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Abstract: Out-of-sample prediction for the final portion of a samplais
popular tool for model selection in model-based forecgste suggest to
add a simulation step to this exercise, where pseudo-sampéegenerated
(parametrically bootstrapped), conditional on the obsértata and on any
of the candidate models, and these pseudo-samples aretpcedsing any
of the candidate models. The technique is demonstrated bytifigial uni-
variate time-series specification that highlights the nie&tures, and also by
a real-life multivariate application to agricultural peidata.

In the exemplary data set on quarterly European barley qristeong sea-
sonal variation is obvious and represents a crucial featu@nstructing
good models for short-run prediction. Following some pnatiary statis-
tical testing, we restrict focus to vector autoregressiaith deterministic
seasonal cycles. We also consider a restricted specificttat imposes a
common seasonal cycle on all countries. While the restrnasoformally

rejected by hypothesis tests, it assists in reducing piedierrors. The para-
metric bootstrap experiments show that this improvemenisoyg an invalid
restriction is systematic.

Zusammenfassung: Ex-ante Prognoseruf den zeitlich jingsten Teil der
Stichprobe sind ein popaites Werkzeug der Modellwahl in modellbasierter
Prognose. Wir schlagen vor, einen Simulationsschritt 2setn Werkzeug
hinzuzufigen, in welchem Pseudo-Stichproben generiert werdermarfpar
trisches Bootstrapping), die den beobachteten Daten umsnjeter Kandi-
datenmodelle entsprechen. Hierauf werden die PseudbpBticen durch
jedes der Kandidatenmodelle prognostiziert. Die Technild wowohl an
Hand eines #énstlichen univariaten Zeitreihenmodells demonstriei¢,auch

an einer realen Anwendung auf landwirtschaftliche Preise.

In dem Beispiel von Quartalsdaten euatgther Gerstenpreise ist saisonale
Variation deutlich erkennbar. Diese stellt eine wichtigeaGikteristik dar,
welche zur Erstellung guter Modelléirf kurzfristige Prognosen entschei-
dend ist. Auf Grund einiger statistischer Voruntersuclamgonzentrieren
wir uns auf Vektorautoregressionen mit deterministischaisonzyklen. Wir
erwagen auch eine eingeséhnkte Spezifikation, die einen gemeinsamen Sai-
sonzyklus @r alle LAnder annimmt. Obwohl diese Restriktion formell von
den Daten abgelehnt wird, ist sie doch zur Optimierung degiRrse geeignet.
Das parametrische Bootstrap-Experiment zeigt, dass diee¥serung der
Prognoseite systematisch ist.
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1 Introduction

In model-based forecasting, researchers customarilysfpestify a small set of candidate
model classes and then select a member of this set accoalangriterion. Some base
their choice directly on information criteria (IC), whilehwrs prefer the model that dom-
inates its rivals with regard to out-of-sample predicti@QJS), i.e. the ultimate purpose
of the selected model, over a portion of the available sample

The correspondence of the true model and the best foregastidel is not trivial.
Under the restrictive assumption of correct specificatidimatis, the true data-generating
model is contained in one of the candidate model classes-rsistent estimator yields
the correct parameter value in large samples, and the wellkriextbook theorem that
conditional expectation minimizes the squared forecgstimor (MSE) guarantees that
the true model also optimizes prediction. For the samplessihat are typical of eco-
nomics data, the comfort given by this basic fact is limitedbest. A simple model that
restricts some small and poorly identified parameters at wdl dominate its correctly
specified rival in comparatively large samples. We dematsstthis feature by a small
artificial example for autoregressive processes.

It is surprising that particularly the econometric litenag so often recommends sub-
jecting the forecaster’s preliminary model choice to adrgtof specification tests, thus
implicitly equating mis-specification aspects and deficies of the forecasting model.
While this step tends to increase the prediction model’s istipation unduely, a recent
emphasis on testing the significance of differences in fsteg performance relative to
a benchmark model tends to impose an excessive penalty opledtg. In our view,
neither approach helps in identifying the optimum predittmodel, unless there are ad-
ditional costs or benefits involved in using sophisticatismhich cannot be captured by
usual loss criteria such as MSE.

There is arich literature on the relationships betweentioenain selection paradigms,
I.e. out-of-sample prediction over a test sample (OOS) afmmation criteria. Origi-
nally, information criteria were inspired by the forecaistproblem—hence, the name of
the FPE criterion, ‘final prediction error’, which is asyraptally equivalent to Akaike’s
AIC. We just mention Shibata (1980) who shows that lag-oreéézction via AIC opti-
mizes asymptotic predictive properties among autoregnessand, more recently, Wei
(1992) who establishes that OOS optimization defines a walaimation criterion for
quite general selection problems.

In econometrics, Inoue and Kilian (2006) have contributedhis literature by ob-
taining the surprising result that information criteriantinate OOS searches. This result,
however, focuses on asymptotic properties, while truetbfecasters may rather be inter-
ested in small-sample performance. Moreover, Inoue andrK{2006) assume that, even
in large samples, OOS optimization is restricted to a portibthe sample, which leads
to an obvious loss of information as compared to informatioteria, to cross validation,
or to Wei’'s assumptions.

The traditional separation of the sample into a larger ingiand a smaller test sample
may limit the power of the OOS under correct specification.rdal-life comparisons,
however, it may also be beneficial, as it emphasizes the lpdesof the sample that, in
the advent of slowly changing structures, may be the mostaet part for approximating
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the variables beyond the sample end. By contrast, IC seteatid cross validation weight
early and late sample portions uniformly.

A main drawback of OOS methods remains that they base thetieglelecision on
just a few test-sample data points. We suggest to study teedsting properties of each
candidate model by a further simulation step. For each daeli pseudo-samples are
generated according to the parameter value estimated fiersample. These pseudo-
samples are ‘predicted’ using any of the candidates aaogri the estimate from the
pseudo-sample. Similar experiments have been reportedeéaedits and Smith (1999)
but they are still not common in the literature. Such simalaexperiments reveal quan-
titative as well as qualitative features that may assisfahecaster's model choice. For
example, consider that model A data are forecasted bestibhg usodel A but much
worse by using model B, while both prediction models are onrdgydorecasting model
B data. Then, the forecaster may tend to prefer to use modgivAn the data, whether
other criteria would support A over B or not.

Apart from the constructed autoregressive example, weydppltechnique to a time-
series panel of quarterly European barley prices that wss ahalyzed by Jumah and
Kunst (2006). The strong seasonal variation in the dataesigghat modelling season-
ality is the key to its predictability. Jumah and Kunst (2pfi6d that seasonal cycles are
mainly deterministic, and they apply the recently devetbigehnique of monitoring sea-
sonal convergence by rolling samples (Franses and Kur3t)2Whereas that procedure
fails to support the existence of a common seasonal cyctss&urope, an OOS predic-
tion comparison for the last part of the sample sees thestatly rejected common-cycle
model in the lead. The parametric bootstrapping method dstrettes that the result is
indeed systematic. The wrong model outperforms the cooeet as its incorrect rank
restriction avoids the estimation of some poorly identifiadameters.

The plan of this paper is as follows. Section 2 considers iicéal time-series prob-
lem for autoregressions of varying order, in the spirit ofQd@rrie and Tsai (1998).
Section 3 turns to the real-life data set of barley pricesti8e 4 summarizes and con-
cludes.

2 An Artificial Example

The conflict between the aims of optimizing finite-sampledpon and of finding the
true data-generating model class is best seen in modetwstesavith declining parameter
values. In small samples, it is beneficial to suppress thanpaters with small values,
although these values differ from zero. We recall that thel@er’s aim is not a scientific
search for true structures but forecasting.

In detail, data are generated by a fourth-order autoreigress

Xt = O.5Xt,1 -+ O.25Xt,2 -+ 0.125Xt,3 + 00625Xt,4 + &¢,

with i.i.d. N(O, 1) errorss,. Comparable models were studied by McQuarrie and Tsai
(1998). In this experiment and in all others reported in faper, i.i.d. N(0,1) series
are generated by repeated draws from the GAUSS routine RNDBkutly small-sample
performance, we construct samples of length 10 for n = 10k andk = 1,...,10.
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Figure 1: Forecasting performance of estimated autorsiyeestructures of varying lag

order for data generated from AR(4) models, measured by esduaediction error for
the last ten observations in samples of size

The last portion of 10 observations constitutes the tespafor OOS evaluation and is
therefore excluded from estimation within the given modaks. The candidate model
classes are specified as autoregressions of lag orders Dwed the ten observations of
the test sample, models are re-estimated adding one obsaraaa time, as in real-world
forecasting. Thus, shown mean squared errors:fare actually averages over samples
of sizesn ton + 9. Parameter estimation is conducted using least squares.

The outcome of this little experiment is given as Figure 1.e Tinst-order model
dominates for very short samples, while the second-ordeiehremains in the lead until
aroundn = 50, when third-order models take over. The true AR(4) strucisi@utper-
formed slightly even for = 100, and it is not even competitive for very small samples.

While this clear ranking can be obtained in a lab situation $gi 10,000 replica-
tions, the decision for a single trajectory relies on 10 qaists only. The alternative
technique otrossvalidation aims at predicting any data poiht- 5 by using the remain-
der of the sample for parameter estimation. To obtain astealime-series design, we
discard all observations from estimation that contain tieeligted data point, either as the
‘dependent’ variable or as a lag. For example, for predicfiii, coefficient parameters
were fitted using observations;, ¢t < 4 andt¢ > 10. Details on cross validation of time-
series models are found in McQuarrie and Tsai (1998), whéecbncept is originally due
to Stone (1974).

The outcome of this cross-validation experiment is giveRigare 2. Qualitatively, it
is very similar to the OOS evaluation in Figure 1, which is eédxpected for stationary
generation designs with time-constant parameters. Sucitasties justify the current
usage of the expression ‘cross validation’ for OOS evatuti even though this may be
at odds with the original concept.

Finally, Figure 3 introduces the parametric bootstrappeunnique. To obtain these
graphs, estimated parameter values were taken as the badimWwing new trajectories

with generating AR models of orders one to four, and these\again predicted using
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Figure 2: Cross validation of estimated autoregressivesires of varying lag order for

data generated from AR(4) models, measured by squared @atrgple fitting error for
all single observations in samples of size

any of the four order specifications. Instead of rolling otvex sample end and focusing
on one-step errors, as before, we now evaluate multi-stegigirons for step sizek =
1,...,10. We kept the sample size constanthat 50 and set the number of replications
to 100,000. This number evolves from two simulation ste@0 ‘true’ trajectories are
simulated for the given model (1), and for each data set wedkeerate 1000 parametric
bootstraps according to the estimated parameter values.

This experiment shows that, excepting the order-four medt its difficult small
coefficient, each fitted structure dominates its own trajges ath = 1. As h increases,
however, the ranking changes to the benefit of more parsonerstructures. The visual
impression may support the usage of AR(2) as a forecastingales this specification
dominates when it is correct and incurs small loss when ittisadly incorrect. We recall
that the true lag order is not assumed as known to the foercast

3 A Real-World Data Example
3.1 The Data

The data on quarterly barley prices is constructed from th@#&at data base. Original
Eurostat data is monthly but contains too many missing wal&erthermore, most time-
series methods for seasonal data are tuned to the quardsdy-esuch as the monitoring of
seasonal convergence by Franses and Kunst (2007)—or asieletably better developed
and more powerful for quarterly observations—such as th&¥Wkest by Hylleberg,
Engle, Granger, and Yoo (1990). For these reasons, montlugspwere aggregated to
quarters by averaging over the three months that consatqterter.

The requirement of continuous price series of reasonabtgherestricts the analysis
to ten countries: Austria, Belgium, Germany, Denmark, Sp@ainland, France, Nether-
lands, Sweden, and the United Kingdom. Sample ranges vasiderably across coun-
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Figure 3: Forecasting performance of AR(1) to AR(4) modelduatad by parametric
bootstrapping. 100 draws of the original AR(4) generatinglei@nd 1000 draws for the
bootstrap at each lag order.

tries, and very few countries provide observations for theringe of 1970 to 2005. To
enable the application of time-series analytic methodsnteepolated missing values and
we extrapolated series with early endings. Because we aimtaifesample prediction
evaluations, we used causal multivariate interpolatiahextrapolation methods. All ex-
trapolated observations are marked such that the predlietialuation concerns forecasts
of existing observations exclusively.

In order to stabilize variances and to enable the interpoetaf first differences as
inflation, all series were transformed by logarithms. Fegdrshows time-series graphs
for five countries with the longest samples and demonsttateseasonal nature of the
data.

3.2 Monitoring Seasonal Convergence

Franses and Kunst (2007) introduce a monitoring devicehi@istudy of convergence of
deterministic seasonal cycles in panels of quarterly dettair idea is as follows.

In a panel of N quarterly series with deterministic seasonal variatitve, $easonal
cycle is determined by three constants for each countryN\For 3, the N x 3 coefficient
matrix will typically have a rank of three. Rank deficienciesm to the occurrence of
joint seasonal cycles across individuals.

A simple Fisher test statistic for the hypothesis of a rankwé in the coefficient
matrix is calculated on rolling samples. If values of thdist& increase over time, this
indicates a diverging tendency, whereas decreasing valdieate a converging tendency.
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Figure 4: Time series plot of logarithmic barley prices.
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Figure 5: Rolling test statisticg{values) for a common seasonal cycle in barley prices.
Countries in the sample are Belgium, Denmark, France, Spaihthee United Kingdom.

In Figure 5, the test statistic has been coded by nominallues, and the interpre-
tation is reversed. An episode of ‘convergence’ is follovigddivergence’. One might
expect that out-of-sample prediction at the end of the sasipbuld be influenced by the
divergent period and that the unrestricted model shoulecist better.

3.3 Forecasts

Out-of-sample mean predictions are based on vector auesgEgns (VAR). Unit roots
were found in all series, therefore VAR models are specifidirst differences. By con-
trast, HEGY tests (Hylleberg et al., 1990) rejected sedaamtroots, such that seasonal
variation can be modelled successfully using determmduimmy variables. Series with
long samples (core set) are modelled as depending on theeoely, while other series
(added set) are modelled as depending on all series. Tlectiizh of core and added set
is dictated by the lack of early data for the added set andtisonbe seen as reflecting
true causal directions.
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Co-integration tests (Johansen, 1995) suggest that cosarigs are not co-integrated.
This is surprising from the viewpoint of economic theory aadhtradicts the ‘law of one
price’. We conjecture that convergence processes witlarEtd are mainly responsible
for this feature, which is properly reflected in inferior éoasting performance of co-
integrated VAR models (unreported control experimentsgné¢, co-integrated models
must be discarded for prediction, and interest should fooUgAR structures in pure first
differences. Due to the limited sample size, higher-ord&RVWhodels cannot be used for
prediction either, and we exclusively consider first-ord&R models.

In detail, we consider VAR systems of the form

Yi=p+ADi+ @Y, + &4, (1)

whereY; collects first differences of the original dataX, in N-vectors, is an intercept
vector,A is an/N x 3 matrix of seasonal coefficients), collects three normalized deter-
ministic seasonal cycless 7t, cos(wt/2), sin(nt/2), ® is a block-triangular coefficient
matrix of dimensionV x N, andg, is white-noise error with covariance matdix If the
core variables inhabit the tay; -portion of the vectol;, the matrix® has its north-east
part of dimensionV; x (N — N;) restricted at zero.

Without further restrictions oA, model (1) is equivalent to a model with four quar-
terly dummy variables and without an intercept. The formigljnore convenient for
describing seasonal features. For unrestricted ma&rixthe model corresponds to the
maintained hypothesis of the convergence test of Figurelte riull hypothesis corre-
sponds to a matriA with its rank restricted at one, such that all countries have a
common seasonal cycle. Then, the matrix can also be wrigeh & ab’ with an N-
vectora and a 3-vectob. We are mainly interested in the forecasting performandbef
unrestricted model (1) and of the variant with the rank retstn. These two models will
be calledmodel A andmodel B in the following.

We note that model B does not imply the implausible featua¢ tive climate is iden-
tical across Europe. Even in the presence of slight disa@pea among harvest months
in different regions, proportionality in supplied quaig# over quarters may occur. More-
over, the intense trade across Europe could prevent the pycles match supply cycles
exactly. Nonetheless, Figure 5 demonstrates that the emtiation is rejected for most
subsamples and, even more importantly, it is rejected wiver end of the sample.

It may come as a surprise, then, that Table 1 reflects a desccgdetween the in-
sample statistical results (Figure 5) and the relativedaséng performance. Model B
with restricted rank performs better than the formally sanpgd general model. The eval-
uation considers one-step out-of-sample predictiond®tast ten observations (two and
a half years) but the ranking persists for larger horizons.

3.4 Cross Validation Literally

As a check for the validity of the results from the predictexperiment, we also cross-
validated the models in the traditional sense of the wordatT$) using all observations
except for the observation gtwe fitted models and approximated the multivariate obser-
vation att. In a time-series setting, even if only one observationfiolet, more than one
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Table 1: Forecasting performance for the barley price serie

model A model B
RMSE core series 0.0446  0.0433*
added series  0.0482 0.0421*
MAE  core series 0.0374 0.0365*
added series 0.0385 0.0341*

Note: Core series are Belgium, Denmark, Spain, France, Netherlamdithe& United Kingdom;
added series are Austria, Germany, Finland, and Sweden. RMSE aldddAote root mean
squared errors and mean absolute errors. Forecasting is evalugiafdsample single-step for
the last ten time points of the sample. This yields 40 observations for the added and 44
observations for the core series, after discarding 16 extrapolatedvalisns.

Table 2: Cross validation for the barley price series.

model A model B

RMSE core series 0.0330* 0.0366
added series 0.0314 0.0286*

MAE  core series 0.0248* 0.0277
added series 0.0239 0.0217*

Note: Core series are Belgium, Denmark, Spain, France, Netherlardithe United Kingdom;
added series are Austria, Germany, Finland, and Sweden. RMSE aldddAote root mean
squared errors and mean absolute errors.

data point must be excluded for internal consistency. Heheyre only first-order dynam-
ics are permitted, two points atandt + 1 are omitted and is forecast using estimates
from{2,....t —1}U{t+2,...,n}.

Table 2 shows that this cross-validation experiment is mditedy conclusive with
regard to model choice. While the unrestricted model perfobetter for the core set,
the restricted model is preferable for the added set. Istiegy, the improved perfor-
mance for model A relative to the end-of-sample predictibfadle 1 does not match the
monitoring result of Figure 5 that would support the resédcmodel B for earlier por-
tions of the sample, which cross validation includes agatin contrast to the previous
experiment.

Generally, measures improve relative to the out-of-samp@diction experiment. This
may be due to the fact that more observations are used hereeaga but also to the in-
clusion of some re-constructed data, as a clear separatigrebn true and constructed
data is not tractable any more. One may assume that the poedécror for the interpo-
lated data tends to be smaller, as these points have beeaatpdeitiemselves.

3.5 Cross Validation by Parametric Bootstrapping

In order to get insights on whether the observed reversaldfing between the in-sample
inference stage and the OOS prediction stage is systematagain conduct a parametric
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Figure 6: Generating model is the unrestricted model A. €asehorizons on the abscissa,
frequencies of lower MSE for prediction using model A on tihéimate. Long dashes for
sample sizen = 48, other curves for, = 100, 200, 500.

bootstrap experiment.

For this experiment, pseudo-data are generated from tled tructures according
to both rival models, withV-variate Gaussian errors—that is, repeated draws from the
GAUSS random processor—and a variance matrix estimated fr@ sample. These
pseudo-data are then predicted using both models. Whileabstbapped samples have
constant parameter values, as fitted to the true obsersgatiba prediction models are
based on sample-specific parameter values, such as obtanmedstimation. This design
reflects the situation of a hypothetical forecaster prgperl

The experiment has been conducted for pseudo-sample®shisiz 48, 100, 200, 500,
and the MSE is compared for predictions at horizons up £020. Figures 6 and 7 show
the frequency across the replications where the MSE for b delower than the MSE
for model B. All frequencies are below 0.5 and thus favor md&lélVhile the restricted
model B outperforms the unrestricted model A more strondlemvit is true, it also does
so when it is in fact incorrect. The feature persists foréang. As the sample size
increases, the gains of using the restricted model graddatiline. The differences in
performance among the core and added series are only midgeaerally correspond to
the summary graph.

In short, while barley prices do not really share a commos@ea cycle across Eu-
rope, assuming such a cycle helps in predicting the vasabléne hypothesis that the
additional parameters in model A are zero may be rejecte@stirnating these param-
eters does not aid the forecaster. In other words, the feteccaould need a stronger
penalty for model complexity in this direction than is pnéised by hypothesis testing at
usual significance levels. We note that the nested natuteddlection problem implies
that AIC decision corresponds to testing at loose signitiedevels and that AIC likewise
prefers the ‘bad’ model A. Thus, customary informationemia cannot replace the OOS
experiments here.

The periodic fluctuation of Figure 6 points at a technicaliclilty in setting up the
bootstrap. Because of the non-stationary generating mechara VAR in differences—
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performance may depend on the quarter and on the startings/édr the bootstrapped
trajectories. We chose to start the bootstrapped sampies tine last year where all

series are available, we varied starting values over thedqoarters of that year, and then
we averaged over all quarters. This yields four times 10/@@lications instead of just

10,000. The averaging technique removed signs of pertgdrom the model B bootstrap

(see Figure 7) but not from the model A bootstrap.

While the shown figures are based on maximum-likelihood ed#@mfor the covari-
ance matrix_ from the original samples, we found that the shapes areragtyesensitive
to modifications with regard to this aspect. Larger residaalances, for example using
degrees-of-freedom corrections, tend to enhance the bepéfinodel B. The share of
variation due to the seasonal cycle decreases, and regjrsetasonality improves predic-
tion.

3.6 A Review of the Procedure

In this subsection, we summarize the parametric bootseretinique that we used in the
previous subsection.

After a thorough preliminary analysis, a phase during winemy inappropriate mod-
els are considered and discarded, the forecaster is léfevginall set of candidate models
that may be useful for prediction. A traditional OOS ‘horsee’ can serve as a further
guideline.

Then, we suggest the following steps:

1. Each candidate model is estimated over the full sampfacaity by maximum
likelihood or a convenient approximation.

2. For each candidate, the identified parameter values adkfas generating? tra-
jectories of a length that is comparable to the original darsjze, maybe slightly
longer such that there is room for manoeuvre for some OO®eliltilized time-
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series structures are non-stationary, starting valuesldto@ best obtained from a
late part of the original sample.

3. Each candidate model is fitted to the pseudo-samplestiogsiome final observa-
tions as test samples.

4. The test sample portions of the pseudo-samples are prddiéverages of MSE
across theR replications or comparable summary statistics can be tegor

According to the concept of parametric bootstrapping, theupo-samples for step
#2 rely on draws from a normal random processor, with vagartaken from sample
estimates. It is straight forward to modify this step byimitlg a different distributional
assumption.

As n — oo, the step #2 estimates will converge to true values for theectly speci-
fied class, given that such a class exists. In strictly nastateselection problems, other
candidates will yield clearly worse predictions. For thbestgenerating models, esti-
mates converge to some pseudo-true values, predictionebgoifiesponding model will
be best, although absolutely much less precise than forukeitue match.

If—as in our empirical example—models are nested, therévavecases for correct
specification. Firstly, if the restricted model is correztfimates are consistent for both
models. The restricted model will yield better forecasts tb efficiency, and graphs will
be almost identical for both generating models. Secondgifréstricted model is invalid
but the general model is correct, the graphs will be quitedsht, as the pseudo-true and
the true parameter values do not coincide. One could arguietth strong discrepancies
between Figures 7 and 6 point to some evidence on the inyatifithe restricted model
B. However, note that the outlined properties are asympamiicthat our sample are rather
small, particularly for a 10-variate model.

We feel, however, that such large-sample properties aenpatly less interesting to
the applied forecaster who is not really interested in thalit of any candidate model.
Rather, the graphs should be seen as tools for the selectiba optimal forecast model.

4 Summary and Conclusion

For a small artificial experiment and for a real-life datg set demonstrated the applica-
tion of traditional OOS (out-of-sample) forecasting, obss validation, and of OOS via
parametric bootstrap. Cross validation is not so often uséarecasting model selection
but it may deserve attention if dynamic structures can berasd as time-constant, as it
exhausts the sample information fully, in contrast to OO®atsample end.

While simulations similar to our bootstrap OOS can be foundasmnally in the
literature (e.g., Clements and Smith, 1999), usage of thetgae is not common. Often,
it is conducted asymmetrically, such that only one candidabdel is simulated and all
candidates are used to forecast the simulated data. Thisagpmay be grounded in
classical hypothesis testing that traditionally concaes on properties ‘under the null’.
Simulating under the alternative at a fitted parameter valag then be interpreted as a
form of confirmatory approach. Confirmatory approaches atenashunned in testing
problems, last not least because of the tremendous effalvied in compiling critical
values at distances from the null (e.g., see Dhrymes, 1998¢h arguments, however,
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do not apply to forecasting model selection, and the prograng and computer time
involved in generating the graphs shown in this paper asoresble.

The real-life example of agricultural prices depicts th@dgl situation of a forecaster.
Most models can be discarded in an early stage of modellmdjitgen interest focuses on
a handful of candidates that may form a nested, partiallyege®r non-nested set. The
outlined device can be used for any of these situations,tatehbirly points to problematic
aspects. For example, if a model class is supported by testelaas short-run OOS but
incurs enormous loss if it is by chance not really the geneagahodel, the forecaster may
avoid that class for prediction. This feature has been tedan conjunction with many
non-linear time-series models that can offer excellend daiscription but rarely live up
to their expectations if it comes to prediction. Bootstrapigdations can also be seen as
answering to the warnings by Rissanen (2007) that traditiof@mation criteria do not
penalize model complexity sufficiently, as penalty termgede on parameter dimension
only. While Rissanen’s code-length approach imposes a haawdeb on the user, the
OOS bootstrap can be implemented at low cost.

It may be an obvious suggestion to explore even non-paranbeintstrap methods for
the OOS evaluations. Our experience with drawing from redidistributions, however,
Is that this tends to blur the distinction among the—inidally parameterized—model
classes. Model-based forecasting inevitably proceedsigyliying the sample informa-
tion, discarding a big portion of it as ‘noise’, and focusimg main features that have a
good chance of surviving beyond the sample end.
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