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Abstract: The proposal of M estimators for regression (Huber, 1973) and the
development of an algorithm for its computation (Dutter, 1977) has lead to an
increased activity for further research in this area. New regression estimators
were introduced that combine a high level of robustness with high efficiency.
Also fast algorithms have been developed and implemented in several soft-
ware packages. We provide a review of the most important methods, and
compare the performance of the algorithms implemented in R .

Zusammenfassung: Die Einführung von M Schätzern für Regression (Hu-
ber, 1973) und die Entwicklung eines Algorithmus für die Berechnung (Dut-
ter, 1977) hat zu einer regen Forschungstätigkeit auf diesem Gebiet geführt.
Neue Schätzer für Regression wurden eingeführt, die einen hohen Grad von
Robustheit mit hoher Effizienz kombinieren. Auch schnelle Algorithmen
wurden entwickelt und in diversen Softwarepaketen implementiert. Wir geben
einen Überblick über die wichtigsten Methoden und vergleichen die in R im-
plementierten Algorithmen.

Keywords: MM Estimator, LTS Regression, Outlier Detection, Leverage
Point.

1 Introduction
Linear regression belongs to the most important methods in statistics. There are numerous
applications of linear regression in practice, and usually the least squares (LS) estimator
is taken as the standard estimator. The LS estimator has excellent theoretical properties,
and its computation is usually very simple. However, this estimator also relies on quite
strict assumptions, and a violation of these assumptions may lead to useless results.

The idea of robust statistics is to account for certain deviations from idealized model
assumptions. Typically, robust methods reduce the influence of outlying observations on
the estimator. In the context of regression, there are two types of outliers:

• vertical outliers: these are outliers from the linear trend along the response variable;

• leverage points: these are outliers in the space of the explanatory variables.

Leverage points can even improve the estimation if the values of the response variable cor-
respond to the linear trend. Here we assume that their response values are also deviating
from the linear trend, which is often referred to as bad leverage points (e.g. Rousseeuw
and Leroy, 2003). The LS estimator is sensitive with respect to both types of outliers.
Leverage points may even “lever” the regression line or hyperplane. The goal of robust
regression estimators is to protect against both types of outliers.
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The history of robust regression dates back to the 19th century, where L1 regres-
sion was treated in Edgeworth (1887); it was even earlier mentioned than LS regression
(Boscovich, 1757). However, it turns out that L1 regression is only robust with respect to
vertical outliers, but not to leverage points. A first formal approach to robust regression
was done with the M estimator in Huber (1973). This estimator was difficult to compute,
and Dutter (1977) introduced an algorithm and compared with several other proposals.
Extensions of this work are available in Dutter (1983). Since this time, a lot of research
was devoted to developing robust regression estimators and algorithms for their computa-
tion. In this contribution we focus on the theoretical and numerical developments in robust
regression since Dutter (1977). Several key proposals are compared in a simulation study.

2 Basic Concepts
For the following sections we consider the linear regression model

yi = x
>
i β + εi for i = 1, . . . , n ,

where xi is a p-dimensional vector of explanatory variables, yi is the response, β =
(β1, . . . , βp)

> is the vector of unknown regression coefficients, and εi ∼ N(0, σ2) are
independent normally distributed errors. By setting xi1 = 1, an intercept term is included
in the model. The regression residuals are defined as ri(β) = yi − x>

i β. It is clear that
meaningful regression estimators attempt to minimize the regression residuals, or more
precisely, a function of the residuals.

2.1 Least Squares Regression
The most common approach for estimating β is least squares (LS) regression, which
minimizes the sum of squared residuals:

β̂LS = argmin
β

n∑
i=1

ri(β)
2 . (1)

The squared loss function is not bounded, which means that large (absolute) residuals
contribute much to the overall sum. This is a particular problem if leverage points are
present in the data. Figure 1 depicts the effect of a leverage point (triangle) in simple
linear regression. While the six regular observations (circles) form a linear trend, the
leverage point deviates from this trend and is outlying in the x space. The amount of
outlyingness of the leverage point is smaller in the left picture, and more severe in the
right plot. The LS regression line (solid line) is attracted by the leverage point in both
situations, and the effect is much more severe in the right plot. Any diagnostics based on
the size of the residuals would be misleading, since the residual of the leverage point is
smaller than some of the residuals of the regular observations.

We conclude that already a single observation may cause the LS estimator to break
down. In general, we define the proportion of observations that cause an estimator to give
arbitrary results as breakdown point. For an exact definition of the breakdown point see,
e.g., Hampel (1971). Thus, LS regression has a breakdown point of 0 %.
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Figure 1: Effect of a single leverage point (triangle) on the LS regression line.

LS regression is straightforward and very fast to compute because of its explicit solu-
tion. In the software environment R it is available as function lm:

> lm(y ~ x)

2.2 L1 Regression
One of the main reasons for the strong influence of outliers on LS regression are the
properties of the squared loss function in (1), since large residuals have an even magnified
effect on the overall sum. A possibility to reduce this effect is to replace the squared
residuals with their absolute values:

β̂L1 = argmin
β

n∑
i=1

|ri(β)| . (2)

This type of regression is called L1 regression (Edgeworth, 1887). It was the first step in
the direction of robustifying LS regression. However, it can be shown that L1 regression
does not achieve a higher breakdown point. Again, a single outlying observation in the x
space may corrupt the results of the regression.

L1 regression comes at the cost of a more complex solution. As there exists no analyti-
cal way of solving the minimization problem (2), an iterative algorithm is required. A pop-
ular method is the simplex based Barrodale-Roberts algorithm (Barrodale and Roberts,
1973), an implementation of which can be found in R in the quantreg package (function
rq):

> require(quantreg)

> rq(y ~ x)
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2.3 M Estimators
M estimators for regression were introduced by Huber (1973), and they generalize the
idea of LS regression in the following way: The squared loss function is replaced by a
function ρ with certain properties. This leads to the M regression criterion:

β̂M = argmin
β

n∑
i=1

ρ(ri(β)) . (3)

We see that for ρ(r) = r2, (3) is equivalent to (1) and for ρ(r) = |r| we obtain the L1

regression criterion in (2).
The criterion in (3) has the disadvantage of not being equivariant with respect to scal-

ing of the response variable. In order to obtain the desired regression equivariance, the
residuals ri are standardized using a robust scale estimator σ̂:

β̂M = argmin
β

n∑
i=1

ρ

(
ri(β)

σ̂

)
. (4)

Differentiation of the objective function (4) with respect to the regression coefficients β,
and setting the result to zero leads to a system of p equations,

n∑
i=1

ψ

(
ri(β)

σ̂

)
xij = 0 for j = 1, . . . , p , (5)

where ψ = ρ′. For LS regression we have ψ(r) = r, and in this case (5) are the usual
normal equations.

If we define weights

wi := ψ

(
ri (β)

σ̂

)
/

(
ri (β)

σ̂

)
, (6)

depending on the scaled residuals, we obtain a system of weighted equations

n∑
i=1

wi

(
yi − x>

i β
)
xi = 0 . (7)

For LS regression we get wi = 1 for all i. In contrast, robust methods attempt to down-
weight outliers. Popular choices of the functions ρ, ψ, and the weights wi are shown in
Table 1. M estimates based on Huber’s ψ function have computational advantages, but
they are sensitive to leverage points. A bounded ρ function as given by Tukey’s biweight
is able to handle large x-values in a better way, but it results in a more difficult compu-
tation. For details, see Maronna et al. (2006). Unless the explanatory variables follow a
fixed design (Mizera and Müller, 1999), the breakdown point of M estimators is 1/p, and
thus for larger p it can become very small.

In order to solve the system (7) with respect to β, an iterative procedure called iter-
atively reweighted least squares (IRWLS) can be applied. The method repeatedly solves
(7) for β. The convergence is guaranteed for a decreasing weight function w(r) (Maronna
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Table 1: Different ρ functions, together with the corresponding derivatives ψ and the
resulting weights w.

Type LS L1 Huber Tukey’s biweight

ρ(r)
r2

2
|r|


r2

2
|r| ≤ c

c|r| − c2

2
|r| > c

{
1−

(
1− (r/c)2

)3 |r| ≤ c
1 |r| > c

ψ(r) r sign(r)

{
r |r| ≤ c
c · sign(r) |r| > c

{
6r
(
1− (r/c)2

)2 |r| ≤ c
0 |r| > c

w(r) 1
1

|r|

1 |r| ≤ c
c

|r|
|r| > c

{
6
(
1− (r/c)2

)2 |r| ≤ c
0 |r| > c

et al., 2006). Since there may exist many local minima, it is important to initialize the IR-
WLS algorithm with a suitable starting value β̂0. Furthermore, the solution depends on
the choice of σ̂.

An alternative is the so-called H-algorithm, as presented by Huber and Dutter (1974)
and Dutter (1977). The method iteratively performs LS regression using pseudo observa-
tions ỹi = ŷi+ψ(ri), where ŷi are the fitted values obtained from the previous step and ri
are the corresponding residuals. In each step, the estimates of β and σ are computed si-
multaneously. The procedure is repeated until convergence to obtain a final estimate. An
implementation of the algorithm is given in the computer program LINWDR (see Dutter,
1976, 1983).

In R , the M estimator is available as function rlm in the package MASS, which uses
the IRWLS algorithm:

> require(MASS)

> rlm(y ~ x, psi=psi.huber , method="M")

2.4 S Estimators
In the following we want to investigate regression estimators which are based on a robust
scale measure σ̂:

β̂ = argmin
β

σ̂(r1(β), . . . , rn(β)) . (8)

An S estimator β̂S is a solution of (8), with σ̂ being a solution of

1

n

n∑
i=1

ρ

(
ri(β)

σ

)
= δ , (9)

where δ is a constant. Equation (9) can be solved iteratively. The solution σ̂ is called an
M estimator of scale. After that, the S estimator can be computed using IRWLS. Again, a
reliable starting value is needed in order to obtain a global minimum in the procedure.
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The S estimator is implemented in the R package robustbase:

> require(robustbase)

> lmrob.S(x, y, lmrob.control ())

Note that this function is not intended to be used on its own, because the S estimator has
a low efficiency. The advantage of the S estimator is its high breakdown point of 50 %,
and therefore it is used as an initial estimator for MM regression, see Section 2.7.

2.5 Least Trimmed Squares Regression
Another intuitive way of robustifying LS regression results from the following idea: If
the sum of squared residuals in (1) is minimized including not all but only h < n ob-
servations, possible outliers would not affect the parameter estimate β̂. This leads to the
least trimmed squares (LTS) estimator which was introduced in Rousseeuw (1984). The
criterion can be written as follows:(

β̂LTS, Hopt

)
= argmin

(β,H)

∑
i∈H

ri(β)
2 , (10)

where H ⊆ {1, . . . , n} and |H| = h < n. Of course, the parameter h has to be chosen
carefully, in order to not exclude too much of the information from the regression. Note
that this criterion is equivalent to (8), if

σ̂ =

√√√√ h∑
i=1

r2(i)(β) ,

where r(i) are the ordered residuals. If h = bn/2c + 1, a breakdown point of (bn/2c −
p+ 1)/n is obtained (see Rousseeuw, 1984).

A fast algorithm for the LTS regression estimator is available in the R package ro-
bustbase:

> require(robustbase)

> ltsReg(y ~ x)

2.6 Least Median of Squares Regression
The advantage of robustness of the median over the mean is well known and can be
extended to the regression context: The LS criterion in (1) is equivalent to minimizing
the mean of squared residuals. Rousseeuw (1984) introduced the least median of squares
(LMS) estimator by replacing the mean with the median:

β̂LMS = argmin
β

med{ri(β)2 : i = 1, . . . , n} . (11)

This corresponds to (8) for σ̂ = med {ri(β)2}. Like for LTS regression, an asymptotic
breakdown point of 0.5 is obtained.

The LMS regression estimator is available in the R package MASS:
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> require(MASS)

> lqs(y ~ x, method = "lms")

However, a reliable solution in higher dimension is computationally expensive, and thus
this estimator will not be used in the simulations in Section 3.

2.7 MM Estimators
MM estimators (Yohai, 1987) reach a high level of robustness as well as high (tunable)
efficiency, by combining the properties of M estimators and S estimators. Let β̂0 be an S
estimator, and let σ̂ be the corresponding M estimator of scale, solving (9) for β = β̂0.
The MM estimator is then defined as local solution of

β̂MM = argmin
β

n∑
i=1

ρ

(
ri(β)

σ̂

)
, (12)

obtained with IRWLS and initial value β̂0.
A implementation of MM estimators is available in the package MASS (function rlm).

A fast alternative can be found in the R package robustbase:

> require(robustbase)

> lmrob(y ~ x)

3 Comparison
The robust regression methods listed in the previous sections have been intensively stud-
ied during the last years (decades). Accordingly, a lot is known about their theoretical
properties, in particular about their robustness properties. These properties, however, can
be partially weakened by the algorithms for the computation of the estimators. In R we
can find fast algorithms, like a fast algorithm for LTS regression (Rousseeuw and Van
Driessen, 2006), or a fast algorithm for regression S estimators (Salibian-Barrera and
Yohai, 2006) (and therefore for MM estimators). Without these fast implementations it
would be impossible to deal with larger data sets, but one has to be aware that the al-
gorithms not necessarily find the global optimum. This is in particular problematic if
the number of explanatory variables gets larger. In the following we compare the previ-
ously described regression methods in simulated data examples, where the true regression
parameters are known.

3.1 Different Contamination Schemes
In this simulation experiment we generate the data as follows:

xi ∼ N(0, Ip) and εi ∼ N(0, 0.5), for i = 1, . . . , n,
βj = 1/

√
p for j = 1, . . . p, and thus ‖β‖ = 1,

yi = x
>
i β + εi, for i = 1, . . . , n.
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This setting is referred to as uncontaminated data. In a second setting we create vertical
outliers by changing the first nout elements of the error term to

εi ∼ N(10, 0.1), and yi = x>
i β + εi, for i = 1, . . . , nout.

The third setting refers to leverage points, where the first nout observations of the explana-
tory variables and the response are replaced with

xi = (10, . . . , 10)> and yi = x>
i a, for i = 1, . . . , nout,

where a is orthogonal to β, and is constructed using a vector v with entries (−1)j by
a = v − (v>β)β, normalized to unit norm. For p = 1 we take a = −1. The leverage
points are thus placed on the least favorable position, see also Figure 5.

In this simulation we take n = 200 observations, and nout = 20 are replaced by
either vertical outliers or leverage points. The number p of explanatory variables is taken
from the set {1, 5, 10, 25, 50}. For the three scenarios, we apply the described regression
methods in m = 100 replications. As a measure of performance we use the mean squared
error between the estimated parameters in the l-th repetition, β̂

(l)
, and the true parameters

β:

MSE =
1

m

m∑
l=1

1

p
‖β̂(l) − β‖2 . (13)

The results are shown in Figure 2. The upper plot panels represent the uncontaminated
case, the middle plot panels are for the vertical outliers, and the lower plot panels for the
leverage points. The right panels zoom into the left figures to show some details. The
legend is placed in the lower left panel. In the uncontaminated case we see that, inde-
pendent of the dimension, LS regression gives the smallest MSE (as expected), closely
followed by M and MM regression. L1 and LTS regression are slightly worse, and S
regression is the worst among these estimators due to its low efficiency. When includ-
ing vertical outliers, LS regression is only reliable for p = 1. This situation is a special
case, caused by the specific design of the simulated data. For the other methods we see
that MM regression gives the best results, closely followed by LTS. For the scenario with
leverage points, MM estimation gives again the best performance, followed by LTS and
S estimation. Their resulting MSEs are even close to the uncontaminated case. Figure 3
(lower left panel) shows that LS, L1 and M regression break down, however, one gets the
impression that with increasing dimension these regression methods improve. This is not
correct for the following reasons. Since the leverage points were included in the orthog-
onal direction to β, the worst possible breakdown of a regression estimator is a vector of
estimated regression coefficients β̂ orthogonal to β, i.e. β̂

>
β = 0. Since the simulation

design is without intercept, for p = 1 we have β = 1 and the worst possible estimation
β̂ = −1. The resulting expected MSE according to (13) is 4, which, due to Figure 3,
is indeed attained for LS regression. For larger p, the expected MSE gives in the worst
possible situation

MSE =
1

p
(β̂ − β)>(β̂ − β) = 1

p
(β̂

>
β̂ + β>β − 0) =

2

p
,



M. Gschwandtner, P. Filzmoser 53

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Number of explanatory variables

M
S

E

1 5 10 25 50

No contamination

0.
00

00
0.

00
10

0.
00

20
0.

00
30

Number of explanatory variables

M
S

E

1 5 10 25 50

No contamination

0.
00

0.
02

0.
04

0.
06

0.
08

Number of explanatory variables

M
S

E

1 5 10 25 50

10% vertical outliers

0.
00

0
0.

00
4

0.
00

8

Number of explanatory variables

M
S

E
1 5 10 25 50

10% vertical outliers (zoom)

0
1

2
3

4

Number of explanatory variables

M
S

E

1 5 10 25 50

10% bad leverage points

LS
L1
M
S
MM
LTS

0.
00

0
0.

00
4

0.
00

8

Number of explanatory variables

M
S

E

1 5 10 25 50

10% bad leverage points (zoom)

Figure 2: Mean squared errors between estimated and true regression parameters for dif-
ferent numbers of explanatory variables. The upper panels are for the uncontaminated
case, the middle panels for vertical outliers, and the lower panes for leverage points. The
right panels zoom into interesting parts of the left panels. The legend is placed in the
lower left panel.

if we assume that β̂ has norm 1. LS regression is indeed close to these values, which have
to decrease with increasing dimension.

Figure 3 shows the average computation times in seconds of the regression meth-
ods (left: original scale, right: log-scale), using a standard personal computer. With an
increasing number of explanatory variables, the time for computing the S estimator in-
creases rapidly. Since the MM estimator is based on the S estimator, its computing time
is almost the same. The computation time for LTS also increases exponentially, but it is
much lower in absolute terms. The time increase for the other estimators is much smaller.

3.2 Breakdown

We use a very similar simulation design as above to evaluate the regression methods
(algorithms) for their breakdown behavior. The idea is to include an increasing amount of
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Figure 3: Average computation time (in seconds) depending on the number of explanatory
variables; left: original scale, right: log-scale.

contamination. The most severe contamination is to include leverage points, and thus the
simulation design is as follows:

xi ∼ N(0, Ip) and εi ∼ N(0, 0.1), for i = 1, . . . , n,
βj = 1/

√
p for j = 1, . . . p, and thus ‖β‖ = 1,

yi = x
>
i β + εi, for i = 1, . . . , n.

The first nout values of the response and the explanatory variables are replaced with

xi = (10, . . . , 10)>, and yi = x>
i a, for i = 1, . . . , nout,

where a is taken as before, and nout = f · n with f = 0, 0.05, . . . , 0.5 and n = 200.
Then the MSE from (13) is computed over m = 100 repetitions of the simulation. Figure
4 shows the results (legend in the bottom panels). Theoretically, the breakdown point of
the estimators S, MM and LTS, is 50 %, and also the default parameters in their R im-
plementations are set to achieve this maximum possible breakdown point. Practically, the
breakdown depends on the simulation setting, and mainly on the implemented algorithm.
We can see that with increasing number of explanatory variables, the breakdown occurs
much earlier. The S, MM and LTS estimator show a very comparable performance. On the
other hand, LS regression breaks down already with 5 % contamination. It is interesting
that for p = 50, L1 and M regression are still robust against 5 % contamination (leverage
points). This might be due to the special geometry in higher-dimensional spaces.

In a final simulation example we demonstrate that the breakdown of a regression line
can indeed depend on the regression problem. We use the simulation design described in
this subsection for 25 % contamination and p = 1. Here the leverage points are not placed
on one point but spread along the orthogonal direction for visual purposes. Figure 5 shows
a generated data set according to this setting. In the left plot we use εi ∼ N(0, 0.5), as
in the simulation of Section 3.1, in the right plot we increase the error variance using
εi ∼ N(0, 1). Thus, in the latter case, the relation between X and y becomes weaker, but
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Figure 4: Mean squared errors between estimated and true regression parameters for dif-
ferent proportions of contamination and different numbers of explanatory variables. The
right panels zoom into interesting parts of the left panels. The legend is placed in the
lower panels.

LS regression on the clean data still results in an R2 measure of 42 %. We applied MM
and LTS regression, and in the first case both methods are robust, while in the second
case they break down. This is not a consequence of the implemented algorithm, but of the
simulated data. One has to keep this behavior in mind when applying robust regression to
real data, where it can happen that the theoretical properties of the estimators can be quite
different from the empirical results.
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Figure 5: Simulated data example with 25 % leverage points. MM and LTS regression is
robust in the left panel, but fails in the right panel where the residual variance has been
increased.

4 Conclusions
The R package robustbase offers various possibilities for robust regression, in particu-
lar routines for computing the MM and LTS regression estimators (lmrob and ltsReg).
These functions are implementations of fast algorithms (Salibian-Barrera and Yohai, 2006;
Rousseeuw and Van Driessen, 2006), which can handle regression problems with a rea-
sonably large number of explanatory variables. As we have shown by simulations, the
theoretical robustness properties of these estimators can be far too optimistic in practice,
which is due to the algorithm but also due to the problem at hand. Especially in higher
dimension the estimators can break down already at moderate levels of contamination,
much lower than 50 %. This could be avoided by changing the default parameters of the
routines—a task that is not straightforward to the average user. This does not mean that
robust regression becomes useless in higher dimension; in contrary: Thanks to the fast
algorithms it is possible to obtain results in reasonable time, but these are a compromise
between computation time and optimal robustness properties.
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