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Abstract: Yamamoto, Iwashita, and Tomizawa (2007) gave the decomposi-
tions of the symmetry (S) model into the extended S and two or three marginal
equimoment models for multi-way tables with ordered categories. However
the goodness-of-fit test statistic for the S model is not asymptotically equiv-
alent to the sum of those for the decomposed three or four models. This
paper gives, for multi-way tables, the modification of their decompositions
such that the test statistic for the S model is asymptotically equivalent to the
sum of those for the extended S model and one modified marginal equimo-
ment model, which is the constraints combined the marginal means equality
and variances equality or combined the marginal means equality, variances
equality and correlations equality. Examples are given.

Zusammenfassung: Yamamoto et al. (2007) lieferten die Zerlegungen des
Symmetrie (S) Modells in das erweiterte S und zwei oder drei marginalen
Equimomentmodellen für mehrfach Tafeln mit geordneten Kategorien. Die
Teststatistik für die Güte der Anpassung des S Modells ist jedoch nicht asymp-
totisch äquivalent der Summe jener der zerlegten drei oder vier Modellen.
Diese Arbeit gibt für mehrfach Tafeln die Modifizierung derer Zerlegun-
gen so dass die Teststatistik für das S Model asymptotisch äquivalent der
Summe jener für das erweiterte S Model und ein modifiziertes marginales
Equimoment Modell, was die Beschränkungen darstellt und die Gleichheit
der marginalen Erwartungen und die Gleichheit der Varianzen kombiniert
oder die Gleichheit der marginalen Erwartungen, Varianzen und Korrelatio-
nen kombiniert. Beispiele sind angegeben.

Keywords: Likelihood Ratio Statistic, Linear Diagonals-Parameter Symme-
try, Ordinal Quasi-Symmetry, Separability, Square Contingency Table.

1 Introduction
Consider an rT contingency table with ordered categories. Let i = (i1, . . . , iT ) for ik =
1, . . . , r (k = 1, . . . , T ), and let pi denote the probability that an observation will fall in
the ith cell of the table. Let Xk (k = 1, . . . , T ) denote the kth variable. The symmetry
(S-T ) model is defined by

pi = pj,
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for any permutation j = (j1, . . . , jT ) of i = (i1, . . . , iT ) (Bowker, 1948, Agresti, 2002,
p. 440).

When T =2, Agresti (1983) and Agresti (1984, p. 203) considered the linear diagonals-
parameter symmetry (LDPS-2) model. For an rT table, Yamamoto et al. (2007) described
the LDPS-T model defined by

pi =

(
T∏

s=1

αis
s

)
ψi,

where ψi = ψj for any permutation j = (j1, . . . , jT ) of i = (i1, . . . , iT ). The LDPS-
T model with {αs = 1} is the S-T model. Note that the LDPS-T model obtained by
replacing {is} by scores {uis} is the ordinal quasi-symmetry model given by Agresti
(2002, p. 440).

Consider the marginal mean equality (ME-T ) model defined by µ1 = · · · = µT , where
µk = E(Xk). Yamamoto et al. (2007) gave the following theorem.

Theorem 1. For the rT table (T ≥ 2), the S-T model holds if and only if both the LDPS-T
and ME-T models hold.

Yamamoto et al. (2007) proposed the extended LDPS-T (denoted by ELDPS-T ) and
the more generalized LDPS-T (denoted by GLDPS-T ) models. The GLDPS-T model is
defined by

pi =

(
T∏

s=1

αis
s

)(
T∏

t=1

β
i2t
t

) (
T−1∏
s=1

T∏
t=s+1

γisit
st

)
ψi,

where ψi = ψj for any permutation j = (j1, . . . , jT ) of i = (i1, . . . , iT ). The GLDPS-T
model with {γst = 1} is the ELDPS-T model. Note that when T = 2, the ELDPS-2
model was considered by Tomizawa (1991).

Using the marginal variance equality (VE-T ) and marginal correlation equality (CE-
T ) models (see Section 3), Yamamoto et al. (2007) gave the following theorems.

Theorem 2. For the rT table (T ≥ 2), the S-T model holds if and only if all the ELDPS-T ,
ME-T and VE-T models hold.

Theorem 3. For the rT table (T ≥ 3), the S-T model holds if and only if all the GLDPS-T ,
ME-T , VE-T and CE-T models hold.

Lang and Agresti (1994), and Lang (1996) considered the simultaneous modeling of
a model for the joint distribution and a model for the marginal distribution. Aitchison
(1962) discussed the asymptotic separability, which is equivalent to the orthogonality in
Read (1977) and the independence in Darroch and Silvey (1963), of the test statistics for
goodness-of-fit of two models (also see Lang and Agresti, 1994, Lang, 1996, Tomizawa,
1992, 1993, Tomizawa and Tahata, 2007).

We are interested whether or not for Theorems 1, 2 and 3 the test statistic for the S-T
model is asymptotically equivalent to the sum of the test statistic for decomposed models.

Theorem 1 is a decomposition for the S-T model into two models, and Theorems 2
and 3 are the decompositions for the S-T model into three or four models. For Theorem 1
the test statistic for the S-T model is asymptotically equivalent to the sum of those for two
models (as proved in Section 2), however for Theorems 2 and 3 the test statistic for the
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Table 1: Numbers of degrees of freedom (df) for models applied to the rT table.

Models df
S-T rT − L
LDPS-T rT − L− (T − 1)
ELDPS-T rT − L− 2(T − 1)
GLDPS-T rT − L− (T 2 + 3T − 6)/2
ME-T T − 1
MV-T 2(T − 1)
MVC-T (T 2 + 3T − 6)/2
Note: L =

(
r+T−1

T

)
= (r+T−1)!

T !(r−1)!

S-T model is not asymptotically equivalent to the sum of those for three or four models
(see Section 5 and Appendix). So we are interested in considering the modification of
Theorems 2 and 3 such that the test statistic for the S-T model is asymptotically equivalent
to the sum of those for the modified two models.

The purpose of this paper is (1) to prove that the test statistic for the S-T model
is asymptotically equivalent to the sum of those for the LDPS-T and ME-T models in
Section 2, (2) to modify the decomposed three or four models into two models and (3)
to consider the modification of Theorems 2 and 3 such that the test statistic for the S-T
model is asymptotically equivalent to the sum of those for the modified two models in
Section 3.

2 Orthogonality of Decomposition for Symmetry
Let ni1...iT denote the observed frequency in the (i1, . . . , iT )th cell of the rT table (ik =
1, . . . , r; k = 1, . . . , T ) with n =

∑ · · ·∑ni1...iT . Assume that the observed frequencies
have a multinomial distribution. Let G2(Ω) denote the likelihood ratio statistic for testing
goodness-of-fit of model Ω. The numbers of degrees of freedom (df) for models are given
in Table 1.

First we obtain the following theorem when T = 2.

Theorem 4. For the r × r table, the following asymptotic equivalence holds:

G2(S-2) ' G2(LDPS-2) + G2(ME-2).

Proof. The LDPS-2 model may be expressed as

log pij = (j − i)β1 + φij i = 1, . . . , r; j = 1, . . . , r, (1)

where φij = φji. Let

p = (p11, . . . , p1r, p21, . . . , p2r, . . . , pr1, . . . , prr)
t,

β = (β1, β2)
t,
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where “t” denotes the transpose, and where

β2 = (φ11, φ12, . . . , φ1r, φ22, φ23, . . . , φ2r, . . . , φrr),

is the 1×r(r+1)/2 vector of φij for 1 ≤ i ≤ j ≤ r. Then the LDPS-2 model is expressed
as

log p = Xβ = (X1, X2)β,

where X is the r2 ×K matrix with K = (r2 + r + 2)/2 and

X1 = 1r ⊗ Jr − Jr ⊗ 1r; the r2 × 1 vector,

and X2 is the r2 × r(r + 1)/2 matrix of 1 or 0 elements, determined from (1), 1s is the
s × 1 vector of 1 elements and Jr = (1, . . . , r)t, and ⊗ denotes the Kronecker product.
Note that X21r(r+1)/2 = 1r2 holds. Note that the matrix X is full column rank which is K.
In a similar manner to Haber (1985), and Lang and Agresti (1994), we denote the liner
space spanned by the columns of the matrix X by S(X) with the dimension K. Let U be
an r2× d1, where d1 = r2−K = (r− 2)(r + 1)/2, full column rank matrix such that the
linear space spanned by the columns of U , i.e., S(U), is the orthogonal complement of
the space S(X). Thus, U tX = Od1,K where Od1,K is the d1 ×K zero matrix. Therefore
the LDPS-2 model is expressed as

h1(p) = 0d1 ,

where 0d1 is the d1 × 1 zero vector and

h1(p) = U t log p.

The ME-2 model may be expressed as

h2(p) = 0,

where
h2(p) = Wp,

with
W = (1r ⊗ Jr − Jr ⊗ 1r)

t ; the 1× r2 vector.

Namely, W t = X1. Thus W t belongs to the space S(X), i.e., S(W t) ⊂ S(X). Hence
WU = 0t

d1
. From Theorem 1, the S-2 model may be expressed as

h3(p) = 0d3 ,

where d3 = d1 + d2 = r(r − 1)/2 with d2 = 1,

h3 = (ht
1, h2)

t.

Note that hs(p), s = 1, 2, 3, are the vectors of order ds × 1, and ds, s = 1, 2, 3, are the
numbers of df for testing goodness-of-fit of the LDPS-2, ME-2 and S-2 models, respec-
tively.
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Let Hs(p), s = 1, 2, 3, denote the ds × r2 matrix of partial derivatives of hs(p) with
respect to p, i.e., Hs(p) = ∂hs(p)/∂pt. Let Σ(p) = diag(p)− ppt, where diag(p) denotes
a diagonal matrix with ith component of p as ith diagonal component. Let p̂ denote p
with {pij} replaced by {p̂ij}, where p̂ij = nij/n. Then

√
n(p̂ − p) has asymptotically a

normal distribution with mean 0r2 and covariance matrix Σ(p). Using the delta method
(e.g., Agresti, 1984, p. 247),

√
n(h3(p̂)− h3(p)) has asymptotically a normal distribution

with mean 0d3 and covariance matrix

H3(p)Σ(p)H3(p)t =

[
H1(p)Σ(p)H1(p)t H1(p)Σ(p)H2(p)t

H2(p)Σ(p)H1(p)t H2(p)Σ(p)H2(p)t

]
.

We see that H1(p)p = U t1r2 = 0d1 since 1r2 ⊂ S(X), H1(p)diag(p) = U t and
H2(p) = W . Therefore we obtain

H1(p)Σ(p)H2(p)t = U tW t = 0d1 .

Thus we obtain ∆3(p̂) = ∆1(p̂) + ∆2(p̂), where

∆s(p̂) = hs(p̂)t[Hs(p̂)Σ(p̂)Hs(p̂)t]−1hs(p̂). (2)

Under each hs(p) = 0ds (s = 1, 2, 3), the Wald statistic Ws = n∆s(p̂) has asymptotically
a chi-squared distribution with ds degrees of freedom. From (2) we see that W3 = W1 +
W2. From the asymptotic equivalence of the Wald statistic and likelihood ratio statistic
(Rao, 1973, Sec. 6e. 3, Darroch and Silvey, 1963; Aitchison, 1962), we obtain Theorem
4. The proof is completed.

Next, we obtain the following theorem for the rT table.

Theorem 5. For the rT table, the following asymptotic equivalence holds:

G2(S-T ) ' G2(LDPS-T ) + G2(ME-T ).

The proof of Theorem 5 is omitted because it is obtained in a similar way to the proof
of Theorem 4.

3 Modified Decomposition Theorems with Orthogonality
For the decomposition for the S-T model into three or four models in Theorems 2 and 3,
the orthogonality of test statistics does not hold (see Section 5 and Appendix). Hence, we
shall modify the decomposed three or four models into two models as below.

Consider a model defined by

µ1 = · · · = µT and σ2
1 = · · · = σ2

T , (3)

where
µk = E(Xk) and σ2

k = var(Xk).

Equation (3) is the marginal mean and variance equality (MV-T ) model. This is the model
combined two constraints of means equality and variances equality. Note that the model
defined by only σ2

1 = · · · = σ2
T , is the VE-T model in Section 1.
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Table 2: Occupational status for British father-son pairs; from Agresti (1984, p. 206).

Father’s Son’s Status
Status (1) (2) (3) (4) (5) Total

(1) 50 45 8 18 8 129
(2) 28 174 84 154 55 495
(3) 11 78 110 223 96 518
(4) 14 150 185 714 447 1510
(5) 3 42 72 320 411 848

Total 106 489 459 1429 1017 3500

Next, consider a model defined by

µ1 = · · · = µT , σ2
1 = · · · = σ2

T , and ρ12 = ρ13 = · · · = ρT−1,T , (4)

where

ρkl =
E(XkXl)− µkµl

σkσl

.

Equation (4) is the marginal mean, variance and correlation equality (MVC-T ) model.
This is the model combined three constraints. Note that the model defined by only ρ12 =
ρ13 = · · · = ρT−1,T , is the CE-T model in Section 1.

From (3) and (4), Theorems 2 and 3 may be expressed as the following lemmas.

Lemma 1. For the rT table (T ≥ 2), the S-T model holds if and only if both the ELDPS-T
and MV-T models hold.

Lemma 2. For the rT table (T ≥ 3), the S-T model holds if and only if both the GLDPS-T
and MVC-T models hold.

Then, in a similar way to the proof of Theorem 4 although the proofs are omitted, we
can obtain the following theorems.

Theorem 6. For the rT table (T ≥ 2), the following asymptotic equivalence holds:

G2(S-T ) ' G2(ELDPS-T ) + G2(MV-T ).

Theorem 7. For the rT table (T ≥ 3), the following asymptotic equivalence holds:

G2(S-T ) ' G2(GLDPS-T ) + G2(MVC-T ).

4 Examples
Example 1

Table 2 taken directly from Agresti (1984, p. 206) is the father’s and son’s occu-
pational mobility data in Britain. These data have been analyzed by some statisticians
including Bishop, Fienberg, and Holland (1975, p. 100), Goodman (1981, 1984), Agresti
(1984, pp. 205-206), and Yamamoto et al. (2007).
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Table 3: Hemoglobin concentration at baseline, 4 weeks and 8 weeks in carcinomatous
anemia patients from a randomized clinical trial; from Yamamoto et al. (2007).

8 Weeks
Baseline 4 Weeks ≥ 10g/dl 8− 10g/dl < 8g/dl

≥ 10g/dl ≥ 10g/dl 77 7 1
8− 10g/dl ≥ 10g/dl 43 7 0

< 8g/dl ≥ 10g/dl 3 0 0
≥ 10g/dl 8− 10g/dl 3 8 1

8− 10g/dl 8− 10g/dl 17 16 5
< 8g/dl 8− 10g/dl 3 8 1
≥ 10g/dl < 8g/dl 1 1 1

8− 10g/dl < 8g/dl 0 2 3
< 8g/dl < 8g/dl 0 4 3

Table 4a gives the likelihood ratio chi-square values G2 for each model. The S-2
model fits the data in Table 2 poorly since G2(S-2) = 37.5 with 10 df. Also, all of the
LDPS-2, ME-2 and MV-2 models fit these data poorly, however, the ELDPS-2 model fits
these data well. Therefore, it is seen from Lemma 1 and Theorem 6 that for these data, the
poor fit of the S-2 model is caused by the influence of the lack of structure of the MV-2
model (rather than the ELDPS-2 model).

Example 2
Table 3 taken directly from Yamamoto et al. (2007) is the results of the treatment group

only in randomized clinical trials conducted by a pharmaceutical company in anemic
patients with cancer receiving chemotherapy. The response is the patient’s hemoglobin
(Hb) concentration at baseline (before treatment) and following 4 weeks and 8 weeks of
treatment. Table 3 shows the 3× 3× 3 array of counts of Hb response that is classified as
≥ 10g/dl, 8− 10g/dl, and < 8g/dl.

The GLDPS-3 model fits the data in Table 3 well, but the other models fit these data
poorly (see Table 4b). Therefore, it is seen from Lemma 2 and Theorem 7 that for these
data, the poor fit of the S-3 model is caused by the influence of the lack of structure of the
MVC-3 model (rather than the GLDPS-3 model).

5 Concluding Remarks
Yamamoto et al. (2007) considered decompositions for the symmetry model into three or
four models in multi-way tables as Theorems 2 and 3. It may be useful for seeing in more
details the reason for the poor fit when the symmetry model fits the data poorly. However,
these decompositions do not have such a property that the test statistic for the symmetry
model is asymptotically equivalent to the sum of the test statistics for decomposed mod-
els. So in this paper we modified these theorems and showed the orthogonality of the
test statistic for the decomposition of the symmetry model into the modified two models



192 Austrian Journal of Statistics, Vol. 37 (2008), No. 2, 185–194

Table 4: Likelihood ratio statistics G2 for models applied to the data in Tables 2 and 3.

(a) For Table 2 (b) For Table 3
Applied Models df G2 Applied Models df G2

S-2 10 37.5* S-3 17 76.2*
LDPS-2 9 17.1* LDPS-3 15 41.6*
ELDPS-2 8 11.1 ELDPS-3 13 35.5*

GLDPS-3 11 13.7
ME-2 1 20.3* ME-3 2 23.8*
MV-2 2 26.3* MV-3 4 29.2*

MVC-3 6 53.6*
*means significant at 5% level

(instead of three or four models).
Generally suppose that model Ω3 holds if and only if both models Ω1 and Ω2 hold. As

described in Darroch and Silvey (1963), (i) when the following asymptotic equivalence
holds:

G2(Ω3) ' G2(Ω1) + G2(Ω2) (5)

with df(Ω3) = df(Ω1) + df(Ω2) where df(Ωk) is the df for model Ωk, if both Ω1 and
Ω2 are accepted (at the α significance level) with high probability, then Ω3 would be
accepted; however (ii) when (5) does not hold, such an incompatible situation that both
Ω1 and Ω2 are accepted with high probability but Ω3 is rejected with high probability is
quite possible (in fact, Darroch and Silvey, 1963 showed such an interesting example).
For the orthogonal decompositions of the S-T model given in Theorems 5, 6 and 7 (not
in Theorems 2 and 3), such an incompatible situation would not arise.

We point out that, e.g., for the decomposition in Theorem 2, G2(S-T ) is not asymp-
totically equivalent to G2(ELDPS-T ) + G2(ME-T ) + G2(VE-T ) because G2(ME-T ) +
G2(VE-T ) is not asymptotically equivalent to G2(MV-T ) (see Appendix), however, the
G2(S-T ) is asymptotically equivalent to G2(ELDPS-T ) + G2(MV-T ) as described by
Theorem 6.

We also point out, e.g., from Theorem 5 that the likelihood ratio statistic for test-
ing goodness-of-fit of the S-T model assuming that the LDPS-T model holds true is
G2(S-T )−G2(LDPS-T ) and this is asymptotically equivalent to the likelihood ratio statis-
tic for testing goodness-of-fit of the ME-T model, i.e., G2(ME-T ). Namely, G2(ME-T )
can be utilized for testing goodness-of-fit of the ME-T model and also for testing goodness-
of-fit of the S-T model assuming that the LDPS-T model holds true.

We note that the decomposition considered in this paper should be utilized for analyz-
ing the ordinal data (not the nominal data) because each of models except the S-T model
is not invariant under interchanging the arbitrary categories.

Finally we note that the ME-T model may be expressed as µ∗1 = · · · = µ∗T with
µ∗k = E(g(Xk)), where g(i) = u0 + (i − 1)d, i = 1, . . . , r, and u0 and d are specified;
namely, {g(i)} may be considered as the known equal-interval scores assigned to the
categories. The MV-T and MVC-T models may be expressed using the {g(i)} in the
similar way.
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Appendix
We shall prove that G2(ME-T )+G2(VE-T ) is not asymptotically equivalent to G2(MV-T ),
thus, G2(S-T ) is not asymptotically equivalent to G2(ELDPS-T )+G2(ME-T )+G2(VE-T ).

Proof. We consider the case of T = 2. The ME-2 and VE-2 models are expressed as
f1(p) = 0, where

f1(p) =
∑

i

∑
j

(j − i)pij,

and as f2(p) = 0, where

f2(p) =
∑

i

∑
j

(j2 − i2)pij −
(∑

i

∑
j

jpij

)2

+

(∑
i

∑
j

ipij

)2

,

respectively. The MV-2 model is expressed as f3(p) = 0, where f3(p) = (f1(p), f2(p))t.
Let Ks(p) = ∂fs(p)/∂pt, s = 1, 2, 3. Using the delta method,

√
n(f3(p̂) − f3(p)) has

asymptotically a normal distribution with mean (0, 0)t and covariance matrix

K3(p)Σ(p)K3(p)t =

[
K1(p)Σ(p)K1(p)t K1(p)Σ(p)K2(p)t

K2(p)Σ(p)K1(p)t K2(p)Σ(p)K2(p)t

]
.

Then K1(p)Σ(p)K2(p)t 6= 0 although the details are omitted. Therefore, under each
fs(p) = 0 (s = 1, 2, 3), the Wald statistic Ws = n∆∗

s(p̂) has asymptotically a chi-squared
distribution with ds degrees of freedom, where

∆∗
s(p̂) = fs(p̂)t[Ks(p̂)Σ(p̂)Ks(p̂)t]−1fs(p̂),

and d1 = d2 = 1 and d3 = 2. Then W3 6= W1 + W2 since K1(p)Σ(p)K2(p)t 6= 0.
Therefore, G2(ME-2) + G2(VE-2) is not asymptotically equivalent to G2(MV-2). In a
similar way, the case of T ≥ 3 is proven.
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