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1 Introduction

Let X1, . . . , Xn and Y1, . . . , Yn be random samples from continuous distribution func-
tions F and G, respectively. Let XT and YT be two random variables serving as ran-
dom thresholds. Suppose XT = f1(X1, X2, . . . ) is specified by the first sample and
YT = f1(Y1, Y2, . . . ) is specified by the second sample. We define the exceedance statis-
tics AT as the number of Y ’s larger than XT , and BT as the number of X’s smaller than
YT .

These statistics are potentially useful for testing whether the two random samples
are from the same population. For example, the precedence test (van der Laan and
Chakraborti, 2001; Balakrishnan and Ng, 2006) is based on the number of observations
in the X-sample that are smaller than the rth order statistic Y(r) from the second sample.
Large values of this statistic lead to rejection of the null hypothesis about equality of the
two distributions against stochastic ordering. Precedence tests are useful in life-testing
experiments where the data become available naturally an ordered way. The experiment
is terminated after a certain number of failures.

In the general situation of testing equality of two distributions, the precedences and
exceedances are both necessary with respect to thresholds from both samples. The number
of exceedances in the Y -sample with respect to a threshold from the X-sample could be
used along with the number of precedences in the X-sample with respect to a threshold
from the Y -sample. Such a test has been defined by Stoimenova and Balakrishnan (2010)
using order statistics as thresholds.

In this paper, we derive the joint distribution of the number of precedences Br with
respect to the Y -sample and the number of exceedances Ar with respect to the X-sample.
We derive these distributions in the case when the two population distributions are the
same. We consider examples for the joint distribution of Br and Ar when there is shift in
location of the two sample distributions.
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2 Exact Distributions of Precedences and Exceedances

2.1 Exceedances from one Sample

Many special type of exceedance properties have been discussed in the literature. Re-
cently, Bairamov and Eryilmaz (2008) derived the joint distribution of precedence and
exceedance statistics from one sample with respect to lower and upper random thresholds
from a second sample. The sample and the thresholds were assumed to be independent.
More precisely, let ZL and ZR be two random variables termed the lower and upper ran-
dom thresholds. Let Y1, Y2, . . . be a sequence of independent random variables from
a common distribution G, and independent from ZL and ZR. As Bairamov and Eryil-
maz (2008) discussed this problem, these two thresholds are generally dependent random
variables, and may be viewed as a function of a random sample X1, X2, . . . , and hence,
ZL = f1(X1, X2, . . . ) and ZR = f2(X1, X2, . . . ).

Define the exceedance statistics

Sn(ZL) = #{i ≤ n : Yi < ZL} and Sn(ZR) = #{i ≤ n : Yi > ZR}. (1)

It is clear that Sn(ZL) and Sn(ZR) define the number of observations in the sample
Y1, Y2, . . . , Yn which precede (exceed) the level ZL (ZR) (see Figure 1, left).

Figure 1: Thresholds and exceedance statistics for the case of one sample (left) and the
case of two samples (right).

The following result (Bairamov and Eryilmaz, 2008) provides the joint probability
mass function of Sn(ZL) and Sn(ZR). For k + i ≤ n, we have

P (Sn(ZL) = k, Sn(ZR) = i)

=
n!

k!i!(n− k − i)!
E{F k(ZL)[1− F (ZR)]i[F (ZR)− F (ZL)]n−k−i},

where the expectation is taken with respect to the joint distribution of ZL and ZR.
The special case of ZR = ∞ corresponds to the popular distribution of a single ex-

ceedance statistic with respect to a random threshold. The exact distribution of this statis-
tic has been given in an integral form by Wesołowski and Ahsanullah (1998) as follows:

P (Sn(ZL) = k) =

(
n

k

)
E{G(x)k(1−G(x))n−k},

where the expectation is taken with respect to the distribution of ZL.
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2.2 Exceedances from two Samples
Consider two independent random samples of equal size from continuous distributions F
and G with probability densities f and g, respectively. Let X(1) < · · · < X(n) be the
ordered first sample and Y(1) < · · · < Y(n) be the ordered second sample.

For 0 ≤ r < n, specify the threshold variables based on both samples to be the (1+r)-
th order statistic from the Y -sample and (n− r)-th order statistic from the X-sample (see
Figure 1, right). Then, the exceedance statistics of interest from the two samples are

Ar = the number of Y ’s larger than X(n−r)
Br = the number of X’s smaller than Y(1+r).

(2)

For unbalanced sample size case we can modify these definitions suitably. Instead of
taking r, we need to take a proportion, say p, and take r1 = [(m + 1)(1 − p)] and r2 =
[(n + 1)p], where [·] denotes the integer part. Clearly, these r1 and r2 will correspond to
(1− p)-th and p-th sample quantiles from the two samples. In this section we have results
for the balanced sample size case. For the unbalanced case, we derive an asymptotic result
in the Section 4.

First, we will derive the joint distribution of Ar and Br for arbitrary continuous dis-
tributions F and G. For a fixed r, 0 ≤ r < n, two cases arise for P (Ar = k,Br = i)
according to the ordering of the observations. Note that i < n− r iff k < n− r.

Consider k exceedances in the Y -sample with respect to X(n−k) and i precedences in
the X-sample with respect to Y(1+r). Event {Ar = k} means that the (n − r)-th ordered
observations from the X-sample is between the (n − k)-th and (n − k + 1)-th ordered
observations from the Y -sample, while event {Br = i} means that the (1 + r)-th ordered
observation from the Y -sample is between the i-th and (i + 1)-th ordered observations
from the X-sample.

Theorem 1. 1. The joint distribution of Ar and Br for 1 ≤ k ≤ n − r − 2 and
0 ≤ i ≤ n− r − 1 is given by

P (Ar = k,Br = i) =
r∑
q=0

n−i−r−1∑
t=0

n!

i!t!(n− i− q − t)!q!

×E
{
[F (Y1)]

i[F (Y2)− F (Y1)]t[F (Y3)− F (Y2)]n−i−q−t[1− F (Y3)]q
}
, (3)

where Y1, Y2 and Y3 represent random variables from distribution G and the expec-
tation is taken with respect to the joint density of the order statistics Y(1+r), Y(n−k)
and Y(n−k+1) from distribution G;

2. For 0 ≤ i ≤ n− r − 1, we have

P (Ar = n− r − 1, Br = i)

=
r∑
q=0

n!

i!q!(n− i− q)!
E
{
[F (Y1)]

i[F (Y2)− F (Y1)]n−i−q[1− F (Y2)]q
}
, (4)

where the expectation is taken with respect to the joint density of Y(1+r) and Y(2+r);
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3. For 0 ≤ i ≤ n− r − 1, we have

P (Ar = 0, Br = i)

=
n−r−i−1∑

t=0

n!

i!t!(n− i− t)!
E
{
[F (Y1)]

i[F (Y2)− F (Y1)]t[1− F (Y2)]n−i−t
}
,(5)

where the expectation is taken with respect to the joint density of Y(1+r) and Y(n).

Proof: The proof of (3) uses order statistics approach. Conditional on

Y(1+r) = y1, Y(n−k) = y2, Y(n−k+1) = y3, (6)

we consider the following events:

Wq,t :=


i X-observations preceding y1
q X-observations exceeding y3
t X-observations between y1 and y2
n− i− q − t X-observations between y2 and y3

for any 0 ≤ q ≤ r and 0 ≤ t ≤ n− i− 1.
The probability of Wq,t is evidently given by the multinomial probability

P (Wq,t) =
n!

i!t!(n− i− q − t)!q!
[F (y1)]

i[F (y2)− F (y1)]t

×[F (y3)− F (y2)]n−i−q−t[1− F (y3)]q , for y1 < y2 < y3. (7)

The conditional probability of {Ar = k,Br = i}, given (6), is obtained by summing (7)
over all q = 0, . . . , r and t = 0, . . . , n − i − 1. Hence, the unconditional probability of
{Ar = k,Br = i}, with respect to the joint density of Y(1+r), Y(n−k), and Y(n−k+1), is

P (Ar = k,Br = i) =
r∑
q=0

n−i−r−1∑
t=0

n!

i!t!(n− i− q − t)!q!

∞∫
−∞

∞∫
y1

∞∫
y2

[F (y1)]
i

×[F (y2)− F (y1)]t[F (y3)− F (y2)]n−i−q−t[1− F (y3)]q

×g1+r,n−k,n−k+1:n(y1, y2, y3) dy3 dy2 dy1 , (8)

where g1+r,n−k,n−k+1:n is the joint density of the three order statistics Y(1+r), Y(n−k), and
Y(n−k+1) from the Y -sample given by (see David and Nagaraja, 2003; Arnold, Balakrish-
nan, and Nagaraja, 2008)

g1+r,n−k,n−k+1:n(y1, y2, y3) =
n!

r!(n− k − r − 2)!(k − 1)!

×[G(y1)]r[G(y2)−G(y1)]n−k−r−2[1−G(y3)]k−1g(y1)g(y2)g(y3) , y1<y2<y3, (9)

and g is the density corresponding to G. We, therefore, obtain (3).
Similarly, the joint distribution can be represented for 0 ≤ i ≤ n − r − 1 and k =

n− r− 1 or k = 0 using the joint density of two order statistics from distribution G, thus
obtaining the expressions in (4) and (5) 2
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The theorem is true for any two continuous distributions F and G, and can be applied
to specific distributions.

In the case when n− r ≤ i, k ≤ n, the ordering of the observations can be viewed as
a symmetric image of the ordering for the first case with the following switches: F ↔ G;
(r + 1)↔ (n− r); i↔ (n− k); k ↔ (n− i). Analogous expressions to (3), (4) and (5)
can, therefore, be easily derived in this case.

3 Null Distribution
Suppose that the distribution functions F andG of the samplesX1, . . . , Xn and Y1, . . . , Yn
are equal which is often the null hypothesis of interest. Then, the joint distribution of the
number of precedences and exceedances is as follows.

Theorem 2. The joint distribution of Ar and Br, under H0 : F (x) = G(x), is given by

P (Ar = k,Br = i|H0) =

(
r+k
r

)(
r+i
r

)(
2n
n

) (
2n− 2r − i− k − 2

n− r − i− 1

)
, (10)

for 0 ≤ i, k ≤ n− r, and

P (Ar = k,Br = i|H0) =

(
2n−r−k−1
n−r−1

)(
2n−r−i−1
n−r−1

)(
2n
n

) (
k + i− 2n+ 2r

i− n+ r

)
, (11)

for n− r ≤ i, k ≤ n.

Proof: The proof of (10) follows by substituting G(x) = F (x) in the representation (3)
of the joint distribution of Ar and Br. The proof for k = n − r − 1 and k = 0 is similar
by using representations (4) and (5) of the joint distribution.

Let 1 ≤ i ≤ n− r− 1 and 1 ≤ k ≤ n− r− 1 be fixed. Substituting G(x) = F (x) in
the representation (3) of the joint distribution of Ar and Br, we obtain

P (Ar = k,Br = i) =
n!n!

r!i!(n− k − r − 2)!(k − 1)!

r∑
q=0

n−i−r−1∑
t=0

1

t!(n− i− q − t)!q!

×
∞∫

−∞

∞∫
y1

∞∫
y2

[F (y1)]
i+r[F (y2)− F (y1)]t+n−k−r−2[F (y3)− F (y2)]n−i−q−t

×[1− F (y3)]q+k−1f(y1)f(y2)f(y3) dy3 dy2 dy1 . (12)

Upon substituting ui = 1 − F (yi), i = 1, 2, 3, and dui = −f(yi) dyi, the integral in (12)
is simplified as

Z =

1∫
0

u1∫
0

u2∫
0

(1− u1)i+r(u1 − u2)t+n−k−r−2(u2 − u3)n−i−q−tuq+k−13 du3 du2 du1 .
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Next, by substituting w1 = u3/u2 with du3 = u2 dw1, and further w2 = u2/u1 with
du2 = u1 dw2, we obtain

Z =

1∫
0

u1∫
0

1∫
0

(1− u1)i+r(u1 − u2)t+n−k−r−2un−i−q−t2 (1− w1)
n−i−q−tuq+k−12

×wq+k−11 u2 dw1 du2 du1

= B(q + k, n− i− q − t+ 1)

1∫
0

u1∫
0

(1− u1)i+r(u1 − u2)t+n−k−r−2un−i−t+k2 du2 du1

= B(q + k, n− i− q − t+ 1)

1∫
0

1∫
0

(1− u1)i+rut+n−k−r−21 (1− w2)
t+n−k−r−2

×un−i−t+k1 wn−i−t+k2 u1 dw2 du1

= B(q + k, n− i− q − t+ 1)B(n− i− t+ k + 1, t+ n− k − r − 1)

×B(2n− r − i, i+ r + 1) ,

where B(a, b) =
∫ 1

0
ta−1(1− t)b−1 dt denotes the complete beta function.

Now substituting the above expression for Z in (12), and then expressing the beta
functions in terms of gamma functions and performing some simple algebra, we get

P (Ar = k,Br = i|H0) =

(
r+k
r

)(
r+i
r

)(
2n
n

) (
2n− 2r − i− k − 2

n− r − i− 1

)
. (13)

Further, as we have noted, the distribution of Ar and Br for the case i ≥ n − r and
k ≥ n− r is symmetrical to the case i, k ≤ n− r− 1 with appropriate replacements. So,
if we denote ψ0(n, r, k, i) to be the right side of (13), then for n− r ≤ i, k ≤ n, we get

P (Ar = k,Br = i|H0) = ψ0(n, n− r − 1, n− i, n− k)

=

(
2n−r−k−1
n−r−1

)(
2n−r−i−1
n−r−1

)(
2n
n

) (
k + i− 2n+ 2r

i− n+ r

)
. (14)

Now, by combining (13) and (14), we obtain the required result. 2

4 Notes on the Limiting Distributions
In this section, we derive asymptotic properties of the distributions of properly normalized
exceedance statistics connected with infinitely increasing sample sizes.

4.1 Exceedances from one Sample
We start with the limiting behaviour of the exceedance statistic Sn(ZL) which is equal
to the number of observations in the sample Y1, Y2, . . . , Yn preceding the level ZL (see
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Equation (1)). The result is due to Wesołowski and Ahsanullah (1998), and is as follows.
For n→∞, we have

1

n
Sn(ZL)

d−→ G(ZL) ,

where G is the distribution function of the sequence Y .
The asymptotic joint distribution of (Sn(ZL)/n, Sn(ZR)/n) is due to Bairamov and

Eryilmaz (2008). For n→∞, they showed that(
Sn(ZL)

n
,
Sn(ZR)

n

)
d−→ (G(ZL), G(ZR)) .

4.2 Exceedances from two Samples
The limiting behaviour of the joint distribution of exceedance statistics with respect to
two samples depends on the tails of the parent distributions. Note that the order statistic
Y(1+r) is a point estimate of the p-th quantile of the Y -distribution, where 1 + r = [np].
Similarly, X(n−r) is a point estimate of the (1−p)-th quantile of theX-distribution. Thus,
Br counts the number of observations from the X-sample before G−1(p) and Ar counts
the number of observations from the Y -sample after F−1(1 − p). Hence, as n,m → ∞
and r/m→ p, we have

Br

m

d−→ F (G−1(p)) and
Ar
n

d−→ G(F−1(1− p)) .

5 Monte Carlo Simulation for Location-Shift Alternative
In order to evaluate the distributional properties of different exceedance statistics specified
by r, we consider the location-shift alternative of the form F (x) = G(x + θ) for some
θ > 0, where θ is the shift in locatiion between the two distributions. We generate samples
of size n = 25 from the following three distributions.

1. Uniform distribution in [0, 1],

2. Standard normal distribution,

3. Standard exponential distribution with cdf F (x; θ) = 1− e−x/θ, x > 0, θ > 0.

The values of (Ar, Br), with r = 0, 4 and 8, were determined through Monte Carlo
simulations when the shift is θ = 0, 0.5, and 0.75.

In Figure 2 we have presented the joint distribution of Ar and Br for the Uniform
distribution [0, 1] when n = 25. In order to obtain the estimated exceedance statistics
Ar and Br, we generated 100000 sets of data from U [0, 1] and U [0 + θ, 1 + θ] for the
first and second samples, respectively. The upper row plots show the joint distribution
in case of equal distributions, i.e., no shift in the second sample. From left to right, we
have the distributions of (A1, B1), (A4, B4) and (A8, B8). The middle row plots show
the same joint distribution for a shift of 0.5 in the second distribution while the Lower
row corresponds to a shift of 0.75 in the second distribution. In Figures 3 and 4, we have
presented similar plots for the cases of Normal and Exponential distributions, respectively.
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Figure 2: Joint distribution for the Uniform distribution [0,1] when n = 25. Upper row:
no shift in the second distribution. From left to right, the r parameter is 0, 4 and 8.
Middle row: shift of 0.5 in the second distribution. Lower row: shift of 0.75 in the second
distribution.

From Figures 2 – 4 we see that the joint distribution of (Ar, Br) is quite sensitive to
the size of the shift for any of the parent distributions. For n = 25, the distribution for
different r is located at different centers. Clearly, for larger r the amount of information
relative to the sample size is greater. However, for small samples, such as 8 to 15, the
exceedance statistics for r = 0 gives enough information for the shift in either symmetric
or right-skewed distributions. In other words, this means that when n = 8, the number
of observations from the X-sample before the first observation in the Y -sample and the
number of observations from the Y -sample after the last observation in the X-sample,
provide enough information to make a good decision about the difference between the
two distributions, (in terms of location, of course).
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Figure 3: Joint distribution for the Normal distribution [0,1] when n = 25. Upper row:
no shift in the second distribution. From left to right, the r parameter is 0, 4 and 8.
Middle row: shift of 1 in the second distribution. Lower row: shift of 1.5 in the second
distribution.
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Figure 4: Joint distribution for the Exponential distribution E(1) when n = 25. Upper
row: no shift in the second distribution. From left to right, the r parameter is 0, 4 and 8.
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