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Abstract: In this research the simple linear regression (SLR) model with
autocorrelated errors is considered. Traditionally, correlated errors are as-
sumed to follow the autoregressive model of order one (AR(1)). Beside this
model we will also study the SLR model with errors following the periodic
autoregressive model of order one (PAR(1)). The later model is useful for
modeling periodically autocorrelated errors. In particular, it is expected to be
useful when the data are seasonal. We investigate the properties of the least
squares estimators of the parameters of the simple regression model when
the errors are autocorrelated and for various models. In particular, the rel-
ative efficiency of those estimates are obtained and compared for the white
noise, AR(1) and PAR(1) models. Also, the generalized least squares esti-
mates for the SLR with PAR(1) errors are derived. The relative efficiency
of the intercept and slope estimates based on both methods is investigated
via Monte-Carlo simulation. An application on real data set is also provided.
It should be emphasized that once there are sufficient evidences that errors
are autocorrelated then the type of this autocorrelation should be uncovered.
Then estimates of model’s parameters should be obtained accordingly, us-
ing some method like the generalized least squares but not the ordinary least
squares.

Zusammenfassung: In diesem Forschung wird das einfache lineare Re-
gressions (SLR)-Modell mit autokorrelierten Fehlern betrachtet. Traditionell
wird für korrelierte Fehler angenommen, dass diese einem autoregressiven
Modell der Ordnung Eins folgen (AR(1)). Neben diesem Modell werden wir
auch das SLR-Modell mit Fehlern untersuchen, die einem periodischen au-
toregressiven Modell der Ordnung Eins folgen (PAR(1)). Das letztere Mod-
ell ist zur Modellierung periodischer autokorrelierter Fehler nützlich. Ins-
besondere wird erwartet, dass es nützlich ist, falls die Daten saisonal sind.
Wir untersuchen die Eigenschaften der Kleinsten Quadrate Schätzer der Pa-
rameter des einfachen Regressionsmodell, wenn die Fehler autokorreliert sind.
Insbesondere erhalten wir die relative Effizienz dieser Schätzer und vergle-
ichen sie unter weißem Rauschen, AR(1) und PAR(1)-Modellen. Verall-
gemeinerte Kleinste Quadrate Schätzer für das SLR mit PAR(1) Fehlern
werden auch hergeleitet. Die relative Effizienz der Achsenabschnitts- und
des Steigungs-Schätzers unter beiden Methoden wird mittels einer Monte-
Carlo-Simulation untersucht. Eine Anwendung auf echte Daten wird eben-
falls gemacht. Es wird betont, dass, sobald es genügend Hinweise gibt, dass
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die Fehler autokorreliert sind, der Typ dieser Autokorrelation aufgedeckt wer-
den soll. Dann sollten die Schätzer der Modellparameter entsprechend er-
halten werden, mit irgendeiner Methode wie die verallgemeinerte Kleinste
Quadrate Schätzung, aber nicht die der gewöhnlichen Kleinsten Quadrate.

Keywords: Simple Linear Regression Model, Autoregression, Periodically
Correlated Errors, Relative Efficiency.

1 Introduction
Regression analysis is a very important statistical method that investigates the relationship
between a response variable Y and a set of other variables named as independent variables
or predictors X1, . . . , Xp. An important objective of the built model is the prediction of
Y for given values of the predictors.

The simple linear regression (SLR) model is the simplest regression model in which
we have only one predictor X . This model, which is common in practice, is written as

Yt = β0 + β1Xt + ϵt , t = 1, . . . , n , (1)

where Yt, Xt are the values of the response and predictor variables in the tth trial, re-
spectively, β0 and β1 are unknown parameters and ϵt are usually assumed to be iid from
N(0, σ2

ϵ ) specially for inference purposes. The terms {ϵt} satisfying such conditions are
named in the time series context as the white noise (WN) process (Wei, 2006). The vari-
able X is usually assumed fixed and non-random. For several predictors, the SLR model
generalizes to what is known as the multiple linear regression model. For the estimation
of the SLR model there are two common methods, the first is the ordinary least squares
(OLS) method, which relies on minimizing the sum of square of errors

∑
ϵ2t . For the SLR

model (1) the OLS estimators of β0 and β1 are

β̂0 = Ȳ − β̂1X̄

and

β̂1 =

∑
t(Xt − X̄)(Yt − Ȳ )∑

t(Xt − X̄)2
=

SXY

SXX

.

It is known that these estimators are unbiased and best linear unbiased estimators (BLUE).
The second method is the maximum likelihood method, which under the assumptions of
independence and normality of ϵt produces again β̂0 and β̂1 above (Kutner, Nachtsheim,
Neter, and Li, 2005, p. 31-32).

In turn, the fitted SLR model is written as

Ŷt = β̂0 + β̂1Xt

so that the estimated errors or residuals, denoted by et, are defined as et = Yt − Ŷt,
t = 1, . . . , n. Once, the regression model is fitted, an important step in model building and
diagnosis is to check for the assumptions of the model, namely; independence, normality
and constant variance of errors. The residuals of the fitted model play a primary role
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for this purpose. Several graphs and tests for residuals may be used to examine those
assumptions. These techniques are usually known as residual analysis. In particular, to
examine the independence of error terms we use the plot of residuals against time or order
(usually named as the residual plot). Besides, an important test specifically designed for
testing the lack of randomness in residuals is the Durbin-Watson test. For a detailed
account on various methods for the assessment of the assumptions of regression models,
see Kutner et al. (2005).

When the assumptions of the regression model are not valid there exist several reme-
dial measures. In particular, when the error terms are correlated, in which case model (1)
is named as generalized linear regression (GLR) model, a direct remedial measure is to
work with a model that calls for correlated error terms (Kutner et al., 2005, p. 127). A
common model of errors in this case is the stationary zero-mean AR(1) model so that ϵt
in (1) now satisfies

ϵt = ϕϵt−1 + ut , (2)

where ut are assumed iid N(0, σ2
u) and |ϕ| < 1. When ϕ = 0, this model reduces to the or-

dinary SLR model. Other possible models for errors can be selected from the wider class
of mixed autoregressive moving average (ARMA) models (Box, Jenkins, and Reinsel,
1994).

In the literature, regression models with autocorrelated errors following some ARMA
model have been widely studied (Mohammed and Ibazizen, 2008; Huitema and McKean,
2007; Lee and Lund, 2004; Jeske, Bütefisch, and Song, 1996; Zinde-Walsh and Galbraith,
1991). More general results for regression models with correlated errors are considered,
for example, by Grenander (1954), Choudhury, Hubata, and Louis (1999) and Yue and
Koreisha (2004). In particular, Ohtani (1990) examined the small-sample properties of the
generalized least squares (GLS) estimators and tests of individual regression coefficients
with autocorrelated errors.

Lee and Lund (2004) considered the OLS and GLS estimation for the linear trend
model

Yt = β1 + β1t+ ϵt . (3)

They have derived explicit formulas for the variances of the OLS and the GLS estimates
of β0 and β1 with errors following some selected ARMA models.

The GLS estimate of β = (β0, β1)
′ under the SLR model (1) is

β̂GLS = (X ′
nΓ

−1
n Xn)

−1X ′
nΓ

−1
n Yn , (4)

where Yn = (Y1, . . . , Yn)
′, Xn = (1n, Xi)

′ is the design matrix where 1n is a n-dimensional
vector of ones and Γn is the auto-covariance matrix of the errors ϵ = (ϵ1, . . . , ϵn)

′ written
as

Γn =


γ0 γ1 . . . γn−1

γ1 γ0 . . . γn−2
...

... . . . ...
γn−1 γn−2 . . . γ0

 , (5)

where γk = cov(ϵt, ϵt−k), k = 0, 1, . . . . Besides, the variance of β̂GLS is given by

var(β̂GLS) = (X ′
nΓ

−1
n Xn)

−1 . (6)
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Grenander (1954) showed that the OLS and GLS estimates are asymptotically equally ef-
ficient for SLR with stationary correlated errors. However, once the errors are correlated,
the OLS estimates loses its minimum variance property. In a later part of this work, we
will see that this fact of deficiency of OLS estimates carries over to the case of periodically
correlated errors.

In this article we study the properties of OLS estimates for the parameters of SLR
when the errors are periodically correlated. In the time series framework it is found that
many real time series exhibit periodic autocorrelations that can not be modelled by ordi-
nary seasonal ARMA models (Tiao and Grupe, 1980; Franses and Paap, 2004; McLeod,
1995). This means that the autocorrelations among successive errors changes from one
season to another. For example, assuming that {Y12k+ν} is a monthly time series then peri-
odic autocorrelation means that corr(Y12k+ν , Y12k+ν−1) is not constant for ν = 1, . . . , 12.
McLeod (1995) suggests a simple graphical method to detect periodic autocorrelations
in time series. He also proposed a test of periodically autocorrelated errors. McLeod
proposed to apply this test on the residuals resulted from fitting seasonal ARIMA mod-
els for some seasonal time series. If significant, this test will indicate that the errors are
periodically correlated.

2 GLR Models with Periodically Correlated Errors

Assume that {Yt} (and possibly {Xt}) is a seasonal time series with period ω. Then, if the
errors in (1) are correlated then they may inhibit some seasonality. In this case there are
several approaches to handle this issue. The first is using seasonal ARMA models (see
Box et al., 1994) or one can add some extra regressors to (1) to extract the seasonality
as for instance seasonal dummy variables or trigonometric functions. The later approach
is useful when the seasonality in {Yt} is deterministic and the former is useful when
seasonality is stochastic but homogeneous.

An alternative model that is suitable for modelling seasonality is the periodic ARMA
(PARMA) models. Writing the time t in terms of the period ω as kω + ν where ν =
1, . . . , ω denotes the season and k denotes the year, the zero-mean PARMAω(p(ν), q(ν))
model is written as:(
1− ϕ1(ν)B − · · · − ϕp(ν)(ν)B

p(ν)
)
ϵkω+ν =

(
1− θ1(ν)B − · · · − θq(ν)(ν)B

q(ν)
)
ukω+ν ,

(7)
where {ukω+ν} is a zero-mean WN process with periodic variances σ2

u(ν), p(ν) is the AR
order for season ν and q(ν) is the MA order for season ν and ϕ1(ν), . . . , ϕp(ν)(ν) and
θ1(ν), . . . , θq(ν)(ν) are the AR and MA parameters of season ν, respectively (Franses
and Paap, 2004). The periodic autoregressive model (PAR) is a special case of the
PARMA model. In (7) setting q(ν) = 0 for each ν = 1, . . . , ω we get the equation of
the PARω(p(ν)) model. For instance, the zero-mean PARω(1) model can be written as

ϵkω+ν = ϕ1(ν)ϵkω+ν−1 + ukω+ν , ν = 1, . . . , ω . (8)

In fact, this equation can be written as ω equations. For instance, the zero-mean
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PAR4(1) model can be written as

ϵ4k+1 = ϕ1(1)ϵ4(k−1)+4 + u4k+1

ϵ4k+2 = ϕ1(2)ϵ4k+1 + u4k+2

ϵ4k+3 = ϕ1(3)ϵ4k+2 + u4k+3

ϵ4k+4 = ϕ1(4)ϵ4k+3 + u4k+4 .

PARMA models are not stationary in the ordinary weak sense. They are rather examined
for a weaker type of stationarity named as periodic stationarity. This means that the mean
and the variance of the time series is constant for each season and periodic with period ω
and the autocovariance function depends on the time lag and season only (Ula and Smadi,
1997). For example, the PAR4(1) model above is periodic stationary if |

∏4
ν=1 ϕ1(ν)| <

1 (Obeysekera and Salas, 1986). The essence of PARMA models is that it is suitable
for modelling periodic correlations. The first motivations for those models started in
hydrology then found any applications in economics and other areas (Obeysekera and
Salas, 1986; Franses and Paap, 2004).

If the period ω = 1, then the PARMAω(p(ν), q(ν)) and PARω(1) models reduce,
respectively to the ordinary ARMA(p, q) and AR(1) models. For more details on PARMA
models see for example Franses and Paap (2004).

Therefore, the main idea in this research is to propose the idea of periodically corre-
lated errors in SLR model through using the PAR(1) model, that is

Ykω+ν = β0 + β1Xkω+ν + ϵkω+ν (9)

with errors following (8). In the next section the properties of the OLS estimates of β0

and β1 are to be investigated. Later on, the GLS estimates of βo and β1 are also derived.

3 Properties of OLS Estimates with Correlated Errors
The method of moments is one of the most common methods of estimation in statistical
inference. It is also common in the context of time series analysis. Assuming that {Ukω+ν}
is a periodic stationary process, then the seasonal autocorrelation function depends on the
time lag and season only and is defined as

ρj(ν) = corr(Ukω+ν , Ukω+ν−j) =
γj(ν)√

γ0(ν)γ0(ν − j)
, j = 0, 1, . . . ,

where γj(ν) = cov(Ukω+ν , Ukω+ν−j) denotes the seasonal autocovariance function (SACVF)
and γ0(ν) denotes the variance of the process for season ν and time lag j.

Based on an observed realization u1, . . . , umω the moment estimator of ρj(ν) is

rj(ν) =
Cj(ν)√

C0(ν)C0(ν − j)
,

where

C0(ν) =
1

m− 1

m−1∑
i=0

(uiω+ν − ūν)
2



216 Austrian Journal of Statistics, Vol. 41 (2012), No. 3, 211–226

and

Cj(ν) =
1

m− 1

m−1∑
i=0

(uiω+ν − ūν)(uiω+ν−j − ūν−j) , (10)

where ūν is the sample mean of data in season ν and m is the number of years of data.
It can be shown that rj(ν) are asymptotically unbiased and consistent estimators of ρj(ν)
(McLeod, 1995).

As far as the PARω(1) is considered, it can be proved that the first lag autocorrelations
are given by:

ρ1(ν) = ϕ1(ν)

√
γ0(ν − 1)

γ0(ν)
, (11)

for ν = 1, . . . , ω. Note that in this case the first order autocorrelation are not the same as
AR parameters but a function of them unless all γ0(ν) are equal. For a given PARω(1)
model with known ϕ1(ν) and σ2

u(ν), ν = 1, . . . , ω, then γ0(ν) can be obtained, for all ν,
by solving the system of equations

γ0(ν) = (ϕ1(ν))
2γ0(ν − 1) + σ2

u(ν) , ν = 1, . . . , ω .

Then ρ1(ν) can be computed using (5).
For the computation of γj(ν) for PARω(1) models the following theorem is useful.

Theorem 1: If {ϵkω+ν} follows a periodic stationary PARω(1) model (8), then

γj(ν) = ϕ1(ν)γj−1(ν − 1)

= ϕ1(ν)ϕ1(ν − 1)ϕ1(ν − 2) · · ·ϕ1(ν − j + 1)γ0(ν − j) . (12)

Proof: It is easy to show that for j = 1,

γ1(ν) = cov(ϵkω+ν , ϵkω+ν−1)

= cov(ϕ1(ν)ϵkω+ν−1 + ukω+ν , ϵkω+ν−1)

= ϕ1(ν)γ0(ν − 1) .

Thus for j = 2,

γ2(ν) = cov(ϵkω+ν , ϵkω+ν−2)

= cov(ϕ1(ν)ϵkω+ν−1 + ukω+ν , ϵkω+ν−2)

= ϕ1(ν)γ1(ν − 1)

= ϕ1(ν)ϕ1(ν − 1)γ0(ν − 2) .

Iterating for k we get (12).
When ϵt is WN we have seen that β̂0 and β̂1 are the BLUE and var(β̂0) and var(β̂1)

are (Kutner et al., 2005)

var(β̂0) =
σ2
ϵ

SXX

[
SXX

n
+ X̄2

]
(13)

and

var(β̂1) =
σ2
ϵ

SXX

. (14)
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Now, the following theorem is useful for the computation of var(β̂0) and var(β̂1) for
errors following any stationary stochastic process and in particular the AR(1) model.

Theorem 2: For the GLR model (1) with {ϵt} being any stationary stochastic process
with mean zero and ACVF γk, then β̂0 and β̂1 are unbiased and

var(β̂0) =
n∑

t=1

c2tγ0 + 2
n∑

t>j

ctcjγt−j (15)

var(β̂1) =
n∑

t=1

b2tγ0 + 2
n∑

t>j

btbjγt−j (16)

with

ct =
1

n− btX̄
and bt =

Xt − X̄

SXX

. (17)

Proof: It can easily be shown that

β̂0 =
n∑

t=1

ctYt and β̂1 =
n∑

t=1

btYt ,

where ct and bt are given by (17). Thus,

E(β̂0) =
n∑

t=1

ctE(Yt) =
n∑

t=1

ct(β0 + β1Xt) = β0

n∑
t=1

ct + β1

n∑
t=1

ctXt .

Because,
∑n

t=1 ct = 1 and
∑n

t=1 ctXt = 0 then E(β̂0) = β0. Similarly we can show that
E(β̂1) = β1. The results in (15) and (16) are direct from the fact that β̂0 and β̂1 are linear
functions in Y1, . . . , Yn with coefficients as in (17).

Corollary 1: For the GLR model (1) with {ϵt} following the zero-mean AR(1) model (2)
with |ϕ| < 1 then β̂0 and β̂1 are unbiased and

var(β̂0) =
σ2
u

(1− ϕ2)SXX

[
SXX

n
+ X̄2 + 2

n∑
t>j

Ktjϕ
t−j

]
(18)

var(β̂1) =
σ2
u

1− ϕ2)SXX

[
1 +

2

SXX

n∑
t>j

Mtjϕ
t−j

]
, (19)

where
Mtj = (Xt − X̄)(Xj − X̄) (20)

and

Ktj =
SXX

n2
− X̄

n

((
Xt − X̄

)
+
(
Xj − X̄

))
+

X̄2

SXX

(
Xt − X̄

) (
Xj − X̄

)
. (21)

It can be seen that when ϕ = 0, then (18) and (19) reduce to the formulas of var(β̂0)
and var(β̂1) for WN errors given by (13) and (14). For ϕ ̸= 0 the two sets of formulas
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will be compared later on. Now, the following theorem generalizes Theorem 2 to GLR
models as (1) with periodically correlated errors.

Theorem 3: For the GLR model (1) with errors following a zero-mean PARω(1) model
(8) with |

∏4
ν=1 ϕ1(ν)| < 1, then β̂0 and β̂1 are unbiased and

var(β̂0) =
ω∑

ν=1

γ0(ν)
m∑
k=1

c2(k−1)ω+ν

+2
ω∑

ν=1

m∑
k=1

(k−1)ω+ν−1∑
j=1

c(k−1)ω+νcjγ(k−1)ω+ν−j(ν)I((k−1)ω+ν−j≥1) (22)

var(β̂1) =
ω∑

ν=1

γ0(ν)
m∑
k=1

b2(k−1)ω+ν

+2
ω∑

ν=1

m∑
k=1

(k−1)ω+ν−1∑
j=1

b(k−1)ω+νbjγ(k−1)ω+ν−j(ν)I((k−1)ω+ν−j≥1) , (23)

where

c(k−1)ω+ν =
1

n
− b(k−1)ω+νX̄ and b(k−1)ω+ν =

X(k−1)ω+ν − X̄

SXX

. (24)

Proof: The unbiasedness of β̂0 and β̂1 can be proved in a similar manner as Theorem 2.
Now we want to prove (22) and (23). We know that

var(β̂0) =
n∑

t=1

c2tvar(ϵt) + 2
n∑

t>j

ctcjcov(ϵt, ϵj) , (25)

where ct is defined in (17). Now, assuming n = mω where m is the number of years of
data, and writing t as (k − 1)ω + ν, then (25) reduces to

var(β̂0) =
ω∑

ν=1

γ0(ν)
m∑
k=1

c2(k−1)ω+ν

+2
ω∑

ν=1

m∑
k=1

(k−1)ω+ν−1∑
j=1

c(k−1)ω+νcjγ(k−1)ω+ν−j(ν)I((k−1)ω+ν−j≥1) ,

where IA is the indicator function for the set A. The results for var(β̂1) in (23) can
similarly be derived.

In fact, Theorem 3 is valid for all periodic-stationary processes with seasonal ACVF
γk(ν).

4 The Relative Efficiency for Correlated Errors

It is known that if θ̂1 and θ̂2 are two unbiased estimators of θ, then the relative efficiency
of θ̂1 with respect to θ̂2 is (Rohatgi, 1984, p. 193)

RE(θ̂1, θ̂2) =
MSE(θ̂2)

MSE(θ̂1)
=

var(θ̂2)

var(θ̂1)
. (26)
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Therefore, for the SLR model as β̂0 and β̂1 are unbiased estimators for β0 and β1 for errors
following WN, AR(1) and PAR(1) models, then we can compare the efficiency of these
estimators using (26). For simplicity, the comparison will be carried out with the WN
model being the reference case. Those relative efficiencies are easily obtained from the
results in the previous section and are explicitly given below.

Corollary 2: The relative efficiency of β̂0 and β̂1 for errors following the AR(1) model
with respect to the standard SLR model (i.e. WN errors) are

RE
[
β̂0(AR(1)), β̂0(WN)

]
=

(1− ϕ2)

(
SXX

n
+ X̄2

)
SXX

n
+ X̄2 + 2

n∑
t>j

Ktjϕ
t−j

RE
[
β̂1(AR(1)), β̂1(WN)

]
=

1− ϕ2

1 + 2SXX

n∑
t>j

Mtjϕ
t−j

with Ktj and Mtj given in (20) and (21), respectively.

Corollary 3: The relative efficiency of β̂0 and β̂1 for errors following the PARω(1) model
with respect to the standard SLR model are

RE
[
β̂0(PAR(1)), β̂0(WN)

]

=

σ2

SXX

(
SXX

n
+ X̄2

)
ω∑

ν=1

γ0(ν)
m∑
k=1

c2(k−1)ω+ν + 2
ω∑

ν=1

m∑
k=1

(k−1)ω+ν−1∑
j=1

c(k−1)ω+νcjγ(k−1)ω+ν−j(ν)I((k−1)ω+ν−j≥1)

(27)

RE
[
β̂1(PAR(1)), β̂1(WN)

]

=

σ2

SXX

ω∑
ν=1

γ0(ν)
m∑
k=1

b2(k−1)ω+ν + 2
ω∑

ν=1

m∑
k=1

(k−1)ω+ν−1∑
j=1

b(k−1)ω+νbjγ(k−1)ω+ν−j(ν)I((k−1)ω+ν−j≥1)

(28)

with c(k−1)ω+ν and b(k−1)ω+ν given in (24).
Now, we illustrate Corollaries 2 and 3 through the following example.

Example 1: Consider the linear trend model (3) with n = 100 and ϵt from

(a) WN model with σ2
ϵ = 16,
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(b) AR(1) model with ϕ = −0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8 and γ0 = σ2
ϵ =

16,

(c) PAR4(1) with
∏4

ν=1 ϕ1(ν) = −0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8 and ϕ1(ν)
values as given in the first column of Table 2 below and γ0(ν) = 16, ν = 1, . . . , 4.

Using an R-code written by the authors, the relative efficiencies are computed and
summarized in Tables 1 to 3. To make the comparison more accurate we have fixed
var(ϵt) for all error models. Besides, we have selected the ϕ’s for the AR(1) model in (b)
satisfying the stationarity condition |ϕ| < 1 and for the PAR4(1) models in (c) satisfying
the periodic stationarity condition |

∏
ϕ1(ν)| < 1. Also, we have selected

∏
ϕ1(ν) in

(c) as the same values of ϕ for the AR(1) models in (b). It is worth mentioning that in
general in PAR(1) models, ϕ1(ν) can take any real value subject to the condition that
|
∏

ϕ1(ν)| < 1. However, in this example as γ0(ν) is fixed for all seasons, then in view
of (11), ϕ1(ν) equals ρ1(ν). This explains the choice of the ϕ1(ν) values in this example
from (−1, 1).

In view of Table 1 we can see that in terms of efficiency, the LS estimators β̂0 and β̂1

based on the AR(1) model (b) are more (less) efficient than based on WN model when ϕ <
0 (ϕ > 0). We in fact conclude from this result that when the errors are autocorrelated via
an AR(1) scheme, then when the autocorrelation is positive (negative) then the standard
formulas for var(β̂0) and var(β̂1) given by (13) and (14), respectively, do underestimate
(overestimate) their true values. Besides, as the autocorrelation becomes stronger the
gaps between the estimated and true variances of β̂0 and β̂1 increase. Therefore, if the
errors are actually autocorrelated but ignoring this fact and using the standard formulas
for var(β̂0) and var(β̂1) then all subsequent results, including prediction, are inaccurate
(see, for example, Lee and Lund, 2004).

Table 1: Relative efficiencies of β̂0 and β̂1 for WN/AR(1).
ϕ β̂0 β̂1

−0.8 8.004 7.810
−0.6 3.812 3.775
−0.4 2.278 2.267
−0.2 1.484 1.481

0.0 1.000 1.000
0.2 0.674 0.675
0.4 0.439 0.440
0.6 0.262 0.264
0.8 0.123 0.126

When the errors follow the PAR4(1) model (c), that is the errors are periodically
autocorrelated, then var(β̂0) and var(β̂1) do also differ from their standard formulas in
(13) and (14). Specifically, it can be seen in Table 2 and 3 that the relative efficiency of β̂0

and β̂1 between the WN errors and the PAR4(1) model differ from one. However, there
is no specific pattern in the relative efficiencies in view of

∏
ϕ1(ν) as seen in Table 2.

Finally it is worth mentioning that the relative efficiencies for β̂0 and β̂1 were very
close to each others and have the same direction in all selected cases.
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Table 2: Relative efficiencies of β̂0 and β̂1 for WN/PAR4(1).
ϕ1(ν)

∏
ϕ1(ν) β̂0 β̂1

−0.99 0.95 0.9 0.9451 −0.8 3.673 3.216
0.9 −0.8 0.9 0.9259 −0.6 1.730 1.693
0.7 0.9 −0.8 0.7937 −0.4 1.758 1.764

−0.6 0.7 −0.9 −0.5291 −0.2 3.142 3.118
0 0 0 0 0.0 1.000 1.000

0.6 −0.7 −0.9 0.5291 0.2 0.790 0.789
−0.7 −0.9 −0.8 −0.7937 0.4 8.942 8.748

0.9 0.8 0.9 0.9259 0.6 0.079 0.083
−0.99 0.95 0.9 −0.9451 0.8 0.173 0.209

Table 3: Relative efficiencies of β̂0 and β̂1 for AR(1)/PAR4(1).
ϕ1(ν)

∏
ϕ1(ν) β̂0 β̂1

−0.9 1.5 0.7 0.8466 −0.8 0.459 0.412
0.9 0.8 1.7 −0.4902 −0.6 0.454 0.448
1.4 −1.1 0.4 0.6494 −0.4 0.772 0.778
0.6 0.7 −0.4 1.1905 −0.2 2.117 2.105

0 0 0 0 0.0 1.000 1.000
1.9 0.8 0.7 0.1880 0.2 1.172 1.169
1.1 0.3 1.5 0.8081 0.4 20.369 19.882

−1.6 1.2 0.7 −0.4464 0.6 0.302 0.314
−1.3 −0.5 −0.7 −1.7582 0.8 1.407 1.659

5 GLR Model with Periodically Correlated Errors
Consider the SLR model (1) with errors {ϵt} being periodically correlated following the
PARω(1) model as in (8). Then without loss of generality assuming n = mω and denoting
the SACVF of {ϵkω+ν} by γj(ν) then the variance-covariance matrix of {ϵ1, . . . , ϵmω} is

Λn =



γ0(1) γ1(2) · · · · · · γn−1(ω − 1)
γ1(2) γ1(3) · · · γn−2(ω − 2)

. . . ...
γ0(ω) · · · γn−ω(ω)

γ0(1) · · · γn−ω−1(ω − 1)
. . . ...

γ0(1)


.

Notice, if n = mω the diagonal elements of Λn are m cycles of (γ0(1), . . . , γ0(ω)).
Now, the GLS estimate of β as well as its variance are given by (4) and (6), respectively,
but Λn replacing Γn.

As the theoretical SACVF of {ϵt} is unknown, then it is traditionally estimated via
the residuals {et} of the OLS of (1). That is, if Cn is the same as Λn above with Cj(ν)
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(defined in (10)) in place of γj(ν) then

β̂GLS = (X ′
nC

−1
n Xn)

−1X ′
nC

−1
n Yn

and
S2(β̂GLS) = (X ′

nC
−1
n Xn)

−1 .

For the PARω(1) error model, γj(ν) are computed using Theorem 1 where γ0(ν) is es-
timated by C0(ν). For the estimation of ϕ1(ν), in view of (8), it is obtained through
regressing (through origin) of the residuals in the ν-th season on the preceding residuals
which belong to the (ν − 1)-th season.

Example 2: Consider the quarterly time series of US passengers miles (in millions) for
Q1, 1996 to Q4, 2004 (Cryer and Chan, 2008) shown in Figure 1 below. This graph shows
a nearly linear trend with seasonality. The fitted OLS of the linear trend model is given
by Ŷt = 104.608 + 0.866t, so that

β̂OLS =

(
104.608
0.867

)
and S2(β̂OLS) =

(
9.447 −0.388

−0.388 0.021

)
.
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Figure 1: The time series plot of quarterly U.S. airline passenger miles(in millions).

Also the McLeod test for periodic correlations among errors is applied (using R-
package pear) and is found highly significant (p-value = 0.00009). Then based on the
residuals of the fitted OLS model, we find that: ϕ̂1(1) = 0.868, ϕ̂1(2) = −0.043,
ϕ̂1(3) = 0.957, ϕ̂1(4) = −0.002, and C0(1) = 33.93, C0(2) = 46.27, C0(3) = 33.66,
C0(4) = 61.12. Taking Xn = X36 = (136, Xi)

′ with Xi = (1, . . . , 36)′, computing the
matrix Cn and applying the formulas above, we get

β̂GLS =

(
105.14
0.875

)
and S2(β̂GLS) =

(
9.246 −0.386

−0.386 0.026

)
.
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Finally, we notice that although the estimates and standard errors based on OLS and
GLS are close to each others, the OLS results here are invalid and those based on GLS
should be more accurate.

In Example 2 above the GLS and OLS estimates are compared for some real data. In
fact, the implications of the nature and strength of the autocorrelation structure among
errors on the relationship between those estimates is a crucial question. From a design
point of view, various studies highlight important issues related to effective design under
correlation (see for example Müller and Stehlı́k, 2009). In the following example we
study the effect of the autocorrelation design on the estimates of both methods. Albertson,
Aylen, and Lim (2002) studied the power of Durbin-Watson test for SLR models with
PAR(1) errors. The selected designs in the next example are due to them.

Example 3: Here we consider the GLR model

Y=1 + 5t+ ϵt , t = 1, . . . , 4n ,

where {ϵt} is PAR4(1) defined in (8) with the ϕ’s as defined below and σ2
u(ν) = 1, for all

ν. We use 1000 realizations of ϵt (and thus Yt) assuming that the ut are iid N(0, 1) each
of length 200 (that is 50 years) according to the following cases:

Case 1: ϕ1(1) = ρ/τ , ϕ1(2) = ρτ , ϕ1(3) = ϕ1(4) = ρ, with ρ = −0.9,−0.5, 0, 0.5, 0.9
and τ = 1, 1.1, 1.25, 1.5, 2.

Case 2: ϕ1(1) = 0, ϕ1(2) = ρ, ϕ1(3) = 0, ϕ1(4) = ρ, with ρ = −2,−1,−0.5, 0.5, 1, 2.

Table 4: Average relative efficiencies of OLS and GLS estimates for case 1.
ρ τ = 1 τ = 1.1 τ = 1.25 τ = 1.5 τ = 2

−0.9 β0 32.245 23.878 25.698 30.967 23.188
β1 32.088 23.819 25.606 30.869 23.051

−0.5 β0 3.293 3.302 3.357 3.586 4.187
β1 3.287 3.296 3.349 3.575 4.169

0.0 β0 1.112
β1 1.111

0.5 β0 0.388 0.390 0.394 0.404 0.462
β1 0.390 0.391 0.395 0.405 0.461

0.9 β0 0.099 0.119 0.191 0.405 1.001
β1 0.102 0.121 0.190 0.397 0.978

Then for each realization the relative efficiency of the OLS and the GLS estimates
of β0 = 1 and β1 = 5 is computed. Then the average relative efficiency based on all
realizations is obtained and summarized in Tables 4 and 5. In case 1, the geometric mean
of the ϕ’s is ρ which represents the degree of correlation while τ controls the degree of
periodicity. Case 2 represents a semi-periodic PAR(1) model. Notice for case 2 that ρ
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Table 5: Average relative efficiencies of OLS and GLS estimates for case 2.
ρ = −2 ρ = −1 ρ = −0.5 ρ = 0.5 ρ = 1 ρ = 2

β0 14.413 4.088 2.010 0.790 0.838 3.074
β1 14.368 4.082 2.009 0.789 0.832 3.030

can assume any real number as the periodic stationarity condition |
∏4

ν=1 ϕ1(ν)| < 1 is
always satisfied.

For case 1, it can be seen that relative efficiency for both intercept and slope are nearly
equal. Besides, for negative (positive) autocorrelation, variances due to OLS are larger
(smaller) than for GLS. This is true for the semi-PAR(1) model in case 2. In case 1, as
the degree of periodicity increases the relative efficiency values, generally increase.

6 Conclusion and Remarks

In this article we have investigated the properties of the LS estimators of the slope and
intercept parameters of the simple linear regression model. We obtained the relative ef-
ficiency of those estimators when the errors are correlated via an AR(1) model as well
as when the errors are periodically correlated following the PAR(1) model compared to
the standard case of WN errors. An example is provided for various models of those
types. The main conclusions are that the LS estimators are still unbiased but the ordinary
formulas for var(β̂0) and var(β̂1) are not reliable and may underestimate or overestimate
the actual variances of those estimators. Those variances are affected by the strength and
direction of autocorrelation among errors when the errors follow the AR(1) and PAR(1)
models and are also affected by the nature of periodic autocorrelation when the errors
follow the PAR(1) model. Therefore, the known deficiency of OLS estimates when the
errors are AR(1) also extends to the case of periodically correlated errors. We believe
that the conclusions above extend to the multiple regression model. This point can be
investigated in a future research.

When the errors are autocorrelated then the ordinary formulas for var(β̂0) and var(β̂1)
should not be used. In this case, a suitable alternative is using GLS method which is
defined here when the errors are periodically correlated. Some other remedial measures
can also be applied such as including some seasonal component in the regression model
as dummy variables or trigonometric functions.
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