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Abstract: In practice it is often more popular to use a uniform than an op-
timal design for estimating the unknown parameters of a linear regression
model. The reason is that the model can be checked by a uniform design
but it cannot be checked by an optimal design in many cases. On the other
hand, however, for important regression models a uniform design is not very
efficient to estimate the unknown parameters. Therefore Bischoff and Miller
proposed in a series of papers a compromise. It is suggested there to look
for designs that are optimal with respect to a specific criterion in the class of
designs that are efficient for lack-of-fit-tests. In this paper we consider the
D-criterion and polynomial regression models. For polynomial regression
models with degree larger than two D-optimally lack-of-fit-test-efficient de-
signs are difficult to determine. Therefore, in this paper we determine easily
to calculate and for estimating the parameters highly efficient designs that are
additionally lack-of-fit-test–efficient.

Zusammenfassung: In der Praxis ist es für die Schätzung unbekannter Pa-
rameter oft populärer anstelle eines optimalen Versuchsplans, die Versuch-
spunkte äquidistant zu verteilen. Dies gilt insbesondere für lineare Regres-
sionsmodelle. Der Grund ist, dass bei einem äquidistantem Versuchsplan das
Modell überprüft werden kann. Mit einem optimalen Versuchsplan hingegen
kann in vielen Fällen das Modell nicht auf seine Richtigkeit überprüft werden.
Auf der anderen Seite ist ein äquidistanter Versuchsplan nicht sehr effizient
für die Schätzung der unbekannten Parameter. Deshalb wurde in einer Serie
von Aufsätzen von Bischoff und Miller folgender Kompromiss vorgeschla-
gen. Gesucht wird der optimale Versuchsplan bezüglich eines bestimmten
Kriteriums in der Klasse von Versuchsplänen, die für das Modelltesten ef-
fizient sind. In diesem Aufsatz werden das D-Kriterium und polynomiale Re-
gressionsmodelle betrachtet. Für polynomiale Regressionsmodelle vom Grad
größer als zwei sind D-optimale Versuchspläne, die für das Modelltesten ef-
fizient sind, schwierig festzulegen. Deshalb werden in diesem Aufsatz ein-
fach zu berechnende und für das Schätzen von Parametern hoch effiziente
Versuchspläne bestimmt, die zusätzlich noch effizient für das Modelltesten
sind.
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1 Introduction
Linear regression models are popular in practice since they are easy to interpret. Practi-
tioners, however, are seldom sure whether their assumed linear model is at least approxi-
mately true for the data under consideration. Therefore, in these cases designs are of most
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practical interest with which the parameters cannot only be estimated but also with which
the model can be checked. Known classical optimal designs for estimating a parameter
of a linear model, however, are often not suitable to check the model. Therefore uniform
designs which are optimal in some sense to check a linear model are more popular. On
the other hand uniform designs are not very efficient to estimate the unknown parameters.

To take into consideration these concerns Bischoff and Miller suggest, see Bischoff
and Miller (2006a, 2006b, 2006c, 2007) and Miller (2002), to take one part of the design
points to be able to carry out a lack of fit (LOF-)test for a check of the assumed model.
Then the remaining design points are determined in such a way that the whole design
is as good as possible (according to a specific criterion) for inference on the unknown
parameters of interest. We call such designs optimally LOF-test-efficient. In Bischoff
and Miller (2006a, 2006b, 2006c) such designs are determined for the c-criterion. In
Bischoff and Miller (2007) the general form of D-optimally LOF-test-efficient designs
for polynomial regression models are determined. Moreover, for polynomial regression
of order smaller than or equal to 2 such designs are calculated explicitly there. But note
that it is difficult to determine such designs for polynomial regression of order larger than
2. The main objective of this paper is to construct easy to calculate LOF-test-efficient
designs that are highly efficient to estimate the unknown parameters.

In the next section we give a short overview on D-optimally LOF-test-efficient designs
for polynomial regression. Then in Section 3 we look for the structure of LOF-test-
efficient designs that are easy to calculate and that are highly efficient to estimate the
unknown parameters.

2 An Overview
To describe the problem and results in more detail let a regression model be given with
experimental region E = [a, b] ⊆ R and unknown, true regression function g. The obser-
vations are described by

Yi(xi) = g(xi) + εi , i = 1, . . . , n , (1)

where x1, . . . , xn ∈ E , E(εi) = 0, cov((ε1, . . . , εn)>) = σ2In. The above model is a
polynomial regression model of order k − 1 if the hypothesis

H0 : ∃ θ = (θ1, . . . , θk)
> ∈ Rk with g = f>θ

is true, where f(t) := (f1, . . . , fk)
> = (1, . . . , tk−1)>, t ∈ E = [a, b]. A test of the hy-

pothesis H0 is called “lack of fit”-test (LOF-test) for the polynomial regression model.
Let λ̃ be the uniform distribution on E , that is λ̃ = 1

λ(E)
λ, where λ is the Lebesgue mea-

sure, and let c > 0. Then a meaningful set of alternatives for the polynomial regression
model can be expressed by

Fc :=

{
f>θ + h

∣∣∣∣θ ∈ Rk, h ∈ L2(λ̃) with
∫

E
h2 dλ̃ ≥ c,

∫

E
fih dλ̃ = 0, i = 1, . . . , k

}
,

(2)



W. Bischoff 247

see Wiens (1991). Note that the following considerations and results do not depend on the
constant c > 0. Next, we consider LOF-tests in an asymptotic way, that is when the num-
ber n of observations goes to infinity. An arbitrary design for n observations is given by
(x1, . . . , xn) ∈ En which can be identified with the probability measure ξn := 1

n

∑n
i=1 δxi

,
where δt is the Dirac measure in t ∈ E . On the other hand each probability measure ξ on
E can be realized as an exact design for n observations by using the quantiles F−1

ξ ( i−1
n−1

),
i = 1, . . . , n, of the distribution function Fξ of ξ as design points. In this sense each
probability measure can be considered as an asymptotic design. On the other hand from a
practical point of view it is enough to consider asymptotic designs (probability measures)
which can be decomposed into a finitely discrete part and in a part which can be expressed
by a measure with a λ̃-density. The finitely discrete part corresponds to approximate de-
signs considered in classical experimental design theory. The measure with λ̃-density
corresponds to designs for LOF-tests, see below and Wiens (1991). For technical reasons
we assume that the λ̃-density has bounded variation which is no restriction in practice.

By the above discussion we define the set of competing designs by

Ξ :=
{
pξd + (1− p)ξc | p ∈ [0, 1], ξd ∈ Ξd, ξc ∈ Ξc

}
,

with

Ξd =

{
s∑

i=1

qiδti | s ∈ N, t1, . . . , ts ∈ E , q1, . . . , qs > 0 with
s∑

i=1

qi = 1

}
,

Ξc = {ξ | ξ is a probability measure on E with λ-density which has bounded variation} .

Wiens (1991) and Biedermann and Dette (2001) showed for the F -test and three nonpara-
metric LOF-tests that the uniform design λ̃ on E maximizes the minimal power for the
alternatives given in (2). The design λ̃ is called LOF-test-optimal design.

A design is called D-optimally r-LOF-test-efficient design (for H0) if the proportion r
of design points are chosen according to the LOF-test-optimal design λ̃ and the remaining
design points are chosen in such a way that the whole design is as good as possible to
estimate θ by the BLUE with respect to the D-criterion. Hence, we look for a D-optimal
design in

Υ[r] := {ξ ∈ Ξ | rλ̃ ≤ ξ} ,

i.e. we look for ξ∗ ∈ Υ[r] maximizing

ξ 7→ D(k)(ξ) := det
(
M(ξ)

)1/k
, where M(ξ) =

∫

E
f(t)f(t)>ξ(dt) . (3)

Here µ1 ≤ µ2 for designs (probability measures) µ1, µ2 on B means ∀B ∈ B : µ1(B) ≤
µ2(B).

The set-up is similar to Bayesian optimum design in linear models. Namely, the fixed
r-th part of observations can be considered as giving a prior under which we consider
designs minimizing the determinant of the covariance matrix of the Bayesian estimator
of the parameters. For more details see Pilz (1991). For the same relation with respect to
c-optimality see Bischoff and Miller (2006a, p. 2020).
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The D-optimal designs for polynomial regression in the classical situation are well
known, see Dette and Studden (1997, p. 149), or Pukelsheim (1993, p. 214-216), see also
Fedorov (1972) and Silvey (1980).

The next result shows the general form of a D-optimal design in Υ[r] if a polynomial
regression of order k − 1 is assumed as true model under H0. By the same reasons as for
the classical D-criterion we can choose E = [−1, 1] without loss of generality. Then we
obtain the D-optimally LOF-test-efficient design for the experimental region E = [a, b]
by linear transforming the D-optimally LOF-test-efficient design for E = [−1, 1] from
[−1, 1] to [a, b]. The following statement is a specific result of a general equivalence
theorem given in Bischoff and Miller (2006a), see also Bischoff and Miller (2007).

Theorem 1 Let the experimental region E = [−1, 1], let f(t) = (1, t, . . . , tk−1)T , let
r ∈ [0, 1] and let

dk(t, ξ) := f(t)>M(ξ)−1f(t) , t ∈ R , ξ ∈ Ξ .

Then the D-optimally r-LOF-test-efficient design in Ξ for H0 is symmetric with respect to
0 and has the form rλ̃+(1−r)

∑`
i=1 piδti , where t1, . . . , t` ∈ [−1, 1] are `(≤ k) different

points with d(ti, ξ) = maxt∈[−1,1] d(t, ξ) and p1, . . . , p` ∈ (0, 1] are suitable values with∑`
i=1 pi = 1.

For later purposes the following fact is worth noting for the polynomial regression
model f(t) = (1, t, . . . , tk−1)>, t ∈ E = [−1, 1], k = 2, 3, . . . . It holds for a symmetric
design ξ ∈ Ξ

D(k)(ξ) = det

(∫

E
f(t)f(t)>ξ(dt)

)1/k

=

([∫

E
t4ξ(dt)−

(∫

E
t2ξ(dt)

)2
] ∫

E
t2ξ(dt)

)1/k

.

Furthermore, the fact that
D(k)(·) is concave

is decisive for our procedure to get simple and highly efficient designs in the following.

3 Simple r-LOF-test-efficient Designs
In this section we consider straight-line, quadratic and cubic polynomial regression mod-
els, i.e., f(t) = (1, t, . . . , tk−1) with k = 2, 3, 4. The above result can be used to calculate
the optimal designs for the first two models mentioned above, see Corollary 2 and The-
orem 3. By Theorem 3 we recognize that the D-optimally r-LOF-test-efficient design
for the straight-line is also D-optimally r-LOF-test-efficient for the quadratic polynomial
regression model if r is not too small. It is much more complicated, however, to compute
the D-optimally r-LOF-test-efficient design for the cubic polynomial regression model
because its design points and the corresponding weights are changing with r opposed
to the straight-line and quadratic regression model. But by the experience with straight-
line and quadratic polynomial regression models we get ideas on the cubic D-optimally
r-LOF-test-efficient designs for r not too small. Furthermore, for smaller r we can con-
struct simply to compute r-LOF-test-efficient designs that are highly efficient to estimate
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the unknown parameters. We consider the D-optimality criterion to judge the efficiency
of a design for estimating the unknown parameter vector θ. The D-efficiency of an r-
LOF-test-efficient design ξ is defined by

D-effkr(ξ) :=
D(k)(ξ)

D(k)(ξ∗r,k)
,

where ξ∗r,k is the D-optimally r-LOF-test-efficient design for the model f(t) = (1, t, . . . ,

tk−1).

3.1 Straight-line Regression (k = 2)

Corollary 2 (Bischoff and Miller, 2007) Let E = [−1, 1], let r ∈ [0, 1] and let f(t) =
(1 t)>. Then the D-optimally r-LOF-test-efficient design is given by

ξ∗r,2 = r · λ̃ +
1

2
(1− r)(δ−1 + δ1) .

The above result shows immediately that the D-optimally r-LOF-test-efficient design can
be simply obtained by a linear combination of the classical D-optimal design ξ∗0,2 and the
uniform design ξ∗1,2 = λ̃, i.e. ξ∗r,2 = rξ∗1,2+(1−r)ξ∗0,2. The D-efficiency of ξ∗1,2 = λ̃ ∈ Υ[r]
for each r ∈ [0, 1] is given by

D-eff2r(λ̃) =
1√

3− 2r
, D-eff20(λ̃) =

1√
3

= 0.58 .

3.2 Quadratic Polynomial Regression (k = 3)

Theorem 3 (Bischoff and Miller, 2007) Let E = [−1, 1], let r ∈ [0, 1] and let f(t) =
(1 t t2)>. Then the D-optimally r-LOF-test-efficient design is given by

ξ∗r,3 = rλ̃ + p∗δ−1 + (1− r − 2p∗)δ0 + p∗δ1 ∈ Υ[r]

with

p∗ =





1− r

6
+

√
25− 10r

30
, 0 ≤ r ≤ r0,

1− r

2
, r0 < r ≤ 1,

where r0 = (19−√61)/20 ≈ 0.5595.

For r = 0 we get the classical, approximate D-optimal design ξ∗0,3 = (δ−1 + δ0 + δ1)/3

and for r = 1 we get the uniform design ξ∗1,3 = λ̃. It is worth mentioning that the D-
optimally r-LOF-test-efficient design ξ∗r,2 = rλ̃ + 1−r

2
(δ−1 + δ1) ∈ Υ[r] for the straight-

line regression model coincide with the D-optimally r-LOF-test-efficient design ξ∗r,3 for
the quadratic regression model if r0 ≤ r ≤ 1.
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Figure 1: D(3)(ξ∗r,2) broken line and D(3)(ξ∗r,3) bold line.

For the design ξ∗r,3 we obtain after some calculation

D(3)(ξ∗r,3) =





3
√

10

15

(
25− 15r + 25(1− 2

5
r)3/2

)1/3

, 0 ≤ r ≤ r0,

3
√

100

15

(
18r − 27r2 + 10r3

)1/3
, r0 < r ≤ 1.

Hence, the D-efficiency of ξ∗1,3 = λ̃ ∈ Υ[r] for each r ∈ [0, 1] is given by

D-eff3r(λ̃) =

{ (
2.5− 1.5r + 2.5(1− 2

5
r)3/2

)−1/3
, 0 ≤ r ≤ r0,

(18r − 27r2 + 10r3)−1/3, r0 < r ≤ 1.

Especially, we have D-eff30(λ̃) = 1/ 3
√

5 = 0.58. This shows the bad performance of the
uniform designs ξ∗1,2 = ξ∗1,3 = λ̃ with respect to the D-efficiency. Furthermore, we obtain
for ξ∗r,2

D(3)(ξ∗r,2) =
3
√

100

15

(
18r − 27r2 + 10r3

)1/3
, r ∈ [0, 1] .

The values D(3)(ξ∗r,2), D(3)(ξ∗r,3), r ∈ [0, 1], of the designs ξ∗r,3, ξ∗r,2 ∈ Υ[r] are shown in
Figure 1. Note that ξ∗1,3 = ξ∗1,2 = λ̃ and ξ∗r,2 = ξ∗r,3 for r ∈ [r0, 1].

Although the D-optimally r-LOF-test-efficient design for r with 0 ≤ r < r0 is known
we construct simple, highly efficient alternatives by the facts:

1. D-eff30(ξ
∗
r0,2)) = 0.88,

2. D(3)(·) is concave.
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Hence, the convex combination ξc
r,3 = (1 − q)ξ∗0,3 + qξ∗r0,2 ∈ Υ[r] with r = qr0, q ∈

[0, 1], is a simple alternative for the D-optimally r-LOF-test-efficient design ξ∗r,3 with
D-eff3r(ξ

c
r,3) ≥ 0.88, r ∈ [0, r0]. For these designs we obtain for r ∈ [0, r0]

D(3)(ξc
r,3) =

3
√

2r0

3r0

(
2r2

0 − r0r − 6

5
r2
0r − r2 + 5r0r

2 − 24

5
r2
0r

2 + r3 − 4r0r
3 + 4r2

0r
3

)1/3

.

Since D(3)(·) is concave, Figure 1 implies that the designs ξc
r,3 ∈ Υ[r] are highly efficient

for 0 ≤ r ≤ r0. Indeed one can show numerically that D-eff3r(ξ
c
r,3) ≥ 0.9999, 0 ≤ r ≤ r0.

3.3 Cubic Polynomial Regression (k = 4)
It is rather complicated to calculate the D-optimally r-LOF-efficient designs for the cubic
polynomial regression model because the design points and the corresponding weights
changing with r. Therefore we construct simple alternatives using the strategy developed
for the quadratic regression model.

At first we investigate d4(t, λ̃), t ∈ [−1, 1] (see Theorem 1), which is a polynomial of
order 6. After some analytical calculations one can recognize that d4(t, λ̃), t ∈ [−1, 1],
has its unique maxima in t = −1 and t = 1. Let us assume that the optimal design
points do not change for large r near 1. Then using Theorem 1 and the fact that d4(t, ·),
t ∈ [−1, 1], is continuous the design ξ∗r,2 = rλ̃ + (1−r)

2
(δ−1 + δ1) coincides with the D-

optimally r-LOF-efficient design ξ∗r,4 for all r ∈ [r0, 1], where r0 ∈ [0, 1] is some constant.
By numerical investigations it can be recognized that ξ∗r,2, r ∈ [r0, 1], is D-optimally r-
LOF-efficient where r0 ≤ 0.65 =: c, see Figure 2.

Figure 2: d4(t, rλ̃ + (1−r)
2

(δ−1 + δ1)), t ∈ [−1, 1], for specific r.
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Figure 3: D(4)(ξ∗r,2) bold line, D(4)(ξc
r,4) broken line.

The approximate D-optimal design ξ∗0,4 is given by 1
4
(δ−1 + δ−1/

√
3 + δ1/

√
3 + δ1).

Note that D-eff40(λ̃) = 0.64 which is not very efficient, but D-eff40(ξ
∗
c,2) ≥ 0.94 is rather

large. Therefore and by the fact that D(4)(·) is concave the convex combinations ξc
r,4 =

(1 − q)ξ∗0,4 + qξ∗c,2 with r = qc, q ∈ [0, 1], is a simple alternative for the (unknown)
D-optimally r-efficient-LOF-test design ξ∗r,4. The values D(4)(ξ∗r,2), r ∈ [0, 1], D(4)(ξc

r,4),
r ∈ [0, c], of the designs ξ∗r,2, ξc

r,4 ∈ Υ[r] are shown in Figure 3. Note that ξ∗0,4 = ξc
0,4,

ξ∗1,4 = ξ∗1,2 = λ̃, and ξ∗r,2 = ξ∗r,4 for r ∈ [c, 1].
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