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Abstract: In this paper an estimation method based on double phase sam-
pling is proposed to improve the efficiency of estimating the population mean.
An extension is presented for the bivariate case to estimate the parameters of
the simple linear regression model. Conclusions of this study show that using
the proposed method with symmetric populations, the estimator of the pop-
ulation mean is unbiased and more efficient than the traditional one that is
based on a simple random sample. Results for the standard uniform and the
exponential distribution are given. Simulation results show that the proposed
method is also more efficient than the traditional one in case of estimating the
regression parameters. An application to a real data set is also given.

Zusammenfassung: In dieser Arbeit wird eine Schätzmethode basierend auf
ein Double Phase Sampling vorgeschlagen, um die Effizienz der Schätzung
des Populationsmittels zu steigern. Eine Erweiterung auf den bivariaten Fall
wird präsentiert, um die Parameter eines einfachen linearen Regressions-
modells zu schätzen. Die Ergebnisse dieser Studie zeigen, dass die vorgeschla-
gene Methode bei symmetrischen Populationen einen unverzerrten Schätzer
für das Populationsmittel liefert, der auch effizienter ist als der traditionelle
basierend auf einer einfachen Zufallsstichprobe. Resultate für die Standard-
Uniformverteilung und die Exponentialverteilung werden angegeben. Sim-
ulationsergebnisse zeigen, dass diese Methode auch bei der Schätzung der
Regressionsparameter effizienter ist als die traditionelle. Eine Anwendung
auf reale Daten ist auch enthalten.

Keywords: Simple Linear Regression, Least Squares Estimator, Efficiency.

1 Introduction
Numerous procedures have been proposed for increasing the precision of parameters esti-
mation. One of such procedures is to use a double phase sampling theory which has been
around for a long time (Deming, 1953). In this paper, we propose a modified Theil’s type
nonparametric method that is based on a double phase sampling, to estimate the popula-
tion mean and the parameters of the simple linear regression model. The proposed method
is an extension of the simple AM sampling procedure that was introduced by the authors
of this paper (Al-Nasser and Al-Haj Ebrahem, 2005; Al-Haj Ebrahem and Al-Nasser,
2005). The simple AM method can be described as follows:

1. Arrange the observations in ascending order on the basis of the values of the xi’s,
i.e. x(1:n) ≤ x(2:n) ≤ · · · ≤ x(n:n) and the associated y[1], y[2], . . . , y[n] of the original
data are taken. Thus the new pairs will be (x(i:n), y[i]), i = 1, . . . , n. Note that x(i:n)

is the i-th ordered observation from a sample of size n.
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2. Divide the ordered data into m-subgroups each of size r, such that mr = n. The
sample can be rewritten as

(x(1:n), y[1]) (x(2:n), y[2]) · · · (x(r:n), y[r])
(x(r+1:n), y[r+1]) (x(r+2:n), y[r+2]) · · · (x(2r:n), y[2r])

...
... · · · ...

(x(((m−1)r+1):n), y[(m−1)r+1]) (x(((m−1)r+2):n), y[(m−1)r+2]) · · · (x(mr:n), y[mr]) .

Note that m can be chosen to be the maximum divisor of n such that m ≤ r.
3. Find all possible paired slopes

{
b(k)ij =

y[j] − y[i]

x(j:n) − x(i:n)

, i = 1, . . . , j − 1 , j = 2, . . . , r

}
, k = 1, . . . , m .

4. The estimator of the slope can be defined as

Slope estimate = Mediank {b(k)ij} .

Based on a simulation study, the authors had demonstrated that the simple AM method
could be considered as a good alternative to the traditional methods, because it was able
to produce satisfactory results.

The paper is organized as follows. Estimation of the population mean using an exten-
sion of the AM method and results from the standard uniform distribution and exponential
distribution are presented in Section 2. The proposed sampling plan to estimate the re-
gression coefficients is described in Section 3. Application to a real data set is given
in Section 4. Simulation study and conclusions are discussed in Section 5. Concluding
remarks are given in Section 6.

2 Sampling Procedure and Estimating the Mean
An extension of the AM method consists of two phases. In the first phase we draw a
random sample of size r2 from the population of interest, and then a sample of size only
r is selected from those r2 units. In the second phase we repeat the first phase m times
such that rm = n, where n is the final sample size. The procedure can be described as:

1. Select a random sample of size r2 from the population of interest.
2. Arrange the r2 units in ascending order and then divide the ordered sample into r

sets of r units each.
3. Choose a sample of size r for the actual analysis. This sample consists of the

smallest ranked unit from the first set, the second smallest ranked unit from the
second set, continuing until the largest ranked unit is selected from the last set. The
chosen sample of size r is then

x(1:r2) x(2:r2) · · · x(r:r2)

x(r+1:r2) x(r+2:r2) · · · x(2r:r2)
...

... · · · ...
x((r−1)r+1):r2) x((r−1)r+2):r2) · · · x(r2:r2) .
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4. Repeat steps 1 to 3 m times (cycles) until the desired sample size n = mr is
obtained. The final sample will be

x(1:r2)1 x(1:r2)2 · · · x(1:r2)m

x((r+2):r2)1 x((r+2):r2)2 · · · x((r+2):r2)m
...

... · · · ...
x(r2:r2)1 x(r2:r2)2 · · · x(r2:r2)m ,

where x(i:r2)j represents the i-th order observation in the j-th column, i = 1, r +
2, . . . , r2, j = 1, 2, . . . , m, and each column represents the r selected units obtained
by repeating steps 1 to 3. Note that units in the same row of the final sample are
independent and identically distributed.

Using this sampling procedure the estimator of the population mean µ based on a sample
of size n = mr is given as

X̄AM =
1

mr

r∑
i=1

m∑
j=1

x(((i−1)r+i):r2)j .

Its expected value is

E
(
X̄AM

)
=

1

r

r∑
i=1

∫

R
x(((i−1)r+i):r2)dF (x((i−1)r+i):r2) ,

where the probability density function of X(i:n) is

f(x(i:n)) =
n!

(i− 1)!(n− i)!
[F (x)]i−1 [1− F (x)]n−i f(x) .

Hence,

E
(
X̄AM

)
=

r2

r

r∑
i=1

∫

R
x

(
(r + 1)(r − 1)
(r + 1)(i− 1)

)
[F (x)](r+1)(i−1) [1− F (x)](r+1)(r−i) dF (x) .

Its variance is

var
(
X̄AM

)
=

1

mr2
var

(
r∑

i=1

X(((i−1)r+i):r2)

)

=
1

mr2

(
r∑

i=1

var
(
X(((i−1)r+i):r2)

)

+2
r−1∑
i=1

r∑
j=i+1

cov
(
X(((i−1)r+i):r2), X(((j−1)r+j):r2)

)
)

.

For any distribution that is symmetric around zero, X(i:n) and −X((n−i+1):n), as also
(X(i:n), X(j:n)) and −(X((n−j+1):n), X((n−i+1):n)) are identically distributed (Balakrishnan
and Cohen, 1990). Thus, this estimator is unbiased for such distributions. Moreover, the
relative efficiency of this estimator with respect to the traditional simple random sample
(SRS) estimator is
var(X̄SRS)

var(X̄AM)
=

σ2r
r∑

i=1

var(X(((i−1)r+i):r2)) + 2
r−1∑
i=1

r∑
j=i+1

cov(X(((i−1)r+i):r2), X(((j−1)r+j):r2))

,

where X̄SRS =
∑n

i=1 xi/n, and σ2 denotes the variance of the population.
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2.1 Results for the Standard Uniform Distribution
Suppose that we select a random sample of size n = mr from the standard uniform
distribution U(0, 1). It is easy to verify that

E
(
X̄AM

)
=

1

r

r∑
i=1

(i− 1)r + i

r2 + 1
=

1

2

and

var
(
X̄AM

)
=

1

12n

2 + r(r2 − 2r + 5)

2 + 3r2 + r4
.

Hence,
var

(
X̄SRS

)

var
(
X̄AM

) =
2 + 3r2 + r4

2 + r(r2 − 2r + 5)
≥ 1 .

Equality holds for r = 1, which implies that the extension of the AM method gives a
more efficient and an unbiased estimator of the uniform population mean compared to a
SRS estimator. Clearly from Figure 1, the relative efficiency of the estimator increases as
r increases.

Figure 1: The relative efficiency of the estimator as a function of r.

2.2 Results for Exponential Distribution
Consider the case of selecting random samples from an exponential distribution with
mean 1. The mean and the variance of the proposed estimator will be

E
(
X̄AM

)
=

1

r

r∑
i=1

(i−1)r+i∑

k=1

1

r2 − k + 1

and

var
(
X̄AM

)
=

1

nr2




r∑
i=1

(i−1)r+i∑

k=1

(
1

r2 − k + 1

)2

+ 2
r−1∑
i=1

r∑
j=i+1

(
1

r2 − j + 1

)2

 .
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Figure 2: The efficiency of the estimator as a function of r for the exponential distribution.

Since X̄AM is biased for skewed distributions, we consider var(X̄SRS)/MSE(X̄AM), with
mean squared error MSE(X̄AM) = var(X̄AM) +

(
E(X̄AM)− 1

)2. From Figure 2 we
clearly see that the efficiency of the estimator slowly increases as r increases.

3 Estimating Regression Coefficients
The procedure consists of ordering the pairs (xi, yi), i = 1, . . . , n, by the magnitude of
the xi’s and splitting the observations into some sets. This can be described as follows:

1. Select a random sample of size r2 from the population.

2. Arrange the observations in ascending order with respect to the xi’s, i.e. x(1:r2) ≤
x(2:r2) ≤ · · · ≤ x(r2:r2) and the associated y[1], y[2], . . . , y[r2] of the original data are
taken.

3. Divide the r2 ordered data into r sets of r observations each, such the sample can
be rewritten as

(x(1:r2), y[1]) (x(2:r2), y[2]) · · · (x(r:r2), y[r])
(x((r+1):r2), y[r+1]) (x((r+2):r2), y[r+2]) · · · (x(2r:r2), y[2r])

...
... · · · ...

(x(((r−1)r+1):r2), y[(r−1)r+1]) (x(((r−1)r+2):r2), y[(r−1)r+2]) · · · (x((r−1)r+r):r2 , y[(r−1)r+r])

4. From the first set above select (x(1:r2), y[1]), from the second set (x((r+2):r2), y[r+2]),
and continue till (x(((r−1)r+r):r2), y[(r−1)r+r]) is taken from the r-th set.

5. Repeat steps 1 to 4 m times.

In order to illustrate the efficiency of this method for the bivariate case, we estimate the
parameters of the simple linear regression model

Y = α + βX + ε , (1)

where Y is the response variable, the intercept α and the slope β are unknown parameters,
X is the predictor variable and ε is a random error term assumed to have zero mean and
variance σ2

ε .
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Let α̂SRS and β̂SRS denote the least squares estimators of α and β, respectively, ob-
tained considering a SRS, i.e.

α̂SRS = ȳSRS − β̂SRSx̄SRS , β̂SRS =

n∑
i=1

(xi − x̄SRS) (yi − ȳSRS)

n∑
i=1

(xi − x̄SRS)
2

,

where x̄SRS =
∑n

i=1 xi/n and ȳSRS =
∑n

i=1 yi/n.
Similarly, the least squares estimators of α and β obtained regarding the proposed

method of a sample of size n = rm, respectively, are

α̂AM = ȳAM − β̂AMx̄AM

β̂AM =

r∑
i=1

m∑
j=1

(
x(((i−1)r+i):r2)j − x̄AM

) (
y[(i−1)r+i]j − ȳAM

)

r∑
i=1

m∑
j=1

(
x(((i−1)r+i):r2)j − x̄AM

)2

.

It can be shown that standard errors of these estimates are the square roots of

var (α̂SRS) =

(
1

n− 2

n∑
i=1

(yi − ŷi)
2

)
n∑

i=1

x2
i

n

n∑
i=1

(xi − x̄SRS)
2

var
(
β̂SRS

)
=

1

n− 2

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(xi − x̄SRS)
2

var (α̂AM) =

(
1

rm− 2

r∑
i=1

m∑
j=1

(
y[(i−1)r+i]j − ŷ[(i−1)r+i]j

)2

)(
r∑

i=1

m∑
j=1

x2
(((i−1)r+i):r2)j

)

rm

r∑
i=1

m∑
j=1

(
x(((i−1)r+i):r2)j − x̄AM

)2

var
(
β̂AM

)
=

1

rm− 2

r∑
i=1

m∑
j=1

(
y[(i−1)r+i]j − ŷ[(i−1)r+i]j

)2

r∑
i=1

m∑
j=1

(
x(((i−1)r+i):r2)j − x̄AM

)2

.
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Table 1: Data using SRS.
(16000, 679) (3500, 427) (7400, 374) (17000, 803)
(11900, 482) (6000, 373) (14800, 640) (8400, 442)
(9200, 492) (8100, 432) (10900, 500) (12700, 549)
(6400, 405) (18500, 925) (7500, 440) (10000, 428)

(12900, 610) (13700, 635) (14600, 622) (15600, 727)

Table 2: Data using the AM procedure with r = 5.
m = 1 (6500, 409) (11600, 558) (12900, 560) (15000, 658) (16700, 718)

2 (4500, 399) (9900, 489) (11100, 485) (13200, 554) (17700, 858)
3 (3500, 427) (7600, 387) (9300, 449) (13000, 592) (15400, 696)
4 (3900, 417) (9900, 439) (11400, 516) (13700, 553) (16200, 907)

Table 3: Estimation Results.
α̂ se(α̂) β̂ se(β̂)

AM 238.989 36.379 0.0273 0.003
SRS 168.866 39.997 0.0338 0.003

4 Real Data Application
The following example illustrates the extension of the AM method for the bivariate case.
We have used the so-called car data from Graybill and Iyer (1994). Twenty cars were
selected using the SRS and the AM procedure and shown in Tables 1 and 2, respectively.
The response variable represents the first year maintenance costs and the explanatory vari-
able represents the number of miles driven during the first year after purchase. Based on
these two samples estimates of the simple linear regression parameters and their standard
errors are calculated and given in Table 3.

Clearly, from Table 3 the proposed method has an overall smaller standard error than
the traditional SRS. Moreover, Figure 3 shows the residuals and the predicted values for
both estimation methods. It can be noted that both estimation methods give very similar
values of the residuals and behave in a similar way.

5 Simulation Study
In order to compare the performance of the estimates of α and β obtained using an
extension of the AM method and a SRS, a simulation study is conducted. Define the
relative efficiency of α̂AM with respect to α̂SRS as Eff(α̂) = MSE(α̂SRS)/MSE(α̂AM),
where MSE(α̂SRS) and MSE(α̂AM) are the mean squared error of α̂SRS and α̂AM, respec-
tively. Similarly we define the efficiency Eff(β̂). We simulate data for the model (1)
with α = β = 1, i.e. yi = 1 + xi + εi, where xi ∼ N(0, 1), and we consider different
distributions for the error term:

1. Symmetric around zero with different scales, εi ∼ N(0, 1) and εi ∼ N(0, 4).

2. Non-normal skewed, i.e. εi ∼ Beta(2, 9) and εi ∼ Beta(9, 2).
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Figure 3: Residuals and predicted values for both estimation methods.

Note that the shape of Beta(2, 9) is skewed to the right, while the shape of Beta(9, 2)is
skewed to the left.

Simulation results are provided in Tables 4 to 11. Values of the biases are in Tables 4,
6, 8, and 10, while those for the MSE’s are in Tables 5, 7, 9, and 11. From these tables we
conclude that the AM estimates behave very well for different types of error distributions.
More specifically we see that the biases and mean square errors of the estimated parame-
ters decreases as the sample size increases and the proposed AM estimates have smaller
biases compared with the traditional SRS estimates. Calculating efficiencies shows that
the proposed AM estimates are more efficient than the SRS estimates. We also see that
the AM method is more efficient in estimating the slope than in estimating the intercept.

To estimate the mean of a symmetric distribution the analytical results show that the
AM method often generates an unbiased estimator. As an example, the relative efficien-
cies in Figures 1 and 2 for the standard uniform and the exponential distribution show that
the AM estimator is preferable over the traditional estimator based on a SRS.

6 Concluding Remarks
As a summary, simulation results demonstrate that the AM estimates are superior and
often closer to the true parameter than the traditional estimates based on a SRS. For all
situations used in the simulation study by considering different types of the error term
distributions, the AM estimates are more efficient than the estimates based on a SRS.
Consequently, the AM estimator can be recommended for estimating the mean of sym-
metric distributions and the parameters of regression model.
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Table 4: Biases for εi ∼ N(0, 1).
n Bias(α̂SRS) Bias(α̂AM ) Bias(β̂SRS) Bias(β̂AM )

10 1.417E-03 1.305E-03 1.079E-02 −4.697E-03
30 −1.902E-04 3.178E-03 −3.702E-03 −1.008E-03
50 −8.182E-04 −1.421E-03 1.139E-03 1.460E-03

100 −1.990E-04 2.866E-03 −8.832E-04 −4.523E-04
1000 3.974E-05 −2.432E-04 −1.121E-04 5.595E-05

Table 5: Mean squared errors and efficiencies for εi ∼ N(0, 1).
n MSE(α̂SRS) MSE(α̂AM ) Eff(α̂) MSE(β̂SRS) MSE(β̂AM ) Eff(β̂)

10 1.112E-01 1.072E-01 1.036 1.458E-01 7.537E-02 1.934
30 3.446E-02 3.346E-02 1.030 3.650E-02 1.889E-02 1.931
50 2.046E-02 2.021E-02 1.012 2.145E-02 1.090E-02 1.966

100 1.039E-02 9.912E-03 1.048 1.043E-02 5.642E-03 1.849
1000 1.013E-03 9.982E-04 1.015 9.958E-04 6.566E-04 1.516

Table 6: Biases for εi ∼ N(0, 4).
n Bias(α̂SRS) Bias(α̂AM ) Bias(β̂SRS) Bias(β̂AM )

10 −6.406E-04 −7.121E-04 1.483E-04 −2.678E-03
30 1.895E-03 5.011E-03 −3.435E-03 9.250E-04
50 2.990E-03 1.650E-04 1.133E-03 −1.991E-04

100 −7.519E-05 5.351E-04 5.696E-04 −8.138E-04
1000 1.871E-04 1.672E-04 5.859E-06 7.236E-05

Table 7: Mean squared errors and efficiencies for εi ∼ N(0, 4).
n MSE(α̂SRS) MSE(α̂AM ) Eff(α̂) MSE(β̂SRS) MSE(β̂AM ) Eff(β̂)

10 1.178E-01 1.037E-01 1.136 1.429E-01 7.906E-02 1.808
30 3.480E-02 3.306E-02 1.052 3.739E-02 1.841E-02 2.030
50 2.045E-02 2.015E-02 1.014 2.128E-02 1.110E-02 1.916

100 9.966E-03 9.853E-03 1.011 1.034E-02 5.675E-03 1.822
1000 1.010E-03 9.813E-04 1.030 1.003E-03 5.749E-04 1.745

Table 8: Biases for εi ∼ Beta(2, 9).
n Bias(α̂SRS) Bias(α̂AM ) Bias(β̂SRS) Bias(β̂AM )

10 1.819E-01 1.812E-01 −2.217E-03 1.359E-04
30 1.813E-01 1.818E-01 3.476E-04 6.835E-06
50 1.817E-01 1.817E-01 5.878E-05 −5.395E-04

100 1.816E-01 1.816E-01 8.692E-04 8.324E-04
1000 1.818E-01 1.818E-01 −3.904E-04 −3.202E-04

Table 9: Mean squared errors and efficiencies for εi ∼ Beta(2, 9).
n MSE(α̂SRS) MSE(α̂AM ) Eff(α̂) MSE(β̂SRS) MSE(β̂AM ) Eff(β̂)

10 3.892E-02 3.677E-02 1.058 1.539E-01 7.893E-02 1.950
30 3.456E-02 3.418E-02 1.011 3.836E-02 1.850E-02 2.073
50 3.399E-02 3.372E-02 1.008 2.148E-02 1.132E-02 1.897

100 3.346E-02 3.335E-02 1.003 1.050E-02 5.960E-03 1.762
1000 3.313E-02 3.309E-02 1.001 9.918E-04 6.613E-04 1.499
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Table 10: Biases for εi ∼ Beta(9, 2).
n Bias(α̂SRS) Bias(α̂AM ) Bias(β̂SRS) Bias(β̂AM )

10 8.196E-01 8.141E-01 5.001E-03 −1.907E-03
30 8.193E-01 8.202E-01 −1.731E-03 −2.375E-03
50 8.188E-01 8.164E-01 −5.748E-04 2.385E-03

100 8.170E-01 8.185E-01 1.500E-03 −5.876E-04
1000 8.181E-01 8.182E-01 5.146E-05 −1.082E-04

Table 11: Mean squared errors and efficiencies for εi ∼ Beta(9, 2).
n MSE(α̂SRS) MSE(α̂AM ) Eff(α̂) MSE(β̂SRS) MSE(β̂AM ) Eff(β̂)

10 7.697E-01 7.258E-01 1.060 1.536E-01 7.935E-02 1.936
30 6.965E-01 6.854E-01 1.016 3.678E-02 1.891E-02 1.944
50 6.853E-01 6.740E-01 1.016 2.172E-02 1.108E-02 1.960

100 6.748E-01 6.740E-01 1.001 1.050E-02 5.956E-03 1.763
1000 6.700E-01 6.700E-01 1.000 1.000E-03 6.477E-04 1.545
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