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Abstract: One essential prerequisite to ANOVA is homogeneity of variances
in underlying populations. Violating this assumption may lead to an increased
type I error rate. The reason for this undesirable effect is due to the calculation
of the correspondingF -value. A slightly different test statistic keeps the
level α. The underlying distribution of this alternative method is Hotelling’s
T 2. As Hotelling’sT 2 can be approximated by a Fisher’sF -distribution, this
alternative test is very similar to an ordinary analysis of variance.

Zusammenfassung:Eine wesentliche Voraussetzung der Varianzanalyse ist
Homoskedastiziẗat in den zu Grunde liegenden Populationen. Eine Verlet-
zung dieser Annahme führt zu einer erḧohten Typ 1 Fehlerrate. Der Grund
für diesen unerẅunschten Effekt liegt in der Berechnung des entsprechen-
denF -Wertes. Eine leicht veränderte Teststatistik hält das Niveauα. Die zu
Grunde liegende Verteilung dieses alternativen Verfahrens ist Hotelling’sT 2.
Da Hotelling’sT 2 durch eineF -Verteilung approximiert werden kann, ist der
alternative Test sehr̈ahnlich einer normalen Varianzanalyse.
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1 Introduction

ANOVA is one of the most frequently used methods in statistics. A correct application
of this method depends on three preconditions: (i) independence of samples; (ii) normal
distributed populations, and (iii) homoscedasticity. Dependence can be eliminated by an
appropriate model. The effects of non-normal distributed data on significance level are
low (see Box and Andersen, 1955) and can be ignored in most cases (see Lindman, 1992).
Inhomogeneity of variances however infectsα as well as test efficiency. Although Box
(1954a) reported only little influence on this error rate with small differences in variances,
Box and Andersen (1955) found the effect of unequal variances to be appreciable even
when the ratio of block variances is moderate. In a second study Box (1954b) investigated
effects of inequality of variance in the two-way classification. For an assumed variance
ratio of main effects 1 :· · · : 1 : 3 a type I error rate of about 7% was found. In many
practical trials variance ratio is much broader and exceeds this values. As for example in
Figure 1.

A method proposed by Nelson and Dudewicz (2002) is applicable to such situations,
but hypothesis differs from that of analysis of variance and a new test statistic has to be
used. Transformation of data (e.g.log-, arcsin-, . . . , transformation) is another often used
practice in situations where variances are inhomogeneous. In a one factorial experiment,
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Figure 1: Boxplots for refraction index of apple juice (6 apples per variety), gathered at
Landesversuchszentrum Haidegg (s1 : · · · : s5 = 4.4 : 2.1 : 1.7 : 4.9 : 1).

this may be useful, if standard deviations are bound to the height of the means. In multi
factorial analysis of variance transformations of that kind are not appropriate because of
problems with interpretation of parameters and probabilities. In this article a method
similar to the analysis of variance with identical hypothesis is introduced and the impacts
of inhomogeneous variances on the test of main effects are examined. Type I error rate as
well as test efficiency is checked by means of a simulation study.

2 Another View on the F-Ratio

As a very simple case of ANOVA a block analysis is used (although the method is appli-
cable to more complicated situations). An appropriate model looks like

xij = µ + αi + βj + eij , eij ∼ N(0, σ2
i ) , i = 1, . . . , I ; j = 1, . . . , J ,

where
I∑

i=1

αi =
J∑

j=1

βj = 0 .

Herexij is the observation on factorA at leveli and factorB at levelj, αi denotes the
effect of leveli of factorA (treatment effect),βj the effect of levelj of factorB (block
effect),eij is a random effect associated withxij, I stands for the number of levels ofA
(number of treatments) andJ for the number of levels ofB (number of blocks).

An appropriate test statistic for the hypothesis of interestH0 : α1 = · · · = αI = 0
can be calculated asF = MSA/MSE with dfA = I − 1 anddfE = (I − 1)(J − 1)
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degrees of freedom.MSA = SSA/dfA is the mean square value for the interesting factor
A, SSA its sum of squares value anddfA its degrees of freedom,MSE = SSE/dfE is the
mean square value for the error term,SSE its sum of squares value anddfE its degrees of
freedom.

Let x.. =
∑I

i=1 xi./I, thenSSA can be calculated as
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whered̄ii∗. denotes the mean difference between leveli andi∗ of factorA. This means
thatSSA is the sum of squares for each possible difference between means of factorA.

Now let x.j =
∑I

i=1 xij/I, then the sum of squares for factorB (blocks) can be
calculated as

SSB = I

J∑
j=1

(x.j − x..)
2 = I

J∑
j=1

(
1

I
(x1j − x1.) + · · ·+ 1

I
(xIj − xI.)

)2

=
1

I

(
I∑

i=1

J∑
j=1

(xij − xi.)
2 + 2

I−1∑
i=1

I∑
i∗=i+1

J∑
j=1

(xij − xi.)(xi∗j − xi∗.)

)

=
1

I

(
I∑

i=1

SSi + 2
I−1∑
i=1

I∑
i∗=i+1

SPii∗

)
,

whereSPii∗ is the sum of crossproducts for leveli andi∗ of the factorA.
Utilizing

x2
.. =

1

I2

(
I∑

i=1

xi.

)2

=
1

I2

I∑
i=1

x2
i. +

2

I2

I−1∑
i=1

I∑
i∗=i+1

xi.xi∗.



182 Austrian Journal of Statistics, Vol. 36 (2007), No. 3, 179–188

we further get for the total sum of squares
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Finally, the sum of squares for the error term (SSE) can be calculated as
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This means thatSSE is calculated as a squared sum of all individual differences between
observations of two samples each, minus the according mean difference for all combina-
tions of samples.

The interestingF -value results as a pooled estimation of all squared mean differences
divided by a pooled value of individual differences for observations of two samples each
for all combinations of samples. In a heteroscedastic situation this pooling is responsible
for an enhanced type I error rate.

For the pairedt-test homogeneity of variances is of no interest, as there is only one
variable created from two dependent ones. By replacing the pooled sum of differences
with a sum of individual paired differences, we find a test statistic which is Hotelling’sT 2

distributed (see Hotelling, 1947) as the counterpart of Student’s pairedt-value.
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3 Hotelling’s T 2

Hotelling’sT 2 for a single group of samples is calculated as

T 2 = J(X̄ − µ)′S−1(X̄ − µ) ,

whereJ is the number of observations within each sample,X̄ denotes the sample mean
vector ofI elements andµ the mean parameter vector ofI elements, andS is the (I × I)
sample covariance matrix.

The null hypothesis is formulated asH0 : µ = µ0. As mentioned above, the analysis
of variance is a test based on all possible pairwise mean differences. For this situation
Hotelling’sT 2 can be easily applied:

1. µ is replaced by0, a vector of zeros.

2. X̄ is replaced bȳD, a vector of allI(I−1)/2 possible pairwise mean differences of
a factor, respectively the vector of allI − 1 independent pairwise mean differences
leading to equivalent results, i.e.̄D

′
= (x̄1 − x̄2, x̄2 − x̄3, . . . , x̄I−1 − x̄I).

3. S is calculated from all samples of individual differences corresponding to the mean
difference vector̄D. As individual differences include covariances between partic-
ular samples, it is not necessary to calculate off-diagonal elements inS. Thus, it is
sufficient to calculateS as a matrix of individual variances of sample differences.
For independent differences,S looks likeS = diag(s2

d12
, . . . , s2

dI−1,I
), wheres2

di−1,i

is the variance of the differences between all mean adjusted observations in samples
i− 1 andi, for i = 2, . . . , I.

As a consequence, Hotelling’sT 2 simplifies to

T 2 = JD̄
′
S−1D̄ ,

which isT 2
I−1,J−1 distributed. Probability levels forT 2 can be found by approximating

J − I + 1

(J − 1)(I − 1)
T 2 ∼ FI−1,J−I+1 .

4 Simulation Results

By means of a simulation study the impacts of inhomogeneous variances on the empirical
type I error rate with a givenα = 0.05 were investigated. Figures 2 to 8 are based on
8× 8 = 64 simulation configurations with 10000 runs each (treatment factori = 1, . . . , I
with number of levelsI = 3, . . . , 8, block factorj = 1, . . . , J with number of replications
J = 3, . . . , 8). Software packagesR andSAS were used for these purposes. The errorseij

were generated fromN(0, σ2
i ).

With homoscedastic variances both procedures meet theα-level. This is not true for
the analysis of variance as soon as there are differences in theσ2

i -levels. From Figure 2
we find that the empirical significance level when the ratio of the true standard deviations
is σ1 : σ2 : · · · : σv = 3 : 1 : · · · : 1 rises up to 12% (depending on the number of factor
levels), whereas the alternative test keeps the predefined value ofα.
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Figure 2: Empirical significance levels when the ratio of the true standard deviations is
σ1 : σ2 : · · · : σv = 3 : 1 : · · · : 1 (α = 0.05)

Figure 3: Empirical significance levels when the ratio of the true standard deviations is
σ1 : σ2 : · · · : σv = 6 : 1 : · · · : 1 (α = 0.05)

For Figure 3 the ratio of standard deviations is wider (6 : 1 : · · · : 1) than for Figure 2.
As a consequence the type I error rate rises up to 18% for ANOVA. Maybe the results in
Figure 1 reflect this situation, as for ANOVA the null hypothesis is rejected (p = 0.0136),
whereas the alternative method does not reject the null (p = 0.1727).

5 Power Comparison

An important question which arises with all kinds of tests concerns test efficiency. In the
following figures several situations for a true alternative hypothesis with different variance
ratios were investigated.

Figure 4 shows a higher power for analysis of variance if all variances are homoge-
neous, especially with a low number of replications. In Figure 5 the power of ANOVA
seems to be superior to that of the alternative method. The apparent advantages are partly
due to an enhanced type I error rate. This means, that a lot of significant results are not
caused by differences in factor levels, but on random influences.
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Figure 4: Power functions of ANOVA and Hotelling’sT 2 test (α = 0.05). Data of the
first group are fromN(2, 1), for all other groups fromN(0, 1).

Figure 5: Power functions of ANOVA and Hotelling’sT 2 test (α = 0.05). Data of the
first group are fromN(2, 32), for all other groups fromN(0, 1).

Figure 6: Power functions of ANOVA and Hotelling’sT 2 test (α = 0.05). Data of the
first group are fromN(2, 62), for all other groups fromN(0, 1).
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Figure 7: Power functions of ANOVA and Hotelling’sT 2 test (α = 0.05). Data of the
first group are fromN(0, 32), of the second group fromN(2, 1), and of all other groups
from N(0, 1).

Figure 8: Power functions of ANOVA and Hotelling’sT 2 test (α = 0.05). Data of the
first group are fromN(0, 62), of the second group fromN(2, 1), and of all other groups
from N(0, 1).

Figure 6 shows comparable results to those in Figure 5, but it is difficult to find any
differences in the factor levels even if the number of observations is high. Whereas in
Figures 5 and 6 the factor level with the largest effect was bound to the largest standard
deviation this is not true in the following.

If the largest level of the factor does not correspond to the level with the largest stan-
dard deviation as in Figure 7, the alternative method is superior to ANOVA in most situa-
tions.

If heteroscedasticity is high (as in Figure 8), significant results of ANOVA are similar
to that of Figure 3. This means that it is almost impossible to find differences in factor
levels even if the sample size is large. However, the alternative method shows a large
power.



K. Moder 187

Figure 9: Power functions of Levene and O’Brien tests with a ratio of true standard devi-
ationsσ1 : σ2 : · · · : σv = 1 : 7 : 5 : 3 : 2 : 4 : 6 (α = 0.05).

6 Tests on Homogeneity of Variances

There are various different tests on homogeneity of variances available (Conover, John-
son, and Johnson, 1981). Levene’s test (Levene, 1960) is one of the most popular ones.
O’Brien’s test (see O’Brien, 1979) is a modification for Levene’s test, which is believed
to be one of the most sensitive ones (Abdi, 2007) especially with platycurtic distributions
(Algina, Olejnik, and Ocanto, 1989). In a simulation study with 1000 runs each, these
tests are investigated.

The simulation is performed in such a way, that with 3 levels of the factor the ratio of
standard deviations is 1 : 7 : 5. When there are 4 levels this ratio is set to 1 : 7 : 5 : 3.
Following this strategy the ratio of standard deviations for 7 factor levels is set to 1 : 7
: 5 : 3 : 2 : 4 : 6. The power functions of these tests are shown in Figure 9. In case of
normal distributed data Levene’s test performs better than O’Briens. But no matter which
of these tests is used, there is a relatively high risk to oversee inhomogeneous variances
even with a wide ratio of standard deviations.

7 Conclusions

Heteroscedasticity can be found in a lot of practical trials. The consequences of such a
situation in concern to analysis of variance are subsumed in the following:

• ANOVA leads to an enhanced type I error rate, if variances are non-homogeneous.
• An alternative test based on Hotelling’sT 2 keeps theα-level independently from

the variance ratio.
• As soon as a factor effect comes with an enhanced standard deviation, the power of

each test is very low.
• If the enhanced standard deviation is not bound to an enhanced factor effect, the

alternative method shows very large power compared to ANOVA.
• If variances are homogeneous, ANOVA shows larger power than the alternative.
• Tests on homogeneity of variances show only low power. If there are doubts con-

cerning homogeneity of variances, an alternative procedure is preferable.
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