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Abstract: For the analysis of square contingency tables with ordered cate-
gories, Agresti (1983) introduced the linear diagonals-parameter symmetry
(LDPS) model. Tomizawa (1991) considered an extended LDPS (ELDPS)
model, which has one more parameter than the LDPS model. These models
are special cases of Caussinus (1965) quasi-symmetry (QS) model. Caussi-
nus showed that the symmetry (S) model is equivalent to the QS model and
the marginal homogeneity (MH) model holding simultaneously. For square
tables with ordered categories, Agresti (2002, p.430) gave a decomposition
for the S model into the ordinal quasi-symmetry and MH models. This pa-
per proposes some decompositions which are different from Caussinus’ and
Agresti’s decompositions. It gives (i) two kinds of decomposition theorems
of the S model for two-way tables, (ii) extended models corresponding to the
LDPS and ELDPS, and the generalized model further for multi-way tables,
and (iii) three kinds of decomposition theorems of the S model into their mod-
els and marginal equimoment models for multi-way tables. The proposed
decompositions may be useful if it is reasonable to assume the underlying
multivariate normal distribution.

Zusammenfassung: Zur Analyse quadratischer Kontingenztafeln mit geord-
neten Kategorien führte Agresti (1983) das lineare Diagonal-Parameter Sym-
metrie (LDPS) Modell ein. Tomizawa (1991) betrachtete ein erweitertes
LDPS (ELDPS) Modell, das um einen Parameter mehr hat als das LDPS
Modell. Diese Modelle sind Spezialfälle des Quasi-Symmetrie (QS) Mod-
ells von Caussinus (1965). Caussinus zeigte, dass das Symmetrie (S) Modell
äquivalent dem QS Modell ist und dass das marginale Homogenitäts- (MH)
Modell dann auch hält. Für quadratische Tafeln mit geordneten Kategorien
gab Agresti (2002, p.430) eine Zerlegung des S Modells in das ordinale
Quasi-Symmetrie und das MH Modell an. Wir schlagen Zerlegungen vor,
die sich von jenen in Caussinus und Agresti unterscheiden. Wir liefern (i)
zwei Arten Zerlegungssätze des S Modells für zwei-weg Tafeln, (ii) erweit-
erte Modelle entsprechend dem LDPS und ELDPS, das generalisierte Modell
für mehr-weg Tafeln, and (iii) drei Arten Zerlegungssätze des S Modells in
deren Modelle und marginal Equimoment Modelle für mehr-weg Tafeln. Die
vorgeschlagenen Zerlegungen könnten nützlich sein, falls die Annahme einer
zugrunde liegenden multivariaten Normalverteilung begründet ist.

Keywords: Linear Diagonals-Parameter Symmetry, Marginal Homogeneity,
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1 Introduction
Suppose that an R × R square contingency table has the same categories in the row
classification as in the column classification. Let X1 and X2 denote the row and column
variables, respectively, and let pij denote the probability that an observation will fall in the
ith row and jth column of the table (i, j = 1, . . . , R). Thus, Pr(X1 = i,X2 = j) = pij .
The symmetry (S) model is defined as

pij = ψij , i, j = 1, . . . , R ,

where ψij = ψji (Bowker, 1948; Bishop, Fienberg, and Holland, 1975, p.282). This
indicates that the probability that an observation will fall in the (i, j) cell, i 6= j, is equal
to the probability that the observation falls in the symmetric (j, i) cell.

Caussinus (1965) considered the quasi-symmetry (QS) model, defined by

pij = µαiβjψij , i, j = 1, . . . , R ,

where ψij = ψji. A special case of this model with {αi = βi} is the S model. Denote
the odds ratio for rows i and j (> i) and columns s and t (> s) by θ(i<j;s<t). Thus
θ(i<j;s<t) = (pispjt)/(pjspit). Using the odds ratios, the QS model is further expressed as

θ(i<j;s<t) = θ(s<t;i<j) , 1 ≤ i < j ≤ R ; 1 ≤ s < t ≤ R .

Therefore, the QS model has characterization in terms of symmetry of odds ratio. For
the QS model, also see, e.g., Bishop et al. (1975, p.286), Goodman (1979a), Darroch and
McCloud (1986), and Agresti (2002, p.425).

The marginal homogeneity (MH) model is defined by

pi· = p·i , i = 1, . . . , R ,

where pi· =
∑R

t=1 pit and p·i =
∑R

s=1 psi (Stuart, 1955, Bishop et al., 1975, p.293).
This indicates that the row marginal distribution is identical with the column marginal
distribution.

For square tables with ordered categories, Agresti (1984, p.203) proposed the linear
diagonals-parameter symmetry (LDPS) model defined by

pij =

{
δj−iψij if i < j ,
ψij if i ≥ j ,

where ψij = ψji. A special case of this model obtained by putting δ = 1 is the S model.
Note that the LDPS model is a special case of the diagonals-parameter symmetry model
of Goodman (1979b). The LDPS model may be also expressed as

pij = δ(j−i)/2φij , i, j = 1, . . . , R ,

or
pij = αiβjφij , i, j = 1, . . . , R ,
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where φij = φji. Moreover, it may be expressed as

pij

pji

= δj−i , i < j .

This indicates that the probability that an observation will fall in the (i, j) cell, i < j, is
δj−i times higher than the probability that the observation falls in the (j, i) cell. Moreover,
Agresti (2002, p.429) considered the ordinal quasi-symmetry (OQS) model defined by

pij =

{
δuj−uiψij if i < j ,
ψij if i ≥ j ,

where ψij = ψji and u1 ≤ · · · ≤ uR denote the ordered scores which assigned for both
the rows and columns. Note that the OQS model with integer scores {ui = i} is identical
to the LDPS model.

Tomizawa (1991) considered a model defined by

pij =

{
δj−iγ(j−i)(j+i)/2ψij if i < j ,
ψij if i ≥ j ,

where ψij = ψji. A special case of this model obtained by putting γ = 1 is the LDPS
model; namely, this is an extended LDPS (ELDPS) model.

Consider now random variables U and V having a joint bivariate normal distribution
with means E(U) = µ1 and E(V ) = µ2, variances var(U) = σ2

1 and var(V ) = σ2
2 , and

correlation cor(U, V ) = ρ. Then the joint bivariate normal density f(u, v) satisfies

f(u, v)

f(v, u)
= exp

[
− u− v

2(1− ρ2)

{(
1

σ2
1

− 1

σ2
2

)
(u + v)− 2

(
µ1

σ2
1

− µ2

σ2
2

)
− 2ρ(µ1 − µ2)

σ1σ2

}]
.

Agresti (1983) described the relationship between the LDPS model and the joint bivariate
normal distribution as follows. When σ2

1 = σ2
2 , the f(u, v)/f(v, u) has the form ξv−u

for some constant ξ, and hence the LDPS model may be appropriate for a square ordinal
table if it is reasonable to assume an underlying bivariate normal distribution with equal
marginal variances. Tomizawa (1991) described that the ELDPS model rather than the
LDPS model would be appropriate if it is reasonable to assume an underlying bivariate
normal distribution which does not require the equality of marginal variances.

Caussinus (1965) gave the theorem that the S model holds if and only if both the
QS and MH models hold for square contingency tables. Bishop et al. (1975, p.287) and
Bhapkar and Darroch (1990) gave the decompositions for the S model for three-way tables
and for multi-way tables, respectively. Agresti (2002, p.429) showed that the S model
holds if and only if both the OQS and MH models hold. Note that the LDPS (OQS) and
ELDPS models are special cases of the QS model. Since the OQS model has restrictions
stronger than the QS model, we are interested in decomposing the S model into a model
with weaker restrictions instead of the MH model.

In this paper we propose the other decompositions for the S model and give some
extended models for the multi-way tables. Section 2 proposes two kinds of decomposition
theorems of the S model for two-way tables. Sections 3 and 4 propose the extended
models corresponding to the LDPS and ELDPS models, and the generalized model further
for multi-way tables, and give some decomposition theorems of the S model.
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2 Decompositions of Symmetry into
Ordinal Quasi-Symmetry and Marginal Equimoment

Define the monotonic function as 0 < g(1) < · · · < g(R) [or 0 > g(1) > · · · > g(R)],
where the function is specified. Consider the marginal mean equality (ME) model defined
by

µ1 = µ2 ,

where µt = E(g(Xt)). This indicates that the mean of g(X1) is equal to the mean of
g(X2). We shall consider the decompositions for the S model as follows:
Theorem 2.1 The S model holds if and only if both the LDPS and ME models hold.
Proof. If the S model holds, then the LDPS and ME models hold. Assuming that both the
LDPS and ME models hold, then we shall show that the S model holds. Let {p∗ij} denote
the cell probabilities which satisfy both the LDPS and ME models. Since the LDPS model
holds, we see

log p∗ij = i log α + j log β + log φij ,

where φij = φji. Let πij = c−1φij with c =
∑R

i=1

∑R
j=1 φij . We note that

∑R
i=1

∑R
j=1 πij =

1 with 0 < πij < 1. Then the LDPS and ME models are expressed as

log

(
p∗ij
πij

)
= log c + i log α + j log β , (1)

and

µ∗1 = µ∗2 , (2)

where µ∗1 =
∑R

s=1 sp∗s· =
∑R

s=1

∑R
t=1 sp∗st and µ∗2 =

∑R
s=1 sp∗·s =

∑R
s=1

∑R
t=1 sp∗ts.

Then, we denote µ∗1 (= µ∗2) by µ0.
Consider the arbitrary cell probabilities {pij} satisfying

µ1 = µ2 = µ0 , (3)

where µ1 =
∑R

s=1 sps· =
∑R

s=1

∑R
t=1 spst and µ2 =

∑R
s=1 sp·s =

∑R
s=1

∑R
t=1 spts.

From (1), (2) and (3), we see

R∑
i=1

R∑
j=1

(pij − p∗ij) log

(
p∗ij
πij

)
= 0 . (4)

Let

K(p, π) =
R∑

i=1

R∑
j=1

pij log

(
pij

πij

)
,

and

K(p∗, π) =
R∑

i=1

R∑
j=1

p∗ij log

(
p∗ij
πij

)
.
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Note that K(·, ·) is the Kullback-Leibler information. From (4) we obtain

K(p, π) = K(p∗, π) + K(p, p∗) ,

where

K(p, p∗) =
R∑

i=1

R∑
j=1

pij log

(
pij

p∗ij

)
.

Since π is fixed, we see
min

p
K(p, π) = K(p∗, π) ,

and then {p∗ij} uniquely minimizes K(p, π) (see Darroch and Ratcfiff (1972); Darroch
and Speed (1983); Bhapkar and Darroch (1990).

Let p∗∗ij = p∗ji for 1 ≤ i, j ≤ R. Then, noting that {πij = πji}, we obtain

min
p

K(p, π) = K(p∗∗, π) ,

where

K(p∗∗, π) =
R∑

i=1

R∑
j=1

p∗∗ij log

(
p∗∗ij
πij

)
,

and then {p∗∗ij } uniquely minimizes K(p, π). Therefore, we see p∗ij = p∗∗ij . Thus, p∗ij = p∗ji
for 1 ≤ i, j ≤ R. Namely the S model holds. The proof is completed. ¤

Next, consider the marginal variance equality (VE) model defined by

σ2
1 = σ2

2 ,

where σ2
t = var(g(Xt)). This indicates that the variance of g(X1) is equal to the variance

of g(X2). We shall consider the other decomposition for the S model as follows.

Theorem 2.2 The S model holds if and only if all the ELDPS, ME and VE models hold.

The proof is omitted because it is obtained in a similar way to the proof of Theorem
2.1. Theorems 2.1 and 2.2 may be useful for seeing the reason for the poor fit when the S
model fits the data poorly.

3 Extension to Three-way Tables

We shall extend the LDPS and ELDPS models to three-way tables and consider a general-
ized model. Furthermore we shall give the some decomposition theorems of the S model
for three-way tables.
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3.1 Models
For an R × R × R contingency table, let X1, X2, and X3 denote the first, second, and
third variable, respectively, and let pijk denote the probability that an observation will fall
in the (i, j, k) cell of the table for 1 ≤ i, j, k ≤ R. The symmetry model is defined by

pijk = ψijk , 1 ≤ i, j, k ≤ R ,

where ψijk = ψikj = ψjik = ψjki = ψkij = ψkji (Bishop et al., 1975, p.301). We shall
denote this model by S-3.

First, consider a model defined by

pijk = αi
1α

j
2α

k
3ψijk , 1 ≤ i, j, k ≤ R ,

where ψijk = ψikj = ψjik = ψjki = ψkij = ψkji. Without loss of generality we may set,
e.g., α3 = 1. This model may be also expressed as

pijk/plmn = αi−l
1 αj−m

2 αk−n
3 ,

where (l, m, n) is any permutation of (i, j, k). It is easily seen that this model is an
extension of the LDPS model to three-way tables. We shall denote this model by LDPS-
3. For example, when X3 is constant, pijk/pjik = (α2/α1)

j−i, namely, the more the
difference between X1 and X2 is large, the more the LDPS-3 model shifts from symmetry
greatly exponentially.

Consider now three variables U , V and W having a joint normal distribution with
means E(U) = µ1, E(V ) = µ2, E(W ) = µ3, variances var(U) = var(V ) = var(W ) =
σ2, and correlations cor(U, V ) = cor(U,W ) = cor(V,W ) = ρ. Denote the probability
density function by f(u, v, w). Then the f(u, v, w)/f(w, u, v) has the form ξw−u

1 ξu−v
2 ξv−w

3

for some constants ξ1, ξ2, and ξ3. Hence if it is reasonable to assume this underlying
three-variate normal distribution, the LDPS-3 model may be appropriate for an ordinal
three-way table (see Section 7).

Secondly, consider a model defined by

pijk = αi
1α

j
2α

k
3β

i2

1 βj2

2 βk2

3 ψijk , 1 ≤ i, j, k ≤ R ,

where ψijk = ψikj = ψjik = ψjki = ψkij = ψkji. Without loss of generality we may set,
e.g., α3 = β3 = 1. It is easily seen that this model is an extension of the ELDPS model
to three-way tables because for two-way tables this model indicates that the pij/pji has
the form δj−iγj2−i2 for some constants δ and γ. We shall denote this model by ELDPS-3.
If it is reasonable to assume an underlying three-variate normal distribution which does
not require the equality of marginal variances, then the ELDPS-3 model rather than the
LDPS-3 model may be appropriate for an ordinal three-way table (see Section 7).

Finally, consider a model defined by

pijk = αi
1α

j
2α

k
3β

i2

1 βj2

2 βk2

3 γij
12γ

ik
13γ

jk
23ψijk , 1 ≤ i, j, k ≤ R ,

where ψijk = ψikj = ψjik = ψjki = ψkij = ψkji. Without loss of generality we may set,
e.g., α3 = β3 = γ23 = 1. We shall denote this model by GLDPS-3. A special case of this
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model obtained by putting γ12 = γ13 = γ23 = 1 is the ELDPS-3 model; namely, this is an
extension of the ELDPS-3 model. If it is reasonable to assume an underlying more general
three-variate normal distribution which does not require the equality of marginal variances
and the equality of correlations, then the GLDPS-3 model rather than the ELDPS-3 model
may be appropriate for an ordinal three-way table (see Section 7).

3.2 Decompositions for the Symmetry Model
Using the monotonic function as 0 < g(1) < · · · < g(R) [or 0 > g(1) > · · · > g(R)],
where this function is specified, first, consider the marginal mean equality (ME-3) model
defined by

µ1 = µ2 = µ3 ,

where µt = E(g(Xt)).
Secondly, consider the marginal variance equality (VE-3) model defined by

σ2
1 = σ2

2 = σ2
3 ,

where σ2
t = var(g(Xt)).

Finally, consider the correlation equality (CE-3) model defined by

ρ12 = ρ13 = ρ23 ,

where ρst is the correlation between g(Xs) and g(Xt). We obtain the following theorems.

Theorem 3.1 The S-3 model holds if and only if both the LDPS-3 and ME-3 models hold.

Theorem 3.2 The S-3 model holds if and only if all the ELDPS-3, ME-3 and VE-3 models
hold.

Theorem 3.3 The S-3 model holds if and only if all the GLDPS-3, ME-3, VE-3 and CE-3
models hold.

The proofs of these theorems are omitted because these are obtained in a similar way to
the proof of Theorem 2.1.

4 Extension to Multi-Way Tables
We extend the models and decompositions in Section 3 to multi-way tables. For an
RT contingency table, let pi1...iT denote the probability that an observation falls in the
(i1, . . . , iT ) cell of the table (it = 1, . . . , R; t = 1, . . . , T ).

First, the symmetry model (Bhapkar and Darroch, 1990; Agresti, 2002, p.440) is
defined by

pi1...iT = pj1...jT
,

for it = 1, . . . , R; t = 1, . . . , T , and (j1, . . . , jT ) ∈ D(i1, . . . , iT ), where

D(i1, . . . , iT ) =
{

(j1, . . . , jT ) | (j1, . . . , jT ) is any permutation of (i1, . . . , iT )
}

.
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We shall denote this model by S-T . In particular, when T = 3, the S-T model is defined
as

pijk = pikj = pjik = pjki = pkij = pkji for 1 ≤ i, j, k ≤ R.

Secondly, we now consider a model defined by

pi1...iT =

(
T∏

s=1

αis
s

)
ψi1...iT ,

where ψi1...iT = ψj1...jT
with (j1, . . . , jT ) ∈ D(i1, . . . , iT ). Note that we may set, e.g.,

αT = 1. We shall denote this model by LDPS-T .
Thirdly, we consider a model defined by

pi1...iT =

(
T∏

s=1

αis
s

)(
T∏

t=1

β
i2t
t

)
ψi1...iT ,

where ψi1...iT = ψj1...jT
with (j1, . . . , jT ) ∈ D(i1, . . . , iT ). Note that we may set, e.g.,

αT = βT = 1. We shall denote this model by ELDPS-T .
Lastly, we consider a model defined by

pi1...iT =

(
T∏

s=1

αis
s

)(
T∏

t=1

β
i2t
t

)(
T−1∏
s=1

T∏
t=s+1

γisit
st

)
ψi1...iT ,

where ψi1...iT = ψj1...jT
, with (j1, . . . , jT ) ∈ D(i1, . . . , iT ). Note that we may set, e.g.,

αT = βT = γT−1,T = 1. We shall denote this model by GLDPS-T . When T = 2,
this model is identical to the ELDPS model. Thus, the GLDPS-T model is defined when
T ≥ 3.

Note that Bishop et al. (1975, p.303) defined the QS model for three-way tables, and
Bhapkar and Darroch (1990) defined the hth-order (1 ≤ h < T ) QS model for multi-way
RT tables (also see Agresti, 2002, p.440, for the first order QS model). We note that
the LDPS-T and ELDPS-T models are special cases of the first order QS model and the
GLDPS-T model is a special case of the second order QS model.

Denote the ME, VE and CE models for RT tables by ME-T , VE-T and CE-T , respec-
tively. Then we obtain the following decomposition theorems of the S-T model for RT

tables.

Theorem 4.1 The S-T model holds if and only if both the LDPS-T and ME-T models
hold.

Theorem 4.2 The S-T model holds if and only if all the ELDPS-T, ME-T and VE-T
models hold.

Theorem 4.3 The S-T model holds if and only if all the GLDPS-T, ME-T, VE-T and
CE-T models hold.

The proofs of these theorems are omitted because they are obtained in similar ways to the
proof of Theorem 2.1.
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Table 1: Numbers of degrees of freedom (df) for models applied to the RT table (T ≥ 2),
where the GLDPS-T model is defined when T ≥ 3.

Models df
S-T RT −K
LDPS-T RT −K − (T − 1)
ELDPS-T RT −K − 2(T − 1)
GLDPS-T RT −K − (T 2 + 3T − 6)/2
ME-T T − 1
VE-T T − 1
CE-T (T 2 − T − 2)/2

Note: K =
(

R + T − 1
T

)
=

(R + T − 1)!
(R− 1)!T !

5 Goodness-of-Fit Test
Assume that a multinomial distribution applies to the RT table. The maximum likelihood
estimates of expected frequencies under each model could be obtained using the Newton-
Raphson method to the log-likelihood equations or using the iterative procedures, for
example, the general iterative procedure for log-linear models of Darroch and Ratcfiff
(1972).

Each model can be tested for goodness-of-fit by, e.g., the likelihood ratio chi-square
statistic (denoted by G2) with the corresponding degrees of freedom (df). Note that e.g.,
for square tables, G2 is

G2 = 2
∑

i

∑
j

nij log

(
nij

m̂ij

)
,

where nij is the observed frequency in the (i, j)th cell, and m̂ij is the maximum likelihood
estimate of expected frequency mij under the given model. The numbers of df for models
are given in Table 1. Note that the number of df for the S-T model is equal to the sum of
those for the decomposed models.

6 Examples

6.1 Example 1
Table 2 taken directly from Agresti (1984, p.206) is the father’s and son’s occupational
mobility data in Britain. These data have been analyzed by some statisticians including
Bishop et al. (1975, p.100), Goodman (1981, 1984), Agresti (1984, pp.205-206), and
Tomizawa (1990a, 1990b, 1990c, 1991).

Table 3 gives the values of the likelihood ratio statistic G2 for models applied to these
data. The S model fits the data in Table 2 very poorly since the value of G2 is 37.5 (p <
0.001) with 10 df. The LDPS model does not fit these data so well yielding G2 = 17.1
(p = 0.047) with 9 df. However the ELDPS model fits these data well yielding G2 = 11.1
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Table 2: Occupational status for British father-son pairs; from Agresti (1984, p.206). The
parenthesized values are the maximum likelihood estimates of expected frequencies under
the ELDPS model.

Son’s status
Father’s
status (1) (2) (3) (4) (5) Total

(1) 50 45 8 18 8 129
(50) (35.19) (9.32) (16.80) (6.44)

(2) 28 174 84 154 55 495
(37.81) (174) (82.36) (165.08) (58.47)

(3) 11 78 110 223 96 518
(9.68) (79.64) (110) (218.15) (99.91)

(4) 14 150 185 714 447 1510
(15.20) (138.92) (189.85) (714) (430.14)

(5) 3 42 72 320 411 848
(4.56) (38.53) (68.09) (336.86) (411)

Total 106 489 459 1429 1017 3500

Table 3: Likelihood ratio chi-square values G2 for models applied to the data in Table 2.
Models df G2 p-value

S 10 37.5 < 0.001
LDPS 9 17.1 0.047

ELDPS 8 11.1 0.194
ME 1 20.3 < 0.001
VE 1 0.13 0.721

(p = 0.194) with 8 df. Using Theorems 2.1 and 2.2, we shall consider the reason why the
S model fits these data poorly.

The VE model with g(k) = k, k = 1, . . . , 5, fits the data in Table 2 very well, but the
ME model with g(k) = k fits these data poorly (see Table 3). Therefore it is seen from
Theorem 2.2 that for these data, the poor fit of the S model is caused by the influence of
the poor fit of the ME model rather than the ELDPS and VE models because the ELDPS
and VE models fit these data well.

6.2 Example 2

The data in Table 4 give results of the treatment group only in randomized clinical tri-
als conducted by a pharmaceutical company in anemic patients with cancer receiving
chemotherapy. The response is the patient’s hemoglobin (Hb) concentration at baseline
(before treatment) and following 4 and 8 weeks of treatment. Table 4 shows the 3× 3× 3
array of counts of Hb response that is classified as ≥ 10g/dl, 8− 10g/dl, and < 8g/dl.

The S-3 model fits these data in Table 4 very poorly, yielding G2 = 76.2 (p < 0.001)
with 17 df (Table 5). By using the decompositions for the S-3 model, we shall consider
the reason why the S-3 model fits these data poorly.
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Table 4: Hemoglobin concentration at baseline, 4 weeks and 8 weeks in carcinomatous
anemia patients from a randomized clinical trial. The parenthesized values are the maxi-
mum likelihood estimates of expected frequencies under the GLDPS-3 model.

8 weeks
Baseline 4 weeks ≥ 10g/dl 8− 10g/dl < 8g/dl
≥ 10g/dl ≥ 10g/dl 77 7 1

(77) (8.32) (0.33)
8− 10g/dl ≥ 10g/dl 43 7 0

(39.68) (7.53) (0.12)
< 8g/dl ≥ 10g/dl 3 0 0

(4.64) (0.37) (0.02)
≥ 10g/dl 8− 10g/dl 3 8 1

(5.00) (7.55) (0.99)
8− 10g/dl 8− 10g/dl 17 16 5

(16.92) (16) (4.75)
< 8g/dl 8− 10g/dl 3 8 1

(3.11) (6.68) (0.99)
≥ 10g/dl < 8g/dl 1 1 1

(0.04) (0.20) (0.58)
8− 10g/dl < 8g/dl 0 2 3

(0.21) (3.56) (4.22)
< 8g/dl < 8g/dl 0 4 3

(0.40) (2.79) (3)

Table 5: Likelihood ratio chi-square values G2 for models applied to the data in Table 4.
Models df G2 p-value

S-3 17 76.2 < 0.001
LDPS-3 15 41.6 < 0.001

ELDPS-3 13 35.5 < 0.001
GLDPS-3 11 13.7 0.252

ME-3 2 23.8 < 0.001
VE-3 2 1.72 0.424
CE-3 2 22.7 < 0.001

Each of the GLDPS-3 and VE-3 models with g(k) = k fits the data in Table 4 very
well, but the LDPS-3, ELDPS-3, ME-3 and CE-3 models fit these data poorly (see Table
5). From Theorem 3.2, the poor fit of the S-3 model is caused by the influence of the poor
fits of both the ELDPS-3 and ME-3 models with g(k) = k (rather than the VE-3 model).
Also, from Theorem 3.3, the poor fit of the S-3 model is caused by the influence of the
poor fits of both the ME-3 and CE-3 models with g(k) = k (rather than the GLDPS-3 and
VE-3 models).
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Table 6: Stationary two-step transitions in a panel study of potential voters in Erie County,
Ohio, 1940 (from Bishop et al., 1975, p.305).

Time t− 2 Time t− 1 Time t
R U D

R R 557 16 6
U R 71 11 1
D R 18 5 0
R U 17 21 5
U U 62 346 54
D U 4 24 10
R D 3 0 8
U D 6 6 63
D D 9 22 435

(R: Republican, U: Undecided, D: Democrat)

Table 7: Likelihood ratio chi-square values G2 for models applied to the data in Table 6.
Models df G2 p-value

S-3 17 229.8 < 0.001
LDPS-3 15 221.2 < 0.001

ELDPS-3 13 110.3 < 0.001
GLDPS-3 11 43.1 < 0.001

ME-3 2 6.58 0.037
VE-3 2 73.2 < 0.001
CE-3 2 70.8 < 0.001

6.3 Example 3

The data in Table 6, taken directly from Bishop et al. (1975, p.305), give the 3 × 3 × 3
array of counts of stationary two-step transitions in the panel survey of potential voters in
Erie County, Ohio, 1940, which summarize the voting intentions of the 1940 presidential
elections. Although the voter’s supportive political party was classified into Republican,
Democrat, and Undecided, we regard the voters with ’Undecided’ as the middle class
which could not decide Republican or Democrat, and give an order like Republican, Un-
decided, and Democrat.

The S-3 model fits these data poorly, yielding G2 = 229.8 with 17 df (Table 7). By
using the decompositions for the S-3 model, we shall consider the reason why the S-3
model fits these data poorly.

The ME-3 model does not fit the data in Table 6 very well since the value of G2 is 6.58
(p < 0.05) with 2 df, but it fits much better than any other models (Table 7). In terms of
the various decompositions theorems, we can see that the poor fit of the S-3 model may
be caused by the influence of the more poor fits of the other models rather than the ME-3
model.
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7 Concluding Remarks

Consider the R×R table. As described in Section 1, Caussinus (1965) gave the theorem
that the S model holds if and only if both the QS and MH models hold. Agresti (2002,
p.430) described that the S model holds if and only if both the OQS and MH models
hold for ordered categories. The OQS model is a special case of the QS model and has
restrictions stronger than the QS model. Therefore it seems natural to decompose the S
model into the ME model (instead of the MH model) which has restrictions weaker than
the MH model. Especially, the decompositions for the S model into the ME or VE model
may be useful if it is reasonable to assume an underlying bivariate normal distribution
when the S model fits poorly.

We assume that there is an underlying three-dimensional normal distribution and that
an R × R × R table is formed using cutpoints for each variable. Consider random
variables U , V and W having a joint three-dimensional normal distribution with means
E(U) = µ1, E(V ) = µ2, and E(W ) = µ3, variances var(U) = σ2

1 , var(V ) = σ2
2 , and

var(W ) = σ2
3 , and correlations cor(U, V ) = ρ12, cor(U,W ) = ρ13, and cor(V, W ) = ρ23.

Table 8 shows the likelihood ratio chi-square values for models applied to the simulated
4 × 4 × 4 tables of sample size 10000, formed by using cutpoints for each variable at
µ2, µ1 ± 0.6σ1, for an underlying three-dimensional normal distribution with the condi-
tions (a) mean vector (µ1, µ2, µ3) = (0, 0, 0), variance vector (σ2

1, σ
2
2, σ

2
3) = (1, 1, 1), and

correlation vector (ρ12, ρ13, ρ23) = (0.2, 0.2, 0.2), (b) mean vector (−0.1, 0, 0.1), vari-
ance vector (1, 1, 1), and correlation vector (0.2, 0.2, 0.2), (c) mean vector (−0.1, 0, 0.1),
variance vector (1, 1.2, 1.4), and correlation vector (0.2, 0.2, 0.2), and (d) mean vector
(−0.1, 0, 0.1), variance vector (1, 1.2, 1.4), and correlation vector (0.4, 0.2, 0.3). We can
see from Table 8 that (i) all models fit well if there is an underlying three-dimensional
normal distribution with equal marginal means, variances and correlations (Table 8a), (ii)
the S-3 and ME-3 models fit very poorly if there is an underlying three-dimensional nor-
mal distribution with different marginal means (Table 8b), (iii) the S-3, LDPS-3, ME-3,
and VE-3 models fit very poorly if with different marginal means and variances (Table
8c), and (iv) the GLDPS-3 only fits well if with different marginal means, variances, and
correlations (Table 8d).

Generally, the LDPS-T model may be appropriate for an ordinal table if it is rea-
sonable to assume an underlying T -dimensional normal distribution with equal marginal
variances and correlations, the ELDPS-T model (rather than the LDPS-T model) may be
appropriate if it is reasonable to assume an underlying normal distribution which does not
require the equality of marginal variances but requires the equality of correlations, and
the GLDPS-T model (rather than the ELDPS-T model) may be appropriate if it is rea-
sonable to assume an underlying normal distribution which does not require the equality
of marginal variances and that of correlations.

Agresti (2002, p.440) proposed the OQS model (the first order QS model) with or-
dered scores and described that the S-T model holds if and only if both the OQS and (the
first order) MH models hold for RT tables (also see Bhapkar and Darroch, 1990). The
OQS model with integer scores {ui = i} is identical to the LDPS-T model for RT ta-
bles, but we proposed some models which are extensions of the LDPS-T model and gave
the decomposition theorems of the S-T model in this paper. As seen in Examples, the
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Table 8: The values of likelihood ratio statistic G2 for 4 × 4 × 4 tables of sample size
10000, formed by using cutpoints for each variable at µ2, µ1 ± 0.6σ1, from different
underlying three-variate normal distributions.

(a) (µ1, µ2, µ3) = (0, 0, 0), (σ2
1, σ

2
2, σ

2
3) = (1, 1, 1),

(ρ12, ρ13, ρ23) = (0.2, 0.2, 0.2)
Models df G2 p-value

S-3 44 43.5 0.493
LDPS-3 42 41.4 0.497

ELDPS-3 40 40.1 0.465
GLDPS-3 38 38.5 0.449

ME-3 2 2.09 0.352
VE-3 2 1.33 0.515
CE-3 2 1.80 0.406

(b) (µ1, µ2, µ3) = (−0.1, 0, 0.1), (σ2
1, σ

2
2, σ

2
3) = (1, 1, 1),

(ρ12, ρ13, ρ23) = (0.2, 0.2, 0.2)
Models df G2 p-value

S-3 44 221.1 < 0.001
LDPS-3 42 33.2 0.833

ELDPS-3 40 31.8 0.820
GLDPS-3 38 31.1 0.780

ME-3 2 186.6 < 0.001
VE-3 2 1.13 0.569
CE-3 2 1.11 0.575

(c) (µ1, µ2, µ3) = (−0.1, 0, 0.1), (σ2
1, σ

2
2, σ

2
3) = (1, 1.2, 1.4),

(ρ12, ρ13, ρ23) = (0.2, 0.2, 0.2)
Models df G2 p-value

S-3 44 257.9 < 0.001
LDPS-3 42 100.1 < 0.001

ELDPS-3 40 37.7 0.573
GLDPS-3 38 36.1 0.560

ME-3 2 157.3 < 0.001
VE-3 2 66.6 < 0.001
CE-3 2 0.92 0.633

(d) (µ1, µ2, µ3) = (−0.1, 0, 0.1), (σ2
1, σ

2
2, σ

2
3) = (1, 1.2, 1.4),

(ρ12, ρ13, ρ23) = (0.4, 0.2, 0.3)
Models df G2 p-value

S-3 44 509.4 < 0.001
LDPS-3 42 342.3 < 0.001

ELDPS-3 40 275.6 < 0.001
GLDPS-3 38 46.2 0.169

ME-3 2 149.9 < 0.001
VE-3 2 71.2 < 0.001
CE-3 2 225.4 < 0.001
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decompositions for the S-T model would be useful for seeing the reason for the poor fit
when the S-T model fits the data poorly. Moreover, the decomposition for the S-T model
into more (three or four) models rather than into two models would be useful for seeing
in more details the reason for the poor fit when the S-T model fits the data poorly.

Because the S model can be decomposed in at least two ways, one may be interested in
which decomposition should one apply. For square tables, from Theorems 2.1 and 2.2, the
S model is decomposed into (1) the LDPS and ME models and (2) the ELDPS, ME, and
VE models. However, the LDPS model is not equivalent to the ELDPS and VE models
holding simultaneously. Therefore both decompositions should be applied for analyzing
the data.

It may seem to readers that in Examples the decomposed model (e.g., the LDPS and
ME models) are tested after the S model is rejected, and the test of the S model can there-
fore be seen as a preliminary test. However the decomposed models should be applied
even if the S model is accepted. Assuming that the LDPS model holds true, the hypothesis
that the S model holds, i.e., δ = 1 in the LDPS model, can be tested by the difference
between the G2 values for the S and LDPS models. Even if the S model fits the data
well, the structure of complete symmetry may not exist for the data. For the ordinal data,
then we are also interested in seeing the structure of asymmetry, e.g., the structure of the
LDPS model. The estimate of parameter δ in the LDPS model would be useful for mak-
ing inferences such as that X1 is stochastically less than X2 or vice versa according as the
estimated δ is greater than 1 (or less than 1). So, for the ordinal data, the LDPS model
would be useful even when the S model fits the data well. The ME and VE models would
be useful for seeing the structure of the marginal distributions.

It also may seem that the decision procedure consists of a sequence of likelihood ratio
tests, and these might be a simultaneous testing problem. However, when we want to
see which model of the decomposed models has the more poor fit (e.g., by p-values), we
would not need the adjustment of the individual significance levels. If we want to judge
whether or not the S model holds by judging whether or not each of decomposed models
holds at the given significance level, we had better adjust the individual significance level.
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