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Abstract: Out-of-sample prediction for the final portion of a sample isa
popular tool for model selection in model-based forecasting. We suggest to
add a simulation step to this exercise, where pseudo-samples are generated
(parametrically bootstrapped), conditional on the observed data and on any
of the candidate models, and these pseudo-samples are predicted using any
of the candidate models. The technique is demonstrated by anartificial uni-
variate time-series specification that highlights the mainfeatures, and also by
a real-life multivariate application to agricultural price data.

In the exemplary data set on quarterly European barley prices, strong sea-
sonal variation is obvious and represents a crucial featurein constructing
good models for short-run prediction. Following some preliminary statis-
tical testing, we restrict focus to vector autoregressionswith deterministic
seasonal cycles. We also consider a restricted specification that imposes a
common seasonal cycle on all countries. While the restriction is formally
rejected by hypothesis tests, it assists in reducing prediction errors. The para-
metric bootstrap experiments show that this improvement byusing an invalid
restriction is systematic.

Zusammenfassung:Ex-ante Prognosen für den zeitlich j̈ungsten Teil der
Stichprobe sind ein populäres Werkzeug der Modellwahl in modellbasierter
Prognose. Wir schlagen vor, einen Simulationsschritt zu diesem Werkzeug
hinzuzuf̈ugen, in welchem Pseudo-Stichproben generiert werden (parame-
trisches Bootstrapping), die den beobachteten Daten und jedem der Kandi-
datenmodelle entsprechen. Hierauf werden die Pseudo-Stichproben durch
jedes der Kandidatenmodelle prognostiziert. Die Technik wird sowohl an
Hand eines k̈unstlichen univariaten Zeitreihenmodells demonstriert,wie auch
an einer realen Anwendung auf landwirtschaftliche Preise.

In dem Beispiel von Quartalsdaten europäischer Gerstenpreise ist saisonale
Variation deutlich erkennbar. Diese stellt eine wichtige Charakteristik dar,
welche zur Erstellung guter Modelle für kurzfristige Prognosen entschei-
dend ist. Auf Grund einiger statistischer Voruntersuchungen konzentrieren
wir uns auf Vektorautoregressionen mit deterministischenSaisonzyklen. Wir
erwägen auch eine eingeschränkte Spezifikation, die einen gemeinsamen Sai-
sonzyklus f̈ur alle Länder annimmt. Obwohl diese Restriktion formell von
den Daten abgelehnt wird, ist sie doch zur Optimierung der Prognose geeignet.
Das parametrische Bootstrap-Experiment zeigt, dass die Verbesserung der
Prognoseg̈ute systematisch ist.
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1 Introduction

In model-based forecasting, researchers customarily firstspecify a small set of candidate
model classes and then select a member of this set according to a criterion. Some base
their choice directly on information criteria (IC), while others prefer the model that dom-
inates its rivals with regard to out-of-sample prediction (OOS), i.e. the ultimate purpose
of the selected model, over a portion of the available sample.

The correspondence of the true model and the best forecasting model is not trivial.
Under the restrictive assumption of correct specification—that is, the true data-generating
model is contained in one of the candidate model classes—a consistent estimator yields
the correct parameter value in large samples, and the well known textbook theorem that
conditional expectation minimizes the squared forecasting error (MSE) guarantees that
the true model also optimizes prediction. For the sample sizes that are typical of eco-
nomics data, the comfort given by this basic fact is limited at best. A simple model that
restricts some small and poorly identified parameters at zero will dominate its correctly
specified rival in comparatively large samples. We demonstrate this feature by a small
artificial example for autoregressive processes.

It is surprising that particularly the econometric literature so often recommends sub-
jecting the forecaster’s preliminary model choice to a battery of specification tests, thus
implicitly equating mis-specification aspects and deficiencies of the forecasting model.
While this step tends to increase the prediction model’s sophistication unduely, a recent
emphasis on testing the significance of differences in forecasting performance relative to
a benchmark model tends to impose an excessive penalty on complexity. In our view,
neither approach helps in identifying the optimum prediction model, unless there are ad-
ditional costs or benefits involved in using sophistication, which cannot be captured by
usual loss criteria such as MSE.

There is a rich literature on the relationships between the two main selection paradigms,
i.e. out-of-sample prediction over a test sample (OOS) and information criteria. Origi-
nally, information criteria were inspired by the forecaster’s problem—hence, the name of
the FPE criterion, ‘final prediction error’, which is asymptotically equivalent to Akaike’s
AIC. We just mention Shibata (1980) who shows that lag-order selection via AIC opti-
mizes asymptotic predictive properties among autoregressions, and, more recently, Wei
(1992) who establishes that OOS optimization defines a validinformation criterion for
quite general selection problems.

In econometrics, Inoue and Kilian (2006) have contributed to this literature by ob-
taining the surprising result that information criteria dominate OOS searches. This result,
however, focuses on asymptotic properties, while true-life forecasters may rather be inter-
ested in small-sample performance. Moreover, Inoue and Kilian (2006) assume that, even
in large samples, OOS optimization is restricted to a portion of the sample, which leads
to an obvious loss of information as compared to informationcriteria, to cross validation,
or to Wei’s assumptions.

The traditional separation of the sample into a larger training and a smaller test sample
may limit the power of the OOS under correct specification. Inreal-life comparisons,
however, it may also be beneficial, as it emphasizes the latest part of the sample that, in
the advent of slowly changing structures, may be the most relevant part for approximating
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the variables beyond the sample end. By contrast, IC selection and cross validation weight
early and late sample portions uniformly.

A main drawback of OOS methods remains that they base the selection decision on
just a few test-sample data points. We suggest to study the forecasting properties of each
candidate model by a further simulation step. For each candidate, pseudo-samples are
generated according to the parameter value estimated from the sample. These pseudo-
samples are ‘predicted’ using any of the candidates according to the estimate from the
pseudo-sample. Similar experiments have been reported by Clements and Smith (1999)
but they are still not common in the literature. Such simulation experiments reveal quan-
titative as well as qualitative features that may assist theforecaster’s model choice. For
example, consider that model A data are forecasted best by using model A but much
worse by using model B, while both prediction models are on a par for forecasting model
B data. Then, the forecaster may tend to prefer to use model A,given the data, whether
other criteria would support A over B or not.

Apart from the constructed autoregressive example, we apply the technique to a time-
series panel of quarterly European barley prices that was also analyzed by Jumah and
Kunst (2006). The strong seasonal variation in the data suggests that modelling season-
ality is the key to its predictability. Jumah and Kunst (2006) find that seasonal cycles are
mainly deterministic, and they apply the recently developed technique of monitoring sea-
sonal convergence by rolling samples (Franses and Kunst, 2007). Whereas that procedure
fails to support the existence of a common seasonal cycle across Europe, an OOS predic-
tion comparison for the last part of the sample sees the statistically rejected common-cycle
model in the lead. The parametric bootstrapping method demonstrates that the result is
indeed systematic. The wrong model outperforms the correctone, as its incorrect rank
restriction avoids the estimation of some poorly identifiedparameters.

The plan of this paper is as follows. Section 2 considers an artificial time-series prob-
lem for autoregressions of varying order, in the spirit of McQuarrie and Tsai (1998).
Section 3 turns to the real-life data set of barley prices. Section 4 summarizes and con-
cludes.

2 An Artificial Example

The conflict between the aims of optimizing finite-sample prediction and of finding the
true data-generating model class is best seen in model structures with declining parameter
values. In small samples, it is beneficial to suppress the parameters with small values,
although these values differ from zero. We recall that the modeler’s aim is not a scientific
search for true structures but forecasting.

In detail, data are generated by a fourth-order autoregression

Xt = 0.5Xt−1 + 0.25Xt−2 + 0.125Xt−3 + 0.0625Xt−4 + εt ,

with i.i.d. N(0, 1) errorsεt. Comparable models were studied by McQuarrie and Tsai
(1998). In this experiment and in all others reported in thispaper, i.i.d. N(0,1) series
are generated by repeated draws from the GAUSS routine RNDN. To study small-sample
performance, we construct samples of lengthn + 10 for n = 10k andk = 1, . . . , 10.
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Figure 1: Forecasting performance of estimated autoregressive structures of varying lag
order for data generated from AR(4) models, measured by squared prediction error for
the last ten observations in samples of sizen.

The last portion of 10 observations constitutes the test sample for OOS evaluation and is
therefore excluded from estimation within the given model class. The candidate model
classes are specified as autoregressions of lag orders 1 to 4.Over the ten observations of
the test sample, models are re-estimated adding one observation at a time, as in real-world
forecasting. Thus, shown mean squared errors forn are actually averages over samples
of sizesn to n + 9. Parameter estimation is conducted using least squares.

The outcome of this little experiment is given as Figure 1. The first-order model
dominates for very short samples, while the second-order model remains in the lead until
aroundn = 50, when third-order models take over. The true AR(4) structureis outper-
formed slightly even forn = 100, and it is not even competitive for very small samples.

While this clear ranking can be obtained in a lab situation by using 10,000 replica-
tions, the decision for a single trajectory relies on 10 datapoints only. The alternative
technique ofcross validation aims at predicting any data pointt ≥ 5 by using the remain-
der of the sample for parameter estimation. To obtain a realistic time-series design, we
discard all observations from estimation that contain the predicted data point, either as the
‘dependent’ variable or as a lag. For example, for predicting X5, coefficient parameters
were fitted using observationsXt, t ≤ 4 andt ≥ 10. Details on cross validation of time-
series models are found in McQuarrie and Tsai (1998), while the concept is originally due
to Stone (1974).

The outcome of this cross-validation experiment is given asFigure 2. Qualitatively, it
is very similar to the OOS evaluation in Figure 1, which is to be expected for stationary
generation designs with time-constant parameters. Such similarities justify the current
usage of the expression ‘cross validation’ for OOS evaluations, even though this may be
at odds with the original concept.

Finally, Figure 3 introduces the parametric bootstrappingtechnique. To obtain these
graphs, estimated parameter values were taken as the basis for drawing new trajectories
with generating AR models of orders one to four, and these were again predicted using
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Figure 2: Cross validation of estimated autoregressive structures of varying lag order for
data generated from AR(4) models, measured by squared out-of-sample fitting error for
all single observations in samples of sizen.

any of the four order specifications. Instead of rolling overthe sample end and focusing
on one-step errors, as before, we now evaluate multi-step predictions for step sizesh =
1, . . . , 10. We kept the sample size constant atn = 50 and set the number of replications
to 100,000. This number evolves from two simulation steps. 100 ‘true’ trajectories are
simulated for the given model (1), and for each data set we then generate 1000 parametric
bootstraps according to the estimated parameter values.

This experiment shows that, excepting the order-four modelwith its difficult small
coefficient, each fitted structure dominates its own trajectories ath = 1. As h increases,
however, the ranking changes to the benefit of more parsimonious structures. The visual
impression may support the usage of AR(2) as a forecasting device, as this specification
dominates when it is correct and incurs small loss when it is actually incorrect. We recall
that the true lag order is not assumed as known to the forecaster.

3 A Real-World Data Example

3.1 The Data

The data on quarterly barley prices is constructed from the Eurostat data base. Original
Eurostat data is monthly but contains too many missing values. Furthermore, most time-
series methods for seasonal data are tuned to the quarterly case—such as the monitoring of
seasonal convergence by Franses and Kunst (2007)—or are considerably better developed
and more powerful for quarterly observations—such as the HEGY test by Hylleberg,
Engle, Granger, and Yoo (1990). For these reasons, monthly prices were aggregated to
quarters by averaging over the three months that constitutea quarter.

The requirement of continuous price series of reasonable length restricts the analysis
to ten countries: Austria, Belgium, Germany, Denmark, Spain, Finland, France, Nether-
lands, Sweden, and the United Kingdom. Sample ranges vary considerably across coun-
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Figure 3: Forecasting performance of AR(1) to AR(4) models evaluated by parametric
bootstrapping. 100 draws of the original AR(4) generating model and 1000 draws for the
bootstrap at each lag order.

tries, and very few countries provide observations for the full range of 1970 to 2005. To
enable the application of time-series analytic methods, weinterpolated missing values and
we extrapolated series with early endings. Because we aim at out-of-sample prediction
evaluations, we used causal multivariate interpolation and extrapolation methods. All ex-
trapolated observations are marked such that the prediction evaluation concerns forecasts
of existing observations exclusively.

In order to stabilize variances and to enable the interpretation of first differences as
inflation, all series were transformed by logarithms. Figure 4 shows time-series graphs
for five countries with the longest samples and demonstratesthe seasonal nature of the
data.

3.2 Monitoring Seasonal Convergence

Franses and Kunst (2007) introduce a monitoring device for the study of convergence of
deterministic seasonal cycles in panels of quarterly data.Their idea is as follows.

In a panel ofN quarterly series with deterministic seasonal variation, the seasonal
cycle is determined by three constants for each country. ForN ≥ 3, theN × 3 coefficient
matrix will typically have a rank of three. Rank deficiencies point to the occurrence of
joint seasonal cycles across individuals.

A simple Fisher test statistic for the hypothesis of a rank ofone in the coefficient
matrix is calculated on rolling samples. If values of the statistic increase over time, this
indicates a diverging tendency, whereas decreasing valuesindicate a converging tendency.
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Figure 4: Time series plot of logarithmic barley prices.

Figure 5: Rolling test statistics (p-values) for a common seasonal cycle in barley prices.
Countries in the sample are Belgium, Denmark, France, Spain, and the United Kingdom.

In Figure 5, the test statistic has been coded by nominalp-values, and the interpre-
tation is reversed. An episode of ‘convergence’ is followedby ‘divergence’. One might
expect that out-of-sample prediction at the end of the sample should be influenced by the
divergent period and that the unrestricted model should forecast better.

3.3 Forecasts

Out-of-sample mean predictions are based on vector autoregressions (VAR). Unit roots
were found in all series, therefore VAR models are specified in first differences. By con-
trast, HEGY tests (Hylleberg et al., 1990) rejected seasonal unit roots, such that seasonal
variation can be modelled successfully using deterministic dummy variables. Series with
long samples (core set) are modelled as depending on the coreset only, while other series
(added set) are modelled as depending on all series. The distinction of core and added set
is dictated by the lack of early data for the added set and is not to be seen as reflecting
true causal directions.
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Co-integration tests (Johansen, 1995) suggest that countryseries are not co-integrated.
This is surprising from the viewpoint of economic theory andcontradicts the ‘law of one
price’. We conjecture that convergence processes within the EU are mainly responsible
for this feature, which is properly reflected in inferior forecasting performance of co-
integrated VAR models (unreported control experiments). Hence, co-integrated models
must be discarded for prediction, and interest should focuson VAR structures in pure first
differences. Due to the limited sample size, higher-order VAR models cannot be used for
prediction either, and we exclusively consider first-orderVAR models.

In detail, we consider VAR systems of the form

Yt = µ + ADt + ΦYt−1 + εt , (1)

whereYt collects first differences of the original data∆Xt in N -vectors,µ is an intercept
vector,A is anN × 3 matrix of seasonal coefficients,Dt collects three normalized deter-
ministic seasonal cyclescos πt, cos(πt/2), sin(πt/2), Φ is a block-triangular coefficient
matrix of dimensionN × N , andεt is white-noise error with covariance matrixΣ. If the
core variables inhabit the topN1-portion of the vectorYt, the matrixΦ has its north-east
part of dimensionN1 × (N − N1) restricted at zero.

Without further restrictions onA, model (1) is equivalent to a model with four quar-
terly dummy variables and without an intercept. The form (1)is more convenient for
describing seasonal features. For unrestricted matrixA, the model corresponds to the
maintained hypothesis of the convergence test of Figure 5. The null hypothesis corre-
sponds to a matrixA with its rank restricted at one, such that allN countries have a
common seasonal cycle. Then, the matrix can also be written as A = ab′ with an N -
vectora and a 3-vectorb. We are mainly interested in the forecasting performance ofthe
unrestricted model (1) and of the variant with the rank restriction. These two models will
be calledmodel A andmodel B in the following.

We note that model B does not imply the implausible feature that the climate is iden-
tical across Europe. Even in the presence of slight discrepancies among harvest months
in different regions, proportionality in supplied quantities over quarters may occur. More-
over, the intense trade across Europe could prevent that price cycles match supply cycles
exactly. Nonetheless, Figure 5 demonstrates that the rank restriction is rejected for most
subsamples and, even more importantly, it is rejected toward the end of the sample.

It may come as a surprise, then, that Table 1 reflects a discrepancy between the in-
sample statistical results (Figure 5) and the relative forecasting performance. Model B
with restricted rank performs better than the formally supported general model. The eval-
uation considers one-step out-of-sample predictions for the last ten observations (two and
a half years) but the ranking persists for larger horizons.

3.4 Cross Validation Literally

As a check for the validity of the results from the predictionexperiment, we also cross-
validated the models in the traditional sense of the word. That is, using all observations
except for the observation att, we fitted models and approximated the multivariate obser-
vation att. In a time-series setting, even if only one observation is left out, more than one
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Table 1: Forecasting performance for the barley price series.

model A model B
RMSE core series 0.0446 0.0433*

added series 0.0482 0.0421*
MAE core series 0.0374 0.0365*

added series 0.0385 0.0341*

Note: Core series are Belgium, Denmark, Spain, France, Netherlands, and the United Kingdom;
added series are Austria, Germany, Finland, and Sweden. RMSE and MAE denote root mean
squared errors and mean absolute errors. Forecasting is evaluated out-of-sample single-step for
the last ten time points of the sample. This yields 40 observations for the added series and 44
observations for the core series, after discarding 16 extrapolated observations.

Table 2: Cross validation for the barley price series.

model A model B
RMSE core series 0.0330* 0.0366

added series 0.0314 0.0286*
MAE core series 0.0248* 0.0277

added series 0.0239 0.0217*

Note: Core series are Belgium, Denmark, Spain, France, Netherlands, and the United Kingdom;
added series are Austria, Germany, Finland, and Sweden. RMSE and MAE denote root mean
squared errors and mean absolute errors.

data point must be excluded for internal consistency. Here,where only first-order dynam-
ics are permitted, two points att andt + 1 are omitted andt is forecast using estimates
from {2, . . . , t − 1} ∪ {t + 2, . . . , n}.

Table 2 shows that this cross-validation experiment is not entirely conclusive with
regard to model choice. While the unrestricted model performs better for the core set,
the restricted model is preferable for the added set. Interestingly, the improved perfor-
mance for model A relative to the end-of-sample prediction of Table 1 does not match the
monitoring result of Figure 5 that would support the restricted model B for earlier por-
tions of the sample, which cross validation includes as criteria in contrast to the previous
experiment.

Generally, measures improve relative to the out-of-sampleprediction experiment. This
may be due to the fact that more observations are used here on average but also to the in-
clusion of some re-constructed data, as a clear separation between true and constructed
data is not tractable any more. One may assume that the prediction error for the interpo-
lated data tends to be smaller, as these points have been predicted themselves.

3.5 Cross Validation by Parametric Bootstrapping

In order to get insights on whether the observed reversal of ranking between the in-sample
inference stage and the OOS prediction stage is systematic,we again conduct a parametric
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Figure 6: Generating model is the unrestricted model A. Forecast horizons on the abscissa,
frequencies of lower MSE for prediction using model A on the ordinate. Long dashes for
sample sizen = 48, other curves forn = 100, 200, 500.

bootstrap experiment.
For this experiment, pseudo-data are generated from the fitted structures according

to both rival models, withN -variate Gaussian errors—that is, repeated draws from the
GAUSS random processor—and a variance matrix estimated from the sample. These
pseudo-data are then predicted using both models. While the bootstrapped samples have
constant parameter values, as fitted to the true observations, the prediction models are
based on sample-specific parameter values, such as obtainedfrom estimation. This design
reflects the situation of a hypothetical forecaster properly.

The experiment has been conducted for pseudo-samples of sizesn = 48, 100, 200, 500,
and the MSE is compared for predictions at horizons up toh = 20. Figures 6 and 7 show
the frequency across the replications where the MSE for model A is lower than the MSE
for model B. All frequencies are below 0.5 and thus favor modelB. While the restricted
model B outperforms the unrestricted model A more strongly when it is true, it also does
so when it is in fact incorrect. The feature persists for larger n. As the sample size
increases, the gains of using the restricted model gradually decline. The differences in
performance among the core and added series are only minor and generally correspond to
the summary graph.

In short, while barley prices do not really share a common seasonal cycle across Eu-
rope, assuming such a cycle helps in predicting the variables. The hypothesis that the
additional parameters in model A are zero may be rejected butestimating these param-
eters does not aid the forecaster. In other words, the forecaster would need a stronger
penalty for model complexity in this direction than is prescribed by hypothesis testing at
usual significance levels. We note that the nested nature of the selection problem implies
that AIC decision corresponds to testing at loose significance levels and that AIC likewise
prefers the ‘bad’ model A. Thus, customary information criteria cannot replace the OOS
experiments here.

The periodic fluctuation of Figure 6 points at a technical difficulty in setting up the
bootstrap. Because of the non-stationary generating mechanism—a VAR in differences—
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Figure 7: Generating model is the restricted model B. Forecast horizons on the abscissa,
frequencies of lower MSE for prediction using model A on the ordinate. Long dashes for
sample sizen = 48, curves with shorter dashes forn = 100, 200, 500.

performance may depend on the quarter and on the starting values for the bootstrapped
trajectories. We chose to start the bootstrapped samples from the last year where all
series are available, we varied starting values over the four quarters of that year, and then
we averaged over all quarters. This yields four times 10,000replications instead of just
10,000. The averaging technique removed signs of periodicity from the model B bootstrap
(see Figure 7) but not from the model A bootstrap.

While the shown figures are based on maximum-likelihood estimates for the covari-
ance matrixΣ from the original samples, we found that the shapes are extremely sensitive
to modifications with regard to this aspect. Larger residualvariances, for example using
degrees-of-freedom corrections, tend to enhance the benefits of model B. The share of
variation due to the seasonal cycle decreases, and restricting seasonality improves predic-
tion.

3.6 A Review of the Procedure

In this subsection, we summarize the parametric bootstrap technique that we used in the
previous subsection.

After a thorough preliminary analysis, a phase during whichmany inappropriate mod-
els are considered and discarded, the forecaster is left with a small set of candidate models
that may be useful for prediction. A traditional OOS ‘horse race’ can serve as a further
guideline.

Then, we suggest the following steps:

1. Each candidate model is estimated over the full sample, typically by maximum
likelihood or a convenient approximation.

2. For each candidate, the identified parameter values are used for generatingR tra-
jectories of a length that is comparable to the original sample size, maybe slightly
longer such that there is room for manoeuvre for some OOS. If the utilized time-
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series structures are non-stationary, starting values should be best obtained from a
late part of the original sample.

3. Each candidate model is fitted to the pseudo-samples, omitting some final observa-
tions as test samples.

4. The test sample portions of the pseudo-samples are predicted. Averages of MSE
across theR replications or comparable summary statistics can be reported.

According to the concept of parametric bootstrapping, the pseudo-samples for step
#2 rely on draws from a normal random processor, with variances taken from sample
estimates. It is straight forward to modify this step by utilizing a different distributional
assumption.

As n → ∞, the step #2 estimates will converge to true values for the correctly speci-
fied class, given that such a class exists. In strictly non-nested selection problems, other
candidates will yield clearly worse predictions. For the other generating models, esti-
mates converge to some pseudo-true values, prediction by the corresponding model will
be best, although absolutely much less precise than for the true-true match.

If—as in our empirical example—models are nested, there aretwo cases for correct
specification. Firstly, if the restricted model is correct,estimates are consistent for both
models. The restricted model will yield better forecasts, due to efficiency, and graphs will
be almost identical for both generating models. Second, if the restricted model is invalid
but the general model is correct, the graphs will be quite different, as the pseudo-true and
the true parameter values do not coincide. One could argue that the strong discrepancies
between Figures 7 and 6 point to some evidence on the invalidity of the restricted model
B. However, note that the outlined properties are asymptoticand that our sample are rather
small, particularly for a 10-variate model.

We feel, however, that such large-sample properties are potentially less interesting to
the applied forecaster who is not really interested in the ‘truth’ of any candidate model.
Rather, the graphs should be seen as tools for the selection ofthe optimal forecast model.

4 Summary and Conclusion

For a small artificial experiment and for a real-life data set, we demonstrated the applica-
tion of traditional OOS (out-of-sample) forecasting, of cross validation, and of OOS via
parametric bootstrap. Cross validation is not so often used in forecasting model selection
but it may deserve attention if dynamic structures can be assumed as time-constant, as it
exhausts the sample information fully, in contrast to OOS atthe sample end.

While simulations similar to our bootstrap OOS can be found occasionally in the
literature (e.g., Clements and Smith, 1999), usage of the technique is not common. Often,
it is conducted asymmetrically, such that only one candidate model is simulated and all
candidates are used to forecast the simulated data. This approach may be grounded in
classical hypothesis testing that traditionally concentrates on properties ‘under the null’.
Simulating under the alternative at a fitted parameter valuemay then be interpreted as a
form of confirmatory approach. Confirmatory approaches are often shunned in testing
problems, last not least because of the tremendous effort involved in compiling critical
values at distances from the null (e.g., see Dhrymes, 1998).Such arguments, however,
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do not apply to forecasting model selection, and the programming and computer time
involved in generating the graphs shown in this paper are reasonable.

The real-life example of agricultural prices depicts the typical situation of a forecaster.
Most models can be discarded in an early stage of modelling, and then interest focuses on
a handful of candidates that may form a nested, partially nested, or non-nested set. The
outlined device can be used for any of these situations, and it clearly points to problematic
aspects. For example, if a model class is supported by tests as well as short-run OOS but
incurs enormous loss if it is by chance not really the generating model, the forecaster may
avoid that class for prediction. This feature has been reported in conjunction with many
non-linear time-series models that can offer excellent data description but rarely live up
to their expectations if it comes to prediction. Bootstrap simulations can also be seen as
answering to the warnings by Rissanen (2007) that traditional information criteria do not
penalize model complexity sufficiently, as penalty terms depend on parameter dimension
only. While Rissanen’s code-length approach imposes a heavy burden on the user, the
OOS bootstrap can be implemented at low cost.

It may be an obvious suggestion to explore even non-parametric bootstrap methods for
the OOS evaluations. Our experience with drawing from residual distributions, however,
is that this tends to blur the distinction among the—intrinsically parameterized—model
classes. Model-based forecasting inevitably proceeds by simplifying the sample informa-
tion, discarding a big portion of it as ‘noise’, and focusingon main features that have a
good chance of surviving beyond the sample end.
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