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Abstract: The problem of classification of scientific texts is considered.
Models and methods based on probabilistic distributions of scientific terms in
text are discussed. The comparative study of proposed and a few of popular
alternative algorithms was performed. The results of experimental study over
real-world data are reported.
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1 Introduction
The researches in the fields of text processing, knowledge discovery, and management
face increasing attention in the light of ongoing changes of information finding and ac-
quisition models. Classification of a chunk of text is arguably one of the most often
addressed problems in the field. Currently, there is a reasonable list of plain text classifi-
cation (actually, text categorization is the more popular name for the problem) algorithms
that gained high popularity over years. See Sebastiani (2002) for a nice introduction into
some of them.

Scientific texts are rather different from everyday-language texts in a number of as-
pects therefore there is a need for studies that would address these differences and eventu-
ally develop methods and algorithms suitable to deal with this specific content. Scientific
texts usually come in form of publications that have a strict format – they have titles, ab-
stracts, and then full texts that are highly structured. Titles and abstracts are usually freely
available and they present a concise summary of the content of publications therefore it
is natural to use them for classification. On the other hand, full texts provide information
that is not present anywhere else and there is a question if and to what extent this could
be used. The language of (mathematical) publications is rather specific filled with a lot of
scientific terms together with such multidimensional elements like formulae. The natural
idea that scientific terms should be the most informative for correct classification is one
of the key assumptions of our research.

There are two popular ways to classify a scientific publication. This can be done by
assigning keywords or by assigning labels from standard classification scheme, like MSC
(Mathematical Subject Classification) for mathematics. MSC elements are classifiers by
their nature, therefore it is natural to test algorithms on them. Keywords are different as
they have no strictly limited vocabulary and authors tend to assign them basing on their
own likings. Even though keywords could be treated the same as MSC classifiers, the
more desirable would be to develop models covering the aspects related to the specificity
of keywords. However, this question is not covered in this study.

The paper deals with classification of scientific papers, or more precisely – with clas-
sification of mathematical papers from the field of probability theory and mathematical
statistics.
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2 The Model

2.1 Definitions
Here, a rather brief introduction of stochastic terms distribution models (that mathemat-
ically define the concept of identification cloud, Hazewinkel, 2004) based approach to
the problem of classification is presented. For more comprehensive review see Rudzkis,
Balys, and Hazewinkel (2006).

Let K denote some classification system of scientific texts which is identified with a
set of all possible labels of the classes in that system.

Let V be a vocabulary, i.e., set of scientific terms of a certain scientific field that are
relevant to the classification of texts. The chronologically numerated vector of article’s
a elements (a1, . . . , ad), d = d(a), where ai ∈ V and not necessarily ai 6= aj , is called
the projection of the article a. Sometimes it is convenient to identify the projection of
an article a with an infinite sequence (a1, a2, . . . ), where ai = 0 for all i > d(a). Here
0 ∈ V denotes an additional zero term which does not exist in reality. Let A be a set
of projections of all articles from a certain scientific field. In what follows the word
“projection” is omitted and a ∈ A is called just an article.

From the point of view of classification an article is not necessarily a homogenous
piece of text – in the general case, it consists of q = q(a) ≥ 1 continuous homogenous
parts which are classified as different in system K. Non-intersecting intervals of indices
Ij(a) ⊂ {1, . . . , d(a)} and class labels wj(a) ∈ K, j = 1, q correspond to these parts.
Here

⋃q
j=1 Ij(a) = N(a) and wj 6= wj−1, j = 2, q: if two adjacent parts of the text are

attributed to the same class they are joined into one.
Let N be the set of natural numbers. Let an article a ∈ A and a set of indices I ⊂ N

be chosen randomly so that the part of an article {(aτ , τ), τ ∈ I} is homogenous: I ⊂
Iν(a), ν ∈ {1, . . . , q}. This part is attributed to the class η = wν(a) in the system K. A
common problem of classification is to determine the unknown class η using the observed
vector aI = (aτ , τ ∈ I).

2.2 Probability Distributions
Since (a, I, η) is the result of a random experiment, the probability distribution in the set
K is defined by

Q(w) = P{η = w}, w ∈ K. (1)

Let Y be a set of all possible values of aI . In the set Y the following conditional
probability distributions are defined:

P (y) = P
{
aI = y

∣∣ |I| = d(y)
}
,

P (y|w) = P{aI = y
∣∣ |I| = d(y), η = w}, w ∈ K, (2)

where d(y) = dim(y), |I| = card(I).
If η and |I| are independent, after observing aI , the posteriori probability of the ran-

dom event {η = w} is determined by Q(w|aI) = Q(w) · ψw(aI), where

ψw(y) = P (y|w)/P (y), y ∈ Y. (3)
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The concept of identification cloud may be defined by the functional ψw that reflects
how the probability to observe some text changes if this text appears to be classified under
certain class.

Using the distributions, described in Equations (1) and (2), Bayes classifier which
minimizes mean classification losses can be defined. If the loss function is trivial, i.e., it
equals to some constant in case of misclassification, it is simply the maximum posteriori
classifier:

η̂ = arg max
w∈K

P (aI |w)Q(w) (4)

in which ψ(·)(aI) can be substituted for P (aI |·):
η̂ = arg max

w∈K
ψw(aI)Q(w). (5)

2.3 Inference
In order to use classification method (5) the distribution Q and the functional ψ must be
estimated. Below the statistical estimation methods are presented.

Let us have the learning sample of observed parts of texts and their classification
results X = (y(1), η(1)), . . . , (y(n), η(n)), where η(i) ∈ K, y(i) ∈ Y , Y = {y =
(y1, . . . , yd) : yi ∈ V, d ∈ N}.

Nonparametric Estimation. The empirical analogue of Q(w) is d etermined by Q̂(w) =∑n
j=1 1{η(j)=w}/n.
The functional ψw(y) is estimated by using a common k-nearest neighbors method.

Let for all y, z ∈ Y , ρ(y, z) be a non-negative functional which is called a pseudo-distance
from element z to element y. For a fixed y ∈ Y , one can choose k “nearest neigh-
bours” from the sample. Let J(y) ⊂ {1, . . . , n} be a set of k indices of observations
y(1), . . . , y(n), for which the pseudo-distance to y are the smallest ones. The estimate
of ψw(y) is then determined by ψ̂w(y) =

∑
j∈J(y) 1{η(j)=w}/Q̂(w)k. Here 0/0 = 1. The

variable k = k(n) depends on the size of the sample and conditions k → ∞, k/n → 0,
as n →∞ hold.

There is a long list of pseudo-distance functions that could be used, the most popular
being Euclidian distance and cosine similarity functions. In Rudzkis et al. (2006) one
which takes into consideration both the frequencies and positions of scientific terms in
text is proposed.

Parametric Estimation. For parametric estimation additional definitions are needed. Let
the index τ ∈ I be a random variable. The distribution on set V is defined by P (v) =
P{aτ = v} and the corresponding conditional distribution is given by P (v|w) = P{aτ =
v|η = w}, w ∈ K.

The two following assumptions substantially simplify the procedures of estimation.
Assumption 1 (conditional stationarity and independence). Let for all y ∈ Y and

w ∈ K hold

P (y|w) =
d∏

i=1

P (yi|w),

where d = d(y) as before is the dimension of the vector y.
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Now the definition of the identification cloud (3) can be changed to

ψw(v) = P (v|w)/P (v), v ∈ V, w ∈ K, (6)

while the Bayes classification rule for classifying the observed aI is determined now by

η̂ = arg max
w∈K

[
Q(w)

∏
τ∈I

ψw(aτ )

]
. (7)

The definition of the identification cloud (6) based on this assumption ignores infor-
mation that can be derived from the order of the terms in the text. Thus, we introduce a
weaker assumption.

Assumption 2 (conditional stationarity and Markovian property). Let for all y ∈ Y
and w ∈ K hold

P (y|w) = P (y1|w)
d−1∏
i=1

[P (yi, yi+1|w)/P (yi|w)] , (8)

where P (v, u|w) = P{aτ = v, aτ+1 = u|η = w}.
In this case, the identification cloud is described by two functionals: ψw(v) defined in

(6) and
ψw(v, u) = P (v, u|w)/P (v, u), v, u ∈ V, (9)

where P (v, u) = P{aτ = v, aτ+1 = u}.
Let I = {r, r + 1, . . . , m}. Then the Bayes rule of classification is obtained by modi-

fying the Equation (4) according to the Equations (6), (8) and (9):

η̂ = arg max
w∈K

[
Q(w)ψw(ar)

m−1∏
i=r

[ψw(ai, ai+1)/ψw(ai)]

]
. (10)

In order to use the algorithms (7) and (10) the functionals ψw(v) and ψw(v, u) have to
be estimated. Here we propose one of the simpliest ways to do that (see Rudzkis et al.,
2006 for full description). First the empirical estimates of the probabilities P (·), P (·, ·),
P (·|·) and P (·, ·|·) are calculated by substituting them with corresponding frequencies.
Then these estimates are used in (6) and (9) thus yielding empirical identification clouds
ψ̃w(v) and ψ̃w(v, u). The smoothing is performed – the unreliable estimates, i.e., those
that are based on too few observations, are modified.

Let h = |V |. The functionals ψ̃w(·) and ψ̃w(·, ·) determine the arrangements of set V
for every w ∈ K and every pair (w, v), v ∈ V :

ψ̃w(v1) ≥ ψ̃w(v2) ≥ . . . ≥ ψ̃w(vh), v(·) ∈ V,

ψ̃w(v, u1) ≥ ψ̃w(v, u2) ≥ . . . ≥ ψ̃w(v, uh), u(·) ∈ V.

These arrangements are used as following: a fixed number of highest and a fixed
number of lowest ψ̃w(v) values for each w are left unchanged while others are declared
“uninformative”:

ψ̂w(vk) =

{
1, if s < k < h− l,

ψ̃w(vk), otherwise.
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For ψ̃w(u, v) the same procedure is applied for each fixed pair w and v separately.
In Rudzkis et al. (2006) a procedure for selecting s and l which is based on hypothesis

testing theory is proposed. There is also a way to choose optimal values by running
experiments on data.

The remaining “informative” parts of identification clouds then can be fitted to some
parametric model (see Rudzkis et al., 2006 for one of them) thus yielding the final identi-
fication clouds that can be used when applying classification algorithms (7) and (10). As
of now the identification cloud of a class w ∈ K is understood as a list of scientific terms
(and pairs of terms) having ψw(·) and ψw(·, ·) values different from 1.

3 Experimental Evaluation

3.1 The Data
The experiments were conducted on basis of almost 15000 articles from the field of prob-
ability theory and mathematical statistics kindly provided by the Institute of Mathematical
Statistics, USA. 44 MSC classifiers (24 from 60XXX subtree and 20 from 62XXX sub-
tree) were chosen for the experiments each having a learning set of at least 100 articles,
thus resulting in a total of 5337 articles. The statistics of number of classifiers (they are
also called categories in the following) assigned to the articles is presented in Table 1.

Table 1: Statistics of number of MSC classifiers assigned.

Number of Classifiers 1 2 3 4 5 6 7
Number of Articles 2617 1905 638 161 15 0 1
Percentage of Articles 49.04 35.69 11.95 3.02 0.28 0 0.02

The dictionary of scientific terms was constructed by extracting all the keywords from
the articles in the database. The single words that build up keywords-phrases were also
added. This resulted in a list of 17632 unique terms. 9587 of them are found in the full
texts, 4506 in the abstracts and 2770 in the titles of the chosen subset of articles. These
terms cover approximately one fourth of all the words found in texts and it is yet to be
verified what impact would make using a larger dictionary of terms or even all the words
from the texts.

The terms are not only single words – see Table 2 for statistics of terms’ length (mea-
sured in words). The effect of adding phrases to the dictionary was estimated.

Three types of texts were available: titles, abstracts and full texts. In Table 3, basic
statistical information on the length (measured in number of scientific terms) of these
parts is presented.

3.2 The Algorithms
All the considered algorithms implement the so-called supervised learning approach, i.e.,
learning over pre-labelled corpus. The algorithms (with exception of kNN) perform by
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Table 2: Statistics of scientific terms’ length.

Term’s Length 1 2 3 4 5
Number of Terms 4231 4818 525 12 1

Table 3: Statistics of text parts’ length (measured in number of scientific terms.

max average median
Title 10 3 3
Abstract 83 19 17
Full Text 3441 513 433

analyzing the positive and the negative examples of classes and building discriminative
rules so that they classify learning data as correct as possible. The algorithms support the
ranking procedure: for each document a list of categories that could be assigned to the
document with corresponding weights is delivered. Then, depending on some threshold-
ing strategy, a subset of categories with the highest weights is chosen.

The considered algorithms include: IDC and IDCM – identification clouds algorithms
that use independence assumption (see Equation (7)) and Markovian assumption (see
Equation (10)); nB (naive Bayes with additive smoothing) – a simple algorithm that builds
on the assumption of word independence over the text and makes use of Bayes rule to
compute scores for categories (see Mitchell, 1996); kNN – a common instance-based k
nearest neighbors algorithm (see Yang, 1994) that skips the phase of learning and makes
decisions by analyzing true decisions of documents closest to the one to be classified;
SVM – a popular Support Vector Machines (see Vapnik, 1995, Joachims, 1998) method
that tries to separate documents of different classes by the widest margin. The specific
implementation LIBSVM (Chang and Lin, 2001) was used.

3.3 Performance Measures

The common k-fold cross validation procedure with k = 5 was used to evaluate the
algorithms.

The common measures precision (P ) and recall (R) see e.g. Yang (1999)) were used to
compare the true and the guessed classification. The precision is the proportion of guessed
categories that are truly assigned to the document while the recall is the proportion of truly
assigned categories that are matched by the guessed ones.

To evaluate the nature of tradeoff between precision and recall a number of measures
could be used (e.g. precision-recall graph). In this research a single-valued measure sim-
ilar to 11-point average precision (Yang, 1999) was used. For each document having m
categories precision values at points of recall increases are calculated. Recall increases
when subsequently added category from the suggested ranked list coincides with one of
truly assigned. At this point the precision is equal to a number of matched categories
divided by a number of steps taken. The average precision for a document is equal to the
average of these precision values: Pavg(d) = (1/n1 + 2/n2 + · · ·+ m/nm)/m where d is
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text considered (part of some article) and ni is the number of steps taken until i true cat-
egories were matched. The average over all documents gives the measure of algorithm’s
efficiency, denoted by Pavg and called average precision.

3.4 Results

The table 4 presents the estimated efficiency of algorithms (measured by averaged pre-
cision Pavg) over various combinations of learning and testing sets. Each algorithm
achieved it’s best result with some optimal parameters that were determined by running
experiments and using k-fold cross validation.

DF (document frequency) method was used to exclude non-informative terms as ac-
cording to Yang and Pedersen (1997) it is among the best for non-aggressive feature space
dimensionality reduction. DF values ranging from 3 to 6 were found to be optimal – the
dimension was reduced by a factor of 2–3 while efficiency of algorithms increased.

Adding phrases to the dictionary of single-worded scientific terms made a positive
influence on results as one could naturally expect. The increase of about 10% of Pavg was
observed for all methods.

kNN algorithm (k ≈ 30) performed the worst while SVM came out as a winner by
a slight margin (see Table 4). IDC algorithm performed the best when identification
clouds included only those terms that make positive influence to the identification of class,
i.e. those having ψw(·) > 1. IDCM algorithm performed a bit better than IDC but the
difference generally was too small to compensate for the added complexity. The main
reason seems to be that the overwhelmingly big part of the pairs of terms that appear in
the texts of articles are observed too rare to analyze their distributional patterns. The most
obvious solution to this problem would be to use much bigger datasets. The another way
is to substitute strict Markovian condition “one term next to the other term” with more
loose one like “one term within some distance from the other term”. Preliminary analysis
shows that this modification improves results but exhaustive experiments are needed to
refine this heuristic idea and estimate the gain.

Table 4: Pavg of algorithms for various learn / test set combinations.

nB IDC IDCM kNN SVM
Title / Title 0.513 0.420 0.420 0.490 0.506
Abstract / Abstract 0.589 0.575 0.574 0.544 0.594
Abstract / Text 0.603 0.607 0.607 0.561 0.601
Text / Abstract 0.620 0.606 0.610 0.568 0.629
Text / Text 0.659 0.630 0.637 0.589 0.667

From the Table 4 it is evident that using full texts yields improvement in algorithms’
performance. What is not evident from this table is that not all the text is useful. The
Figure 1 shows how the averaged precision Pavg changes when more and more of text
(the length of text is measured in number of scientific terms) is used for both learning and
testing. The similar picture could be also seen in abstract / text setting.



116 Austrian Journal of Statistics, Vol. 37 (2008), No. 1, 109–118

20 40 60 80 100 120 140
length of text (number of terms)

0.40

0.45

0.50

0.55

0.60

0.65
P
a
vg

nB
IDC
kNN

Figure 1: Influence of text length on the performance.

The first 100 – 110 terms of text are useful as the average precision increases. 60 of
them which is three times the average length of abstracts are enough to reach performance
values near to the maximum. Starting from approximately 120 terms the performance of
nB drastically decrease while others stay at a stable level. That decrease could probably
be explained by the nature of scientific publications: at some point the introductory parts
are finished and real mathematical content takes the place which is specific, filled with a
lot of irrelevant and unseen terms.

The IDC algorithm could be seen as a modification of nB. For nB all the terms are
important while IDC picks only a fraction of them (the identification cloud) for each class
The Figure 2 shows the tradeoff between size of identification cloud and the algorithm’s
performance. The size of identification cloud was fixed at various values ranging from 10
to 1000. The ratio of averaged precision Pavg for IDC and nB is depicted on the graph
(’text100’ stands for the subset of full text containing first 100 scientific terms).

It is evident that size of identification cloud of 400 – 600 (which is less than 10% of
the size of the list of terms found in texts) is enough for the performance value to reach
95% of the performance value of nB.

Figure 3 shows the values of precision and recall for all the algorithms for the setting
when learning and testing is performed on the full texts including first 100 scientific terms.
The simple thresholding strategy where a fixed number of highest ranked categories (from
1 to 5) is assigned to the document was implemented.

4 Conclusions
The conducted experiments confirmed a natural assumption that using full texts of articles
instead of only abstracts improve performance of classification algorithms. However,
only a limited portion of the text from the beginning is useful as starting from some point
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Figure 2: pAV G(IDC)/pAV G(nB) for various settings.
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Figure 3: Precision and recall for text100 / text100 setting.

no significant improvement is registered or even drop of performance can be observed.
Adding phrases to the list of single-worded terms improves performance by about 10%.

All the considered algorithms show comparable results with SVM outperforming oth-
ers by a slight margin, however it is hampered by it’s computational overhead. Naive
Bayes is much simpler and it demonstrates results similar to that of SVM. k nearest neigh-
bors ended being the worst of the considered methods. Identification clouds based algo-
rithms with a limited size of clouds reach the adequate performance as compared to the
naive Bayes. Only insignificant improvement of using Markovian assumption instead of
independence assumptions was observed. However, certain modifications to this assump-
tion promise better results. These modifications together with combined methods are to
be studied over the richer data bases in the nearest future.
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