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Abstract: Unlike the mean, the standard deviation σ is a vague concept. In
this paper, several properties of σ are highlighted. These properties include
the minimum and the maximum of σ, its relationship to the mean absolute
deviation and the range of the data, its role in Chebyshev’s inequality and
the coefficient of variation. The hidden information in the formula itself is
extracted. The confusion about the denominator of the sample variance being
n − 1 is also addressed. Some properties of the sample mean and variance
of normal data are carefully explained. Pointing out these and other proper-
ties in classrooms may have significant effects on the understanding and the
retention of the concept.

Zusammenfassung: Anders als beim Mittel unterliegt die Standardabwei-
chung σ einem vagen Konzept. In diesem Aufsatz werden verschiedene
Eigenschaften von σ hervorgehoben. Diese Eigenschaften inkludieren das
Minimum und das Maximum von σ, ihre Beziehung zur Mean Absolute
Deviation und der Spannweite der Daten, ihre Rolle in der Chebyshev Un-
gleichung und dem Variationskoeffizient. Die versteckte Information in der
Formel selbst ist extrahiert. Die Konfusion über den Nenner der Stichproben-
varianz (n − 1) wird auch angesprochen. Einige Eigenschaften des Stich-
probenmittels und der Stichprobenvarianz von normalverteilten Daten sind
sorgfältig erklärt. Weist man auf diese und andere Eigenschaften in der
Klasse hin, so kann dies maßgebliche Effekte auf das Verstehen und gegen
Vorbehalte dieses Konzepts haben.

Keywords: Coefficient of Variation, Standard Deviation, Mean Absolute
Error, Chebyshev’s Inequality.

1 Introduction
Unlike other summary quantities of the data, the standard deviation is a concept that is not
fully understood by students. The majority of students in elementary statistics courses,
though it can calculate the standard deviation for a set of data, does not understand the
meaning of its value and its importance. The purpose of this short paper is to highlight
some of the known properties of the standard deviation that are usually not discussed in
courses.

Assume first that we have a finite population that consists of N units. Denote these
elements by u1, u2, . . . , uN . Let u(1), u(2), . . . , u(N) be the ordered data. In later sections,
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we will consider the case of random samples taken from a population. The most com-
monly used quantities to summarize or describe the population elements are the mean

µ =
1

N

N∑
i=1

ui ,

the median

med =
1

2

(
u(b(N+1)/2c) + u(bN/2c+1)

)
,

the variance

σ2 =
1

N

N∑
i=1

(ui − µ)2 ,

and the standard deviation

σ =

√√√√ 1

N

N∑
i=1

(ui − µ)2

as also the mean absolute deviation

MAD =
1

N

N∑
i=1

|ui − µ|

and the range
range = max−min = u(N) − u(1) .

2 Some Basic Properties of the Standard Deviation

Clearly,
∑N

i=1(ui − µ) = 0. Thus, µ is the only number that makes the sum of deviations
zero. A measure of variability of the data can be based on (ui − µ)2 or on |ui − µ|. Thus,
one can use σ2 or MAD. The unit of σ2 is the square of the unit of the data, while σ and

MAD have the same unit as the data. Now since
(∑N

i=1(ui − µ)2
)1/2

≤ ∑N
i=1 |ui − µ|,

we have the following inequality that relates σ to MAD:

σ ≤
√

NMAD .

Using some simple calculus, it can easily be shown that

min
t

[
N∑

i=1

(ui − t)2

]
=

N∑
i=1

(ui − µ)2 ,

while

min
t

N∑
i=1

|ui − t| =
N∑

i=1

|ui −med| .



M. F. Al-Saleh, A. E. Yousif 195

Thus, µ is the reference point that minimizes the sum of squared distances, while in the
case of absolute distances, the reference point is the median. Therefore, we may raise the
following question: Don’t you think that in defining the MAD,

1

N

N∑
i=1

|ui −med|

should be used instead of
1

N

N∑
i=1

|ui − µ| ?

3 Average of Squares and the Square of the Average

Since
∑N

i=1(ui − µ)2 =
∑N

i=1 u2
i − nµ2 > 0, assuming not all the ui are equal, we have

(a special case of the Cauchy-Schwarz inequality)

1

n

N∑
i=1

u2
i >

(
1

n

N∑
i=1

ui

)2

,

i.e.
u2 > ū2 .

The inequality says that the average of squares is larger than the square of the average.
The difference between the left and the right side of the inequality is the variance! This
can neatly be put as: the variance is the difference between the average of the squares and
the square of the average.

4 Minimum and Maximum Value of the Standard Devi-
ation

For u1, u2, . . . , uN the minimum possible value of σ is zero, which occurs when u1 =
· · · = uN . It can be shown that if a ≤ ui ≤ b (∀i), then the maximum possible value of
σ occurs when half of the values are equal to a and half of them are equal to b, provided
that N is even (this also holds with a slight modification, if N is odd):

max
a≤(u1,u2,...,uN )≤b

[
1

N

N∑
i=1

(ui − µ)2

]
=

(b− a)2

4
,

i.e.
σ ≤ b− a

2
=

1

2
range .

This can be seen easily if our data is binary with proportion p of one kind and 1 − p of
another kind. In this case, σ2 = p(1 − p), with the maximum value of 1/4 occuring at
p = 1/2.
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A large value of σ is an indication that the data points are far from their mean (or far
from each other), while a small value indicates that they are clustered closely around their
mean. For example, when dealing with students marks u, 0 ≤ u ≤ 100 say,

0 ≤ σ ≤ 100− 0

2
= 50 .

A very small value of σ means that all students have obtained almost the same grade.
So the test was unable to distinguish between students’ abilities, putting them in one
very homogeneous group. An extreme value of σ means that the test was too strict and
classifies the students into two very different groups (strata). Hence, the value of σ can be
used as a guide on how many different strata (a stratum is a set of relatively homogeneous
measurements) a set of measurements can have. Thus, σ can be used as a measure of
discrimination. If the marks have a normal curve, then about 95% of the values are within
two standard deviations from the mean. Thus, the range is about four standard deviations,
i.e. σ ≈ 100/4 = 25.

In repeated measurements on the same object using the same scale, σ can be regarded
as a measure of precision. A very small value of σ indicates that the scale is very precise
and a large value indicates that the scale is imprecise. Note that:

precise scale9 accurate scale!

If an object has an actual weight of 60 kg, but a weighing scale gives in five trials the
measurements 70.04, 70.05, 70.06, 70.03, and 70.05 kg, then the scale can be regarded as
being very precise, because the values are very close to each other (very small standard
deviation) but not accurate because they are far away from the actual value (60 kg). Hence,
a precise scale does not have to be an accurate one. Thus, σ can be used as a measure of
precision.

5 Jointly considering Mean and Standard Deviation
The following inequality gives a further indication of the importance of the standard de-
viation:

Chebyshev’s or Chebyshev-Bienaymé’s Inequality: For any k > 0

Pr(|X − µ| < kσ) ≥ 1− 1

k2
.

Thus, for any set (the population) we can say that at least (1 − 1
k2 )100% of the elements

belong to the interval
(µ− kσ, µ + kσ) .

This percentage is at least 75.0%, 88.9%, 93.8%, and 96.0% for k = 2, 3, 4, 5, re-
spectively. For a normal population the corresponding percentages are: 95.4%, 99.7%,
99.99%, and 100.0% while for the standard double-exponential distribution, these per-
centages are 94.4%, 98.0%, 99.6%, and 99.9%.
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In particular, at least 50% of the data set is in the interval

(µ−
√

2σ, µ +
√

2σ) .

The Chebyshev-Bienaymé inequality is sharp and equality holds if the population
consists of three values, c, 0, and −c say, such that 50

k2 % are c, 50
k2 % are −c, and the

remaining 100(1− 1
k2 )% are 0.

If X1, X2, . . . , Xn is a random sample from a population with mean µ and variance
σ2, then it may not be true that at least (1 − 1

k2 )100% of the data points belong to the
interval (µ−kσ, µ+kσ). What is still true is that at least (1− 1

k2 )100% of the data points
belong to the interval (x̄ − ks, x̄ + ks), where x̄ and s are the sample mean and sample
standard deviation.

6 Comparison of Two Data Sets
The standard deviation σ has the same unit as the measurements. This makes it not a
suitable measure to use in order to compare data sets with different units of measurements
(for example temperature in F◦ or in C◦, weight in kg or in pounds, etc.). Even when the
units of measurements are the same, it may also not be a suitable measure to compare the
variability in two or more data sets. Note that, for any constant c, the standard deviation
of the data set {ui : i = 1, . . . , N} is the same as the standard deviation of {ui + c : i =
1, . . . , N}. For example the two sets {10, 20, 30, 40, 50} and {106 + 10, 106 + 20, 106 +
30, 106 + 40, 106 + 50} have the same value of σ = 10

√
2 = 14.14. However, it is very

clear that the variability in the second set is negligible when compared to that of the first
set.

A normalized measure of variation that can be used to compare two data sets is called
the coefficient of variation (CV):

CV =
σ

|µ| , µ 6= 0 .

The CV is unit free. For the above two sets, it is 0.47 for the first set and almost zero for
the second one.

6.1 Comparison using the Difference or the Ratio
To compare two quantities, one may obtain their difference or their ratio. If the two
quantities are very close to zero, then their ratio is more informative than their difference.
For example, if the probability of getting a disease in one place is p1 = 0.0004 and
in another place is p2 = 0.0001, then the difference is negligible and, thus, misleading
while the ratio is p1

p2
= 4, which is more informative. A similar argument applies if the two

quantities are very close to 1. In general, if two quantities are extremely large or extremely
small then they should be compared using their ratio rather than their difference, because
the difference can be misleading. Now consider the following argument:

1

n

N∑
i=1

u2
i >

(
1

n

N∑
i=1

ui

)2

= µ2
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σ2 =
1

n

N∑
i=1

u2
i − µ2 > 0

CV2 =
1
n

∑N
i=1 u2

i

µ2
− 1 > 0 .

Thus, it is interesting to note that σ is a measure that is obtained based on the dif-
ference between the average of squares and the square of the average of the data, while
CV is a measure that is obtained based on the ratio of the same two quantities. Based on
this observation, one may conclude when to use σ and when to use CV as a measure of
variation.

6.2 Problems with the CV

• It cannot be used with a population that has zero mean. Even when µ is close to
zero, the CV is sensitive to small changes in the mean.

• The data {100cm, 200cm, . . . , 1000cm} has the same CV as {1m, 2m, . . . , 10m},
while the CV of {10C◦, 15C◦, . . . , 50C◦} is 0.46 but the CV of {50F ◦, 59F ◦, . . . ,
122F ◦} is 0.29. Thus in order to use the CV in comparing data sets, the base of the
units should be the same.

Thus, the CV does not truly remove the effect of the unit of measurements.
The standard deviation can be used to standardize the score to allow the comparison

between different sets Z = (X − µ)/σ, the comparison of relative standards of level can
be done using standard scores (Bluman, 2007). Other use of the standard deviation is in
the standardized moment which is given by µk/σ

k, where µk is the kth moment about the
mean. The first standard moment is zero, the second standard moment is one, the third
standard moment is called the skewness, and the fourth standard moment is called the
kurtosis.

7 The Sample Mean and Variance

Assume that we have a random sample X1, X2, . . . , Xn from a population with mean µ
and variance σ2. The sample mean and variance are defined as:

X̄ =
1

n

n∑
i=1

Xi , S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 .

Since dividing by n is more natural and seems to be logical, many students wonder why
the formula calls for dividing by n− 1. We face some difficulties in convincing students
of reasons behind this specific divisor.
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7.1 Supporting Arguments for the n− 1 Divisor
For more details on this aspect see Al-Saleh (2005).

Unbiasedness of S2: When the underlying population that we sample from is infinite
(i.e. N = ∞), this divisor is the only divisor that makes S2 an unbiased estimator of the
population variance σ2, i.e. E(S2) = σ2. Now,

n∑
i=1

(Xi − X̄)2 =
n∑

i=1

(Xi − µ)2 − n(X̄ − µ)2 .

Therefore, dividing by n or any other divisor greater than n− 1 will give, on the average,
values of S2 that are smaller than the population variance σ2. Hence, in using S2 to
estimate σ2, the divisor n − 1 provides the appropriate correction. In other words, the
above argument says that the (n − 1) is used because it is the only choice that makes S2

an unbiased estimator of σ2.
But, what about S, the sample standard deviation. Actually, by applying Jensen´s

inequality we get E2(S) < E(S2) = σ2 and hence E(S) < σ which means that S is
biased. So why not choose a quantity that makes S unbiased? Also, if N is finite then S2

is biased because
E(S2) =

N

N − 1
σ2 .

Thus
N − 1

N

1

n− 1

n∑
i=1

(Xi − X̄)2

is the unbiased estimator of σ2 and not S2. That makes this argument about the division
by (n− 1) even harder.

The Indefinite of 0/0 Argument: The sample variability is used to assess the variability
in the population. Clearly, we can not assess the variability of a population based on a
sample of size one. We should have at least two data points from the population to get
an idea about the variability in the population. Defining S2 with n− 1 as divisor reflects
this intuitive argument. If n = 1 then the formula of S breaks down giving the indefinite
value 0/0, which reflects the impossibility of estimating the variability of the population
elements based on one observation (Samuels and Witmer, 1999; Bland, 1995).

The Degrees of Freedom Argument: This argument is based mainly on the fact that

n∑
i=1

(Xi − X̄) = 0 .

Hence, once the first n − 1 deviations have been obtained the last becomes known: We
have the freedom to choose only (n − 1) deviations. So, we are not actually averaging
n unrelated numbers, but only n − 1 unrelated pieces of information. Hence the divisor
should be n− 1. Most statisticians refer to this number as the degree of freedom (Heath,
1995; Moore and McCabe, 1993; Samuels and Witmer, 1999; Siegal and Morgan, 1996).
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Clever students respond to this argument by saying, although we have only n − 1
unrelated numbers or pieces of information, we are still adding n not n−1 numbers. Fur-
thermore, in the case of a finite population, {u1, u2, . . . , uN}, say, we also have

∑N
i=1(ui−

µ) = 0, but we call for N as divisor, not N − 1, in defining the formula of σ2. The same
thing is noticed in defining the formula of MAD = 1

n

∑n
i=1 |Xi − X̄|. Thus, clever stu-

dents can easily notice our inconsistency here.
Therefore, a more convenient way of introducing students to the concept of standard

deviation or variance is through the separation of descriptive and inferential statistics.

• Assume that we have a random sample of n points from a population with mean µ
and variance σ2. The variability in the data set is measured by the standard devi-
ation, which is naturally defined as the positive square root of the average squared
deviations. Thus, using n as divisor instead of n− 1 gives

S =

√√√√ 1

n

n∑
i=1

(Xi − X̄)2 .

If n = 1, then S = 0, a acceptable value for a sample of size one.

• Now, when moving from descriptive to inferential statistics, we want to use the
data set to estimate the unknown parameters µ and σ2. For this we can use different
available methods of estimating the parameters of the population. For example, if
we assume that the population is infinite then X̄ is an unbiased estimator of µ and

n
n−1

S2 is an unbiased estimator of σ2. If the population is of size N , then again X̄

is an unbiased estimator of µ while (N−1)n
N(n−1)

S2 is an unbiased estimator of σ2.

8 Normal Population
Assume that the data X1, X2, . . . , Xn is a random sample from a normal population with
mean µ and variance σ2. Then (X̄, S2) is a complete sufficient statistic for (µ, σ2).

The following statements are some simple meanings of the above fact that can be
easier understood by students:

• (X̄, S2) being sufficient means that all information in the sample X1, X2, . . . , Xn

about (µ, σ2) is contained in (X̄, S2). Given the value of (X̄, S2) an equivalent
data set can be reproduced. The difference between the information in (X̄, S2) and
(X1, X2, . . . , Xn) is ancillary (of no use).

• (X̄, S2) is actually minimal sufficient which means that its value can be obtained
from any other sufficient statistic. Actually it is the sufficient statistic of the lowest
dimension.

• (X̄, S2) is complete, which means that any nontrivial function of (X̄, S2) carries
some information about (µ, σ2).
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For a random sample from a normal population with mean µ and variance σ2, the
statistics X̄ and S2 are independent. Actually, X̄ and S2 are independent only if the
random sample is from a normal distribution.

• To better see the above fact, a large number of x̄ and s2 are generated from several
distributions. The plots of x̄ vs. s2 are given in Figure 1. The statistical package
Minitab was used to generate samples from five populations: normal, logistic, log-
normal, exponential, and binomial. For each sample the mean x̄ was stored in a
column and the standard deviation was stored in a column of the Minitab work-
place. The contents of the two columns are then plotted.

(a) (b)

(c) (d)

(e)

Figure 1: Plots of simulated empirical variances depending on the respective empirical
means for data generated from normal (a), logistic (b), lognormal (c), exponential (d),
and binomial (e) populations.
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