the general FIGARCH(p, d, q) model. The estimation of FIGARCH parameters using
QMLE can be carried out with the help of MFE toolbox of MATLAB (Sheppard, 2009)
or G@RCH package of OXMetrics software (Laurent and Peters, 2002).

When estimating the parameters of a FIGARCH model, generally, the value of pa-
rameter d is estimated first and one uses these estimates to obtain the estimation of other
parameters (Lopes and Mendes, 2006; Härdle and Mungo, 2008). There are several ways
to estimate d. Log periodogram regression estimator (GPH) of Geweke and Porter-Hudak
(1983) and the Gaussian semiparametric estimator (GPS) of Robinson (1995) are some of
them.

Now we will consider the problem of forecasting using a FIGARCH model. Us-
ing (10), we have

ht+1 = α0(1− β(1))−1 + λ(L)ϵ2t+1

= α0(1− β(1))−1 + λ1ϵ
2
t + λ2ϵ

2
t−1 + . . . .

The one-step ahead forecast of ht is given by

ht(1) = α0(1− β(1))−1 + λ1ϵ
2
t + λ2ϵ

2
t−1 + . . . .

Similarly, the two-step ahead forecast is given by

ht(2) = α0(1− β(1))−1 + λ1ht(1) + λ2ϵ
2
t + . . . .

In general, the l-step ahead forecast is

ht(l) = α0(1− β(1))−1 + λ1ht(l − 1) + · · ·+ λl−1ht(1) + λlϵ
2
t + λl+1ϵ

2
t−1 + . . . .

For all practical purpose, we stop at a large M and this leads to the forecasting equation

ht(l) ≈ α0(1− β(1))−1 +
l−1∑
i=1

λiht(l − i) +
M∑
j=0

λl+jϵ
2
t−j .

The parameters will have to be replaced by their corresponding estimates.

4 Applications

4.1 Review of Some Applications
There is a large collection of research papers where FIGARCH models are found to be
performing better than many of the other conditional heteroscedastic models. Baillie
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et al. (1996) had applied the FIGARCH to model the volatility in exchange rates, so as
Bollerslev and Mikkelsen (1996) and Beine, Laurent, and Lecourt (2002) to stock returns.
Banerjee and Sarkar (2006) modeled the volatility in the returns from the National Stock
Exchange (NSE) of India, using high frequency intra-day data. Baillie, Han, Myers,
and Song (2007) examined the long memory properties of both daily and high frequency
intraday futures returns for six commodities. Commodity future returns are found to be
well described by a martingale difference sequence with a very low-order moving average
(MA) process to represent nonsynchronous trading effects, and also a FIGARCH model
for the conditional variance. Antonakakis (2007) investigated the forecasting performance
of daily exchange rate volatility in industrialised and developing countries. His study
indicated that among all heteroscedastic models, FIGARCH fitted the data better. Also the
performance of FIGARCH model in out-of-sample forecasting was superior. Cheong, Isa,
and Nor (2008) have studied the volatility in Malaysian stock market returns (KLCI) using
a FIGARCH model which allows sudden changes in volatility. Their results revealed
that there was structural changes in volatility, especially when a currency crisis happend.
Goudarzi (2010), Mukherjee, Sen, and Sarkar (2011) and Sawant and Yadav (2011) have
examined the presence of long memory in the stock market return series from Bombay
Stock Exchange (BSE). All of them found that FIGARCH model was more appropriate
for several stock return series. Crato and Ray (2000) and Jin and Frechette (2004) have
studied the long memory effect in the daily volatilities of several agricultural commodity
futures returns. Another notable application of FIGARCH models can be found in Q. Li,
Tricaud, Sun, and Chen (2007). These authors have attempted to forecast the great salt
lake level using a FIGARCH model.

4.2 HDFC Bank Exchange Rate Data
We discuss the modelling of a time series data obtained from HDFC Bank of India on
US Dollar- Indian Rupees spot exchange rate for the period January 3, 2000 through
January 11, 2011, a total 2797 observations. Figure 1 represents the percentage returns
of the exchange rate series. It clearly indicates the volatility in the series during the time
period under consideration. The autocorrelation function of the absolute returns has got
hyperbolic decay (see Figure 2), indicating the possibility of modelling the series with a
long memory model.

We fit the following FIGARCH model to this data set:

yt = 100 log(st/st−1) = µ+ ϵt , ϵth
−1/2
t

iid∼ N(0, 1)

ht = α0 + β1ht−1 + [1− β1L− (1− ϕ1L)(1− L)d]ϵ2t , t = 1, 2, . . . , 2797 ,

where st is the raw spot exchange rate series and following the standard practice, we
concentrate on modeling the daily nominal percentage returns, yt.

The QMLE’s were calculated under the assumption of conditional normality. Ro-
bust standard errors are reported in parentheses. The skewness and kurtosis for the stan-
dard residuals ϵ̂tĥ

−1/2
t are denoted by S and K, respectively. The quantities Q(20) and

Q2(20) refer to Ljung-Box portmanteau tests up to 20th-order serial correlation in the
standardized and the squared standardized residuals, respectively. The first column of
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Figure 2: Autocorrelation function (ACF) of absolute returns

(p, d, q) = (0, 0, 0) corresponds to GARCH(0, 0), the second and third to GARCH(1, 1)
and IGARCH(1, 1), respectively. Other columns corresponds to the different FIGARCH
models. It may be noted that the value of the loglikelihood of the FIGARCH(1, d, 1)
model (see Table 1) is marginally higher than for others, indicating the suitability of the
FIGARCH(1, d, 1) model.

Using the information criteria computations given in Table 2, we conclude that the
FIGARCH (1, 0.56, 1) process fits well for the HDFC bank exchange rate data. Thus, we
propose FIGARCH (1, 0.56, 1) as a suitable model for this data set. Table 3 gives the mean
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Table 1: Fitted FIGARCH models
(p, d, q) (0, 0, 0) (1, 0, 1) (1, 1, 0) (1, d, 0) (1, d, 1)

µ 0.0006 0.001 0.001 0.001 0.001
(0.0004) (0.0003) (0.0003) (0.0003) (0.0003)

α0 0.0001 0.0001 0.0001 0.0001 0.0001
β1 – 0.77 0.22 0.26 0.51

(0.06) (0.06) (0.29) (0.13)

ϕ1 – 0.197 – – 0.20
(0.07) (0.11)

d – – 1.00 0.5 0.56
(–) (0.25) (0.16)

S −0.23 −0.23 −0.23 −0.23 −0.23
K 12.1 12.03 12.03 12.03 12.03

Q(20) 34.14 14.80 14.36 14.98 14.7
Q(20)2 450.534 7.151 8.387 5.69 6.2

Loglikelihood 6443.02 6757.27 6753.78 6761.979 6766.55

Table 2: Information criteria for model selection
(p, d, q) Akaike Schwarz Shibata Hannan-Quinn
(0, 0, 0) −4.60566 −4.601410 −4.80566 −4.60413
(1, 0, 1) −4.82894 −4.820451 −4.82895 −4.82588
(1, 1, 0) −4.82716 −4.820790 −4.82716 −4.82486
(1, 0.5, 0) −4.83231 −4.823820 −4.83231 −4.82924
(1, 0.56, 1) −4.83486 −4.824245 −4.83486 −4.83103

Table 3: Forecasting measure error for conditional variances

(p, d, q) MSE RMSE
(0, 0, 0) 3.052e-007 0.00055
(1, 0, 1) 4.962e-007 0.00071
(1, 1, 0) 7.346e-007 0.00085
(1, 0.5, 0) 4.758e-007 0.00069
(1, 0.56, 1) 4.581e-007 0.00068

square error (MSE) and root mean square error (RMSE) corresponding to conditional
variance forecasts up to 10 future lags. It may be noted that FIGARCH(1, 0.56, 1) gives
better forecasts.
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5 Some Models Related to FIGARCH

5.1 A-FIGARCH Model
Baillie and Morana (2009) have introduced a new long memory volatility process known
as Adaptive FIGARCH, or A-FIGARCH. This model is designed to account for both long
memory and structural changes in the volatility processes of economic and financial time
series. Hence the A-FIGARCH has a stochastic long memory component and a determin-
istic break process component. The A-FIGARCH(p, d, q, k) process can be derived from
the FIGARCH(p, d, q) process by allowing the intercept w in the conditional variance
equation to be time varying. The conditional variance equation is given by

[1− β(L)](ht − wt) = [1− β(L)− ϕ(L)(1− L)d]ϵ2t ,

where

wt = w0 +
k∑

j=1

[γj sin(2πjt/T ) + δj cos(2πjt/T )] .

This model has components with long memory effect and a time-varying intercept. It
allows for breaks, cycles and changes in drift. Eventhough wt is smooth, it is capable
of approximating abrupt regime switching. Inference related to the parameters of the
A-FIGARCH can be done by the method of QMLE.

Nasr, Boutahr, and Trabelsi (2010) have introduced a new model namely, fractionally
integrated time-varying GARCH (FITVGARCH) to capture both long memory and struc-
tural changes in the volatility process. The A-FIGARCH model allows the intercept to be
a slowly varying function, but this new model allows all the parameters in the conditional
variance equation of the FIGARCH to be time dependent. More presicely, the change
in the parameters over time is assumed to be smooth using a logistic smooth transition
function.

5.2 HYGARCH Model
Davidson (2004) introduced HYGARCH (hyperbolic GARCH) model which is again
closely related to the class of FIGARCH. It is known that a GARCH(p, q) model can
be rewritten as an ARMA model in squares:

ϕ(L)ϵ2t = α0 + β(L)νt ,

where νt = ϵ2t − ht. By rearranging the terms we can write

ht =
α0

β(1)
+

(
1− ϕ(L)

β(L)

)
ϵ2t = α0 + λ(L)ϵ2t .

Then, in an IGARCH(p, q) model we have

λ(L) =

(
1− ϕ(L)

β(L)

)
(1− L)
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and for a FIGARCH(p, d, q) model, it is

λ(L) =

(
1− ϕ(L)

β(L)

)
(1− L)d , 0 < d < 1 .

The FIGARCH model is a generalization of the IGARCH model for hyperbolic lag
weights. The characterization of the FIGARCH model as an intermediate case between
the stable GARCH and IGARCH is misleading. In fact, it has more memory than either of
these models but behaves oddly because of the restriction of unit amplitude. Therefore, in
this context, Davidson (2004) introduced a new model, for which he considered amplitude
and long memory as separate phenomena. The unit-amplitude restriction can be tested in
this model. The model could address the long memory character without behaving oddly
when d approximated to one. This model is called “Hyperbolic GARCH” or HYGARCH
and it is given by

λ(L) =

(
1− ϕ(L)

β(L)

)
(1 + α((1− L)d − 1)) ,

where α ≥ 0 is the amplitude parameter and d ≥ 0. Davidson (2004) suggested the use
of QMLE method to estimate the HYGARCH parameters.

5.3 ST-FIGARCH Model
Kilic (2011) introduced the smooth transition autoregressive FIGARCH (ST-FIGARCH)
model, which can jointly consider the long memory and nonlinearity in the conditional
volatility process. The ST-FIGARCH model generalizes the FIGARCH model by al-
lowing nonlinear dynamics and asymmetry by way of introducing a smooth transition
specification for the conditional variance. The ST-FIGARCH model is capable of accom-
modating smooth changes both in the amplitude of volatility clusters as well as asymmetry
in conditional volatility in a relatively parsimonious way. Such dynamics cannot be mod-
eled by standard FIGARCH. ST-FIGARCH allows the conditional variance to depend on
the evolution of the variable, called transition. Depending on the sign and amplitude of
the transition variable, conditional variance can evolve smoothly between low and high
volatility regimes. As in other models, here also the first order of the model was intro-
duced. The smooth transition FIGARCH(1, d, 1) model is defined as

(1− ϕL)(1− L)dϵ2t = α0 + [1− β(1−G(zt−s, γ, c))L− β∗G(zt−s, γ, c)L]νt ,

where νt = ϵ2t − ht, 0 < d < 1, β and β∗ are the volatility dynamics parameters, and

G(zt−s, γ, c) =
1

1 + exp(−γ(zt−s − c))

is the logistic transition function with transition variable s-period lagged z, where s is
called the delay parameter and c is the location or threshold parameter. The transition
parameter γ is assumed to be positive for identification purposes and characterizes the
speed of transition between extreme regimes.
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A useful characteristics of ST-FIGARCH is that the researcher can choose z according
to his or her problem. Possible choices may include time (which may be useful if one
thinks that conditional volatility may have smooth changing shifts), functions of past
values of the return series and past values of unobserved shocks. One such example
would be news that may cause smooth changes in the volatility dynamics in exchange
rates and stock markets. Estimation and inference for the parameters of this model can
be carried out using the method of QMLE suggested by Kilic (2011). A formal proof of
consistency and asymptotic normality of the QMLE are yet to be investigated fully in this
case.

5.4 Asymmetric FIGARCH Model
Many a time, empirical findings indicate that large negative returns are followed by larger
increases in volatility than equally for large positive returns. This asymmetric effect leads
to the introduction of several types of asymmetric volatility models. The long memory in
variance and asymmetry facts in financial markets has been extensively discussed in litera-
ture. There have been two separate efforts to resolve both these features. The new class of
asymmetric fractionally integrated family of generalized autoregressive conditional het-
eroscedastic (ASYMM–FIFGARCH) models introduced by Hwang (2001), combine the
long memory and asymmetry;

ϵt = h
1/2
t zt ,

h
λ/2
t =

α0

1− β1
+

[
1− (1− ϕ1L)(1− L)d

1− β1L

]
f ν(ϵt)h

λ/2
t , (13)

f(ϵt) =

∣∣∣∣ ϵtσt − b

∣∣∣∣− c

(
ϵt
σt

− b

)
, |c| ≤ 1 , (14)

with zt
iid∼ D(0, 1), where D(0, 1) represents some specific distribution with mean zero

and variance one. Here, b and c respectively denote the shift and rotation of the news
impact curve. For example, it can be normal, Student-t, or more flexible distributions
such as NIG, variance-gamma (VG), generalized hyperbolic etc. Ruiz and Perez (2003)
claimed that this model is badly misspecified when λ = 0, a case for which the conditional
standard deviation is not defined. Therefore Ruiz and Perez (2003) modified the model
given in (13) as

ϵt = h
1/2
t zt

(1− ϕ1L)(1− L)d
h
λ/2
t − 1

λ
= α∗

0 + α(1 + ψL)h
λ/2
t−1[f

ν(zt−1)− 1] ,

where f(·) is the same as in (14). When ν = λ = 2 and b = c = 0, we reach exactly the
FIGARCH model.

6 Concluding Remarks
We have made an attempt to present a brief review on FIGARCH models, its properties,
applications and few models which are related FIGARCH models. The probabilistic and
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inferential aspects of such models are not completely investigated. Most of the devel-
opments in the literature are related to the empirical investigations. The stationarity and
ergodicity of a general FIGARCH(p, d, q) model is yet to be established fully.

From the inference point of view also, this model is not completely exploited by the
researchers. The asymptotic theory of the quasi-maximum likelihood is not completely
resolved. Several non/semi parametric methods are yet to be tried on this model. One
another problem of interest would be treating wt of an A-FIGARCH model as a stochastic
function. e.g., wt = w + ut, where the ut’s are iid random variables. Inference and
significance tests (σ2

u = 0) are some of the future related directions of research.
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