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Abstract: We discuss inference for additive models with random scaling
factors. The additive effects are of the form (1+γ)f(z) where f is a nonlinear
function of the continuous covariate z modeled by P(enalized)-splines and
1 + γ is a random scaling factor. Additionally, monotonicity constraints on
the nonlinear functions are possible.

Our work is motivated by the situation of a retailer analyzing the impact of
price changes on a brand’s sales in its orange juice product category. Relating
sales to a brand’s own price as well as to the prices of competing brands in
the category, we estimate own- and cross-item price response functions flex-
ibly to represent nonlinearities and irregular pricing effects in sales response.
Monotonicity constraints are imposed so that a brand’s own price is inversely
related and the prices of competing brands are directly related to the number
of items sold, as suggested by economic theory. Unobserved store-specific
heterogeneity is accounted for by allowing the price response curves to vary
between different stores.

Zusammenfassung: Wir behandeln additive Modelle mit zufälligen Skalier-
ungsfaktoren. Die additiven Effekte haben die Form (1 + γ)f(z). f ist eine
nichtlineare Funktion der stetigen Kovariable z, modelliert mittels P(enalized)-
splines und 1+γ ist ein zufälliger Skalierungsfaktor. Den nichtlinearen Funk-
tionen können zusätzlich Monotonierestriktionen auferlegt werden.

Den Ausgangspunkt unserer Arbeit bildet die Situation eines Einzelhändlers,
der den Einfluss von Preisänderungen auf den Absatz einer Orangensaft-
marke in seinem Sortiment analysieren möchte. Eine entsprechende Ab-
satzreaktionsfunktion lässt sich schätzen, indem der Absatz der betrachteten
Marke als nichtlineare Funktion des eigenen Preises sowie der Preise der
Konkurrenzmarken modelliert wird. Monotonierestriktionen für die Preis-
effekte gewährleisten darüber hinaus einen inversen Verlauf des Absatzes
bezüglich des eigenen Preises sowie eine direkte Beziehung des Absatzes
zu Konkurrenzpreisen, wie es in Anlehnung an die ökonomische Preistheo-
rie zu erwarten ist. Unbeobachtete Heterogenität wird berücksichtigt, indem
die Preiseffekte über die einzelnen Geschäfte des Händlers zufällig variieren
können.

Keywords: P-Splines, Monotonicity Constraints, Multiplicative Random Ef-
fects, Price Response, Own- and Cross-item Price Effects.
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1 Introduction

This paper is motivated by a frequently encountered application problem in marketing:
estimating price response from sales data. Specifically, we are interested in modeling
the dependence of a brand’s unit sales from its own price and the prices of competing
brands. Most previous studies have employed strictly parametric functions to represent
nonlinearities in sales response to price changes (e.g., Blattberg und Wisniewski, 1989,
Montgomery, 1997, and Heerde, Leeflang, und Wittink, 2002). It is important to note that
all those parametric functional forms have been inherently monotonic, i.e. decreasing for
own-price effects and increasing for cross-price effects, which is in accordance with eco-
nomic theory (e.g., see Hanssens, Parsons, und Schultz, 2001). Kalyanam and Shively
(1998) and Heerde, Leeflang, and Wittink (2001) suggested stochastic spline regression
and kernel regression, respectively, to explore the shape of price response curves more
flexibly, and both obtained superior performance for their models compared to strictly
parametric models. Recently, Brezger and Steiner (2007) demonstrated that imposing
monotonicity constraints on nonparametrically estimated own- and cross-price effects not
only preserves a reasonable economic interpretation but can also improve the predictive
validity of sales response functions considerably. However, all flexible approaches men-
tioned above do not account for possible heterogeneity of price effects across different
stores of a retail chain. In this paper we add to the body of knowledge by addressing non-
linearity and heterogeneity in estimating price response. For illustration we use weekly
store-level scanner data from Dominick’s Finer Foods, a major supermarket chain in the
Chicago metropolitan area.

Figure 1 shows the relationship between the unit sales of a certain orange juice brand
and its own price for two different stores of the retail chain. The figure exhibits two
characteristic features: (1) The unit sales of the brand depend on the own price in a
nonlinear way. (2) The level and presumably also the scaling of the underlying price
response function differ across stores.

The purpose of the paper is to provide statistical methodology for modeling and es-
timating those two features: nonlinearity and heterogeneity. Specifically, we propose
additive models (Hastie und Tibshirani, 1990) with random scaling factors. The additive
effects are of the form (1 + γ)f(z) where f is a nonlinear function of the continuous
covariate z modeled by P(enalized)-splines and 1 + γ is a cluster specific random scaling
factor. With respect to our marketing application, z is the own price of the brand while
the cluster variable refers to the outlet index. To ensure economically plausible results,
additional monotonicity constraints on the nonlinear functions are imposed as discussed
above.

P-splines have been introduced by Eilers and Marx (1996), see also Lang and Brezger
(2004) for a Bayesian version. Monotonicity constraints in the context of P-spline mod-
eling are discussed in Bollaerts, Eilers, and Mechelen (2006) and Brezger and Steiner
(2007). An overview concerning additive models and extensions is given in Hastie and
Tibshirani (1990), Fahrmeir, Kneib, and Lang (2007) and Wood (2006). Additive models
with random scaling factors are in the spirit of regression models for functional data, see,
e.g., Ramsay and Silverman (2005) and Ramsay and Silverman (2002). Statistical infer-
ence is based on a recent paper by Belitz and Lang (2007) that allows for simultaneous
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Figure 1: Scatterplot of unit sales versus own price for a brand of orange juice in two
stores.

estimation of unknown regression and smoothing parameters as well as selection of rele-
vant model terms. The approach is also able to discriminate between linear and nonlinear
relationships.

The remainder of this article is structured as follows. In the next section, we introduce
additive models with random scaling factors and discuss algorithms for estimation. In
Section 3, the results of some simulations are presented, followed by an application to
marketing data in Section 4. The final section 5 concludes.

2 Methodology

2.1 Additive and Varying Coefficient Models Based on P-Splines
Suppose that observations (yi, zi), i = 1, . . . , n, are given, where yi is a continuous re-
sponse variable and zi = (zi1, . . . , ziq)

′ is a vector of continuous covariates to be modeled
nonlinearly. We assume an additive decomposition of the effects of zij and obtain the
additive model

yi = f1(zi1) + · · ·+ fq(ziq) + εi , (1)

where f1 to fq are nonlinear functions of the covariates zij . The error terms εi are assumed
to be mutually independent Gaussian with mean 0 and variance σ2, i.e. εi ∼ N(0, σ2).

The nonlinear functions fj are modeled by P(enalized)-splines introduced by Eilers
and Marx (1996). The approach assumes that a particular unknown function f of a co-
variate z can be approximated by a polynomial spline of degree l and with equally spaced
knots

zmin = ζ0 < ζ1 < · · · < ζm−1 < ζm = zmax
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over the domain of z. The spline can be written in terms of a linear combination of
K = m + l B-spline basis functions (De Boor, 2001)

f(z) =
K∑

k=1

βkBk(z) ,

where Bk(z) are (known) B-spline basis functions evaluated at covariate value z and the
βk are unknown regression coefficients to be estimated. Defining the n×K design matrix
Z with elements Zi,k = Bk(zi), the vector f = (f(z1), . . . , f(zn))′ of function evaluations
can be written in matrix notation as f = Zβ. Accordingly, for model (1) we obtain

y = η + ε = Z1β1 + · · ·+ Zqβq + ε , (2)

where y is the vector of observations, η is the additive predictor and ε is the error vector.
The additive modeling framework can be easily extended to cover varying coefficients

models as introduced in Hastie and Tibshirani (1993). Varying coefficient models contain
terms of the form

yi = · · ·+ f(zi) · ui + · · · ,

where the effect of the additional covariate u varies smoothly over the course of the con-
tinuous covariate z. Covariate z is called the effect modifier of u. Terms of this type are
incorporated into the structure of (2) through a modification of the design matrix Z. The
matrix of B-spline basis functions must be multiplied row-wise with the observations ui

of the additional covariate u. Hence, for a varying coefficients term the elements of Z are
given by Zi,k = uiBk(zi).

In a simple regression spline approach the unknown regression coefficients βj are
estimated using standard algorithms and software. The crucial point is the choice of the
number (and position) of knots. For a small number of knots, the resulting spline may
be not flexible enough to capture the variability of the data. For a large number of knots,
estimated curves tend to overfit the data and, as a result, too rough functions are obtained.
To overcome the difficulties involved with regression splines, Eilers and Marx (1996)
suggest a relatively large number of knots (usually between 20 to 40) to ensure enough
flexibility, and to introduce a roughness penalty on adjacent regression coefficients based
on squared r-th order differences, i.e.

λ

K∑

k=r+1

(∆rβk)
2 = λβ′Kβ .

The penalty matrix is given by K = D′
rDr where Dr is a r-th order difference matrix.

Typically, second or third order differences are used.
The approach can be extended to impose monotonicity or more general shape con-

straints. We follow an approach proposed by Bollaerts et al. (2006). A sufficient con-
dition for a decreasing spline is given by βk ≤ βk−1, i.e. a parameter βk is less than its
predecessor βk−1. The simple but powerful idea of Bollaerts et al. (2006) is to impose
the required constraint by expanding the penalty by an additional term. More specifically
they propose the penalty

λβ′Kβ + µβ′Lβ ,
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where the additional penalty matrix L is a diagonal matrix with entries 1 whenever the
condition βk ≤ βk−1 fails and 0 otherwise. For increasing functions L has to be adapted
accordingly. The parameter µ is not estimated but set large enough to produce monotonic
functions.

2.2 Simultaneous Selection of Variables and Smoothing Parameters

A main building block of the estimation algorithms for additive and varying coefficients
models are smoothers of the form

S(y, λ) = Zβ̂ β̂ = (Z′Z + λK + µL)−1Z′y . (3)

Consecutively applying smoothers Sj corresponding to the j-th function fj in (1) to
the current partial residual reveals the well-known backfitting algorithm to minimize the
overall PLS-criterion

PLS = (y − η)′(y − η) +

q∑
j=1

(λjβ
′
jKjβj + µjβ

′
jLjβj) .

The complexity of the fit may be determined by the equivalent degrees of freedom df
as a measure of the effective number of parameters. The equivalent degrees of freedom df
are typically approximated by the sum of the degrees of freedom of individual smoothers,
i.e.

df =

q∑
j=1

dfj + p ,

where dfj is computed as

dfj = trace(Zj(Z
′
jZj + λjKj + µjLj)

−1Z′j)− 1 . (4)

Now the approach for simultaneous selection of variables and smoothing parameters
can be described follows:

1. Initialization
Define for every possible nonlinear term fj , j = 1, . . . , q, a discrete number Mj

of decreasing smoothing parameters λj1 > · · · > λjMj
. To include a linear fit

λj1 = ∞ is always specified.

2. Start model
Choose a start model with current predictor

η̂ = f̂1 + · · ·+ f̂q ,

where f̂j is the vector of function evaluations at the observations. Choose a good-
ness of fit criterion G (e.g. AIC, BIC, Cross validation, etc.).

3. Iteration For j = 1, . . . , q:
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(a) For m = 0, . . . , Mj:
Compute the fits

f̂jm :=

{
0 m = 0
Sj(y − η̂[j], λjm) m = 1, . . . , Mj

=

{
0 m = 0
(Z′jZj + λjmKj + µjLj)

−1Z′j(y − η̂[j]) m = 1, . . . , Mj

and the corresponding predictors η̂jm := η̂[j] + f̂jm. Here, η̂[j] is the current
predictor with the j-th fit f̂j removed.

Compute the updated estimate

f̂j = argmin G(̂fjm) ,

i.e. among the fits f̂jm for the j-th component, choose the one that minimizes the
goodness of fit criterion G.

4. Termination
The iteration cycle in 3. is repeated until the model, regression and smoothing pa-
rameters do not change anymore.

Note that when updating the function estimates f̂j the other terms in the model are
not re-estimated as in a backfitting procedure. However, the algorithm automatically col-
lapses to backfitting as soon as the variables and smoothing parameters included in the
model do not change anymore. Avoiding backfitting in step 2 dramatically reduces com-
puting time without loss of estimation accuracy. More details on the estimation algorithm
can be found in Belitz and Lang (2007).

2.3 Multiplicative Random Effects
As described in the introduction, the super market scanner data, that motivated our work,
are clustered in 81 stores (we use the terms cluster, store and outlet interchangeably). It
is usually not justified to assume homogeneous price response functions across stores.
Heterogeneity in price response may come from different levels of consumer price sen-
sitivity in different geographic regions of the supermarket chain’s trading area, and/or
from differences in interbrand competition across the stores of the chain. Drivers of these
store-specific differences, in turn, may be locally varying demographic and competitive
characteristics of a store’s neighborhood, related to income and family size structure or
the number of and distances to competing retail stores (e.g. Montgomery, 1997). In the
following, we therefore allow for cluster specific (random) scaling factors for every non-
linear function fj as well as a cluster specific random intercept. This leads to the model

yi = γ0ci
+ (1 + γ1ci

)f1(zi1) + · · ·+ (1 + γqci
)fq(ziq) + εi , (5)

where ci ∈ {1, . . . , C} is the cluster index of the i-th observation and the γjc, j = 0, . . . , q
are normally distributed random effects with mean 0 and variance τ 2

j , i.e.

γjc ∼ N(0, τ 2
j ) , c = 1, . . . , C .
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The result of the multiplicative effects is the scaling up of the nonlinear function by
increasing its steepness if (1 + γjc) > 1 and scaling down by decreasing its steepness if
(1 + γjc) < 1.

In order to estimate the model we assume for the moment that the nonlinear functions
fj are known. Rearranging model terms yields

yi = γ0ci
+ γ1ci

f1(zi1) + · · ·+ γqci
fq(ziq) + f1(zi1) + · · ·+ fq(ziq) + εi

= γ0ci
+ γ1ci

xi1 + · · ·+ γqci
xiq + oi + εi .

(6)

For known functions fj equation (6) is a simple random effects model with random in-
tercept γ0c, random slopes γjc, j = 1, . . . , q of the pseudo or transformed covariates
xij := fj(zi) and with an additional offset

oi = f1(zi1) + · · ·+ fq(ziq) .

Model (6) has formally the same structure as the additive or more precisely the varying
coefficient model described in section 2.1. The role of the effect modifier is taken by the
cluster index c and the interacting variables are the pseudo covariates xj = fj(zj). In
matrix notation we may write

y = Z̃0γ0 + Z̃1γ1 + · · ·+ Z̃qγq + o + ε

with design matrices Z̃0 = C and Z̃j = diag(x1j, . . . , xnj)C. The n×C matrix C is a 0/1
incidence matrix whose entry in the i-th row and k-th column is 1 if the i-th observation
belongs to the k-th cluster and 0 otherwise.

For given variance parameters τ 2
0 , . . . , τ 2

q the random effects γjc, j = 0, . . . , q, c =
1, . . . , C may be estimated by minimizing the following penalized least squares criterion

PLS = (y − η)′(y − η) +

q∑
j=0

λ̃jγ
′
jγj ,

where the “smoothing parameters” are given by λ̃j = σ2/τ 2
j and γj = (γj1, . . . , γjC)′ are

vectors of random effects coefficients. The vectors γj may be estimated via backfitting
analogous to the parameters βj of the nonlinear functions fj in the preceding subsection.
The corresponding smoothers are given by

S̃j(y, λ̃) = Z̃jγ̂j γ̂j = (Z̃′jZ̃j + λ̃jIj)
−1Z̃′jy .

Simultaneous selection of smoothing parameters and relevant random effects can be done
in the same way as described in Subsection 2.2.

We are now prepared to describe estimation of our model (5). Estimation is carried
out in the following two steps which may be iterated:

1. In a first step we assume homogeneous functions fj in model (5), i.e. the random
effects coefficients γjc are assumed to be identical to zero. Using the algorithms
of section 2.2 estimates f̂j of the nonlinear functions are obtained. Because of the
built-in model selection some of the functions may be linear or identical to zero.

2. In the second step we estimate the random effects coefficients as described above
by keeping fixed the estimated functions f̂j from the first stage.
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3 Simulation

3.1 Setup

The true model consists of the response y and three covariates x1, x2, and x3. They exert
a nonlinear influence which is modified by multiplicative effects as given in equation (7),

y = (1 + γ1)f1(x1) + (1 + γ2)f2(x2) + (1 + γ3)f3(x3) + ε , (7)

where f1 is the decreasing part of the sine-function in the interval [1.58; 4.71], f2 is the
natural logarithm in the interval [5; 15], f3 is the value of the cumulative distribution
function of the standard normal distribution evaluated in the interval [−2.5; 2.5] and ε is
the usual i.i.d. Gaussian error term with some variance σ2. The γj are normally distributed
and centered about 0, which means that the multiplicative effects (1 + γj) are centered
about 1. We choose different levels of variance for γj in order to assess the behavior of
the estimation technique for different strengths of the multiplicative effects. In particular,
we set the variances equal to 0.42, 0.22 and 0.12 for γ1, γ2 and γ3, respectively:

γ1 ∼ N(0; 0.42) γ2 ∼ N(0; 0.22) γ3 ∼ N(0; 0.12) .

In the simulation setup, we use 100 clusters, each having 50 observations. The effects
(1 + γj)fj(Xj) are shown in Figure 2.
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Figure 2: The three nonlinear functions, multiplied with their respective random effects.
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Furthermore, we study the three different signal-to-noise ratios 3, 2 and 1. The signal-
to-noise ratio is computed as the ratio of the standard deviation of the predictor η to the
standard deviation of the error term ε:

SNR =
ση

σε

.

A ratio of 3 corresponds to a moderate signal, 2 means a weak signal and 1 implies a very
weak signal.

We calculate 250 replications of our model and carry out the estimation procedure
described in the previous section. The results are shown in figure 3. From the 100 cluster-
specific effects (1 + γj)fj(xj) three are picked out for closer inspection. The first is the
cluster corresponding to the 5%-, the second to the 50%- and the third to the 95%-quantile
of the random effects γj . The arithmetic mean from the 250 replications is computed and
displayed in the graph (solid). In order to facilitate comparison, the true effects are plotted,
too (dashed). Clearly, the average from 250 estimates is more biased for smaller signal-
to-noise ratios. Furthermore, the estimate is more biased the weaker the random effect is.
These two characteristics are a well-known feature of random effects estimators, see for
example Gelman and Hill (2007).
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Figure 3: The average estimates of 250 replications (solid) and the true effects (dashed)
(1 + γj)fj(Xj) for the signal-to-noise ratio 3, 2 and 1 in the first, second and third row,
respectively.

It remains to be investigated how many errors the estimation procedure has produced,
i.e. how often have covariates been eliminated although they actually should have been
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Table 1: Number of false exclusions for different signal-to-noise ratios.

Signal-to-noise ratio γ1 γ2 γ3

3:1 0 0 0
2:1 0 0 28
1:1 0 57 111

included. In step one, regardless of the covariate and the signal-to-noise ratio no errors
have occurred. Contrary to that, errors have appeared in the second step. Table 1 points
out that the multiplicative effects of f1 have never been excluded. The weak multiplicative
effect of f3 is excluded most often, with a signal-to-noise ratio of 1 nearly half of the time.

We repeat the analysis using the same 250 replications of the model in equation (7),
but now we calculate the model using a fully Bayesian approach with MCMC techniques
(see Lang und Brezger, 2004 and Brezger und Lang, 2006 for details). This approach,
however, is not able to perform model selection. The results are visually indistinguishable
from those in figure 3, which is why we omit the depiction.

We compare the two estimation procedures in terms of their efficiency. For this reason
we compute the mean squared error MSE = E(ŷ−y)2 for the 250 replications of the three
clusters considered in figure 3. The results are reported in Figure 4. The upper left panel
depicts a boxplot of the MSE for a signal-to-noise ratio of 3, the upper right of 2 and the
lower of 1. We can see that generally the error increases the weaker the signal is. Next
to the MSE of the estimation procedure described in section 2 we also report the MSE
of Bayesian techniques, indicated by MCMC. It does not, however, differ to a notable
extent.

Summarizing the above we can state that the estimation procedure performs reason-
ably well. Even for a moderate strength of the signal the results are not too much biased.
We have seen, though, that there are limits. In particular, with a very low signal-to-noise
ratio of 1 there seems to be too much noise to estimate the effects precisely.

4 Application
We apply our methodology to data from “Dominick’s Finer Foods”, a major supermarket
chain operating in the Chicago metropolitan area. The data include weekly unit sales and
corresponding retail prices for different brands of orange juice (premium, national and
store brands) in 81 stores of the chain over a time period of 89 weeks. In the following,
we illustrate our methodology for one of the national brands, the brand “Florida Gold”.

To account for multicollinearity and for the fact that cross-item price effects are usu-
ally much lower than own-item price effects (see, e.g., Hanssens et al., 2001), we cap-
ture cross-price effects at the tier level rather than the individual brand level: we define
price premiumit (price nationalit) as the minimum price for a premium brand (national
brand) in store i and week t, while (price dominicksit) denotes the price of the only pri-
vate label brand, Dominick’s store brand, in store i and week t. It is important to note that
price activities of the national brand Florida Gold are excluded from the computation of
price nationalit.
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Figure 4: The MSE for a signal-to-noise ratio of 3 (upper left panel), 2 (upper right panel)
and 1 (lower panel). For each effect the MSE of the estimation procedure as described in
section 2 as well as a Bayesian procedure (indicated with MCMC) is reported.

A scatter plot of log unit sales and the own-item price of the brand Florida Gold is
shown in the upper left panel of Figure 5, indicating the expected inverse relationship
between unit sales and own-item price. The situation is less clear-cut for the impact of
competitive prices on the sales of Florida Gold: it is hard to discern the expected direct
relationships in the scatter plots since there is much noise in the data.

We apply the estimation procedure described in section 2 and estimate the model

lnqi,t = γ0i + (1 + γ1i)f1 + (1 + γ2i)f2 + (1 + γ3i)f3 + (1 + γ4i)f4 + εi,t , (8)

where qi,t denotes unit sales of Florida Gold in store i and week t, γ0i is a random intercept
accounting for heterogeneity in baseline sales of Florida Gold across different stores, f1

is a nonlinear function of the price of “Florida Gold”, f2 to f4 are nonlinear functions of
the competitive prices w.r.t. the premium brand tier, the national brand tier and the store
brand, respectively, and εi,t ∼ N(0, σ2

ε) is the usual i.i.d. Gaussian error term. The non-
linear functions are modeled using P-splines with 20 knots and a second order difference
penalty. Note that for ease of notation we have omitted the arguments of the nonlinear
functions.

Selection of penalty parameters and relevant terms is carried out using the algorithm
described in subsection 2.3. The algorithm deletes the random effect of the premium
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Figure 5: Scatter plots between the log number of sold packages and the price of “Florida
Gold” (upper left panel) as well as prices of competitive products in three quality tiers.

brand tier from the model, yet the fixed effect is still incorporated. The resulting model
therefore is

log qi,t = γ0i + (1 + γ1i)f1 + f2 + (1 + γ3i)f3 + (1 + γ4i)f4 + εi,t , (9)

where f2 is homogeneous across outlets. The minimum and maximum random marginal
effects, holding all other covariates constant at the mean in the dataset and after trans-
forming log unit sales to unit sales, are shown in figure 6.

The estimated price effects exhibit a highly nonlinear behavior with steps and kinks
at certain price points indicating threshold and saturation effects. For example, unit sales
of Florida Gold do not increase until the own price falls below about 2.25 dollars. The
cross-price response curve with respect to the premium brands shows an inverse L-shape
and a strong kink at a price of about 2.25 dollars, below which the unit sales of Florida
Gold rapidly decrease. And, unit sales of Florida Gold rapidly increase if the lowest
price for one of the competing national brand exceeds 2.5 dollars. We further observe
strong heterogeneity across stores for the cross-price effect of Dominick’s own orange
juice brand.

We replicated the same analysis using MCMC techniques (Lang und Brezger, 2004
and Brezger und Lang, 2006). Figure 7 displays the estimation results. A comparison
with Figure 6 reveals only minor differences between the estimation procedures regarding
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Figure 6: Maximum and minimum random marginal price effects for the three price vari-
ables that were selected. The price w.r.t. the premium brand tier (upper right panel) was
selected not to vary across outlets.

the shapes of the price effects, except for the premium tier effect which is now much
smoother. Furthermore, since this approach is incapable of variable selection, the random
effect of price premium is included in addition to the fixed effect (though revealing only
little variation).

We compared the model performance in terms of predictive validity to the model

log qi,t = γ0 + f1 + f2 + f3 + f4 + εi,t (10)

which contains no random effects at all, and to the model

log qi,t = γ0i + f1 + f2 + f3 + f4 + εi,t (11)

which only includes the random intercept but not the random scaling factors.
In particular, we randomly split the data into five and ten equally-sized subsets and

performed five-fold and ten-fold cross-validation, respectively. The results displayed in
Table 2 indicate a considerable improvement in predictive performance when allowing
the nonlinear functions to vary across stores.
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Figure 7: Maximum and minimum random marginal price effects for the four price vari-
ables estimated using MCMC.

Table 2: Cross-validation criteria for different model specifications. Smaller values cor-
respond to better model fits.

Model (8) (10) (11)
CV5 0.7243 0.8408 0.8201

CV10 0.7242 0.8406 0.8175

5 Conclusion

The paper provides inference for additive models with random scaling factors and presents
an empirical application concerning the estimation of own- and cross item price effects
from retail sales data.

Several directions for future research are conceivable. First, the methodology could
be extended to non-Gaussian responses. Second, we plan a fully Bayesian version based
on MCMC simulation techniques. Third, since the stores of the retail chain exhibit a
spatial structure, we plan to introduce spatially correlated random scaling factors rather
than uncorrelated factors, as employed in the current paper.
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