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Abstract: A Gaussian process is usually used to model the sea surface ele-

vation in the oceanography. As the depth of the water decreases or the sea
severity increases, the sea surface elevation departs from symmetry and Gaus-
sianity. In this paper, a stationary non-Gaussian random process called the

generalized hyperbolic process is used as an alternative model. The process
generates a family of processes. We derive the rate of up-crossings for this

process and the distribution of the height of the process. We also derive the

duration distribution of an excursion for the generalized hyperbolic process.

Zusammenfassung:Fur gewdhnlich wird ein Gaul3 Prozess verwendet, um

in der Meeresforschung diedHenangabe der Meeresobé&ctie zu model-
lieren. Wenn die Wassertiefe abnimmt oder der Wellengang zunimmt, dann
weicht die Fbhe von Symmetrie und Normalverteilung ab. Hier verwenden
wir als alternatives Modell einen stati@ren, nicht-Gauld Prozess, einen so
genannten generalisierten hyperbolischen Prozess. Dieser wiederum gener-
iert eine Familie von Prozessen. Wir erhalténdiesen Prozess die Rate der
Uberschreitungen und die Verteilung dedhe dieses Prozesses. Wir leiten
auch nochiir den generalisierten hyperbolischen Prozess die Verteilung der
Dauer einer Exkursion ab.
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1 Introduction

In oceanography, the sea surface elevation, at a fixed location, is modelled by a stationary
Gaussian random process. The statistical properties of the sea surface elevation are called
the sea state. These properties are very important for the reliability analysis in the ocean
engineering (Baxevani et al., 2005). Both the distribution of the maximum sea surface
elevation in a given period of time and the distribution of the time spent, above a given
level, by the sea surface elevation after an up-crossing (see Figure 1) are of great interest
in the oceanography. As the depth of the water decreases or the sea severity increases,
the sea surface elevation departs from both symmetry and Gaussianity (Baxevani et al.,
2005; Rychlik, 1993; Rychlik and Leadbetter, 2002; Cherneva et al., 2005). Under these
sea states, the Gaussian model will not capture the asymmetry in the data. Using the
Gaussian model leads to nonconservative estimates. So we should not ignore the asym-
metry when modelling the sea (Baxevani et al., 2005). In this case, we need an alternative
non-Gaussian stationary random process to model the sea surface elevation. The aim of
this paper is to use a non-Gaussian process called the generalized hyperbolic process and
to study some of its statistical properties. We derive the rate of up-crossings for this pro-
cess. We also derive approximations to both the height distribution of the process and the
duration distribution of its excursion.
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The following notation is used. We use the symtland| . | for the set of real num-
bers and for the matrix determinant, respectively. The inverse of a méatisxdenoted
by A~!. Thed-dimensional Euclidean space is denotedi¥fy We useexp(6) for expo-
nential distribution andZ ~ N(u,¢?) to mean thatZ is a normal random variable with
meanu and variance?. The density and cumulative distribution function of the standard
normal random variable akg.) and®(.), respectively.

Let Z ~ N(u,0?) andZ" = max{0, Z}. The following basic result is from Adler
(1981) and will be used later

E{Z*} =pn(1 - ®(—p/o)) +

exp(—p2/207).

V2r
2 Crossings and Duration of a Process

Let X (), t € [0, A], A > 0, be a random proces () is said to be differentiable at
in the mean square sense or simply differentiable, if there exists a random pfo@ess

such that )
hmE{X@+m_X@—Xﬁ)}:U

h—o00 h

For a differentiable random proce&y), t € [0, A], an up-crossing (down-crossing) of
the levelu occurs att, € [0, A], if X(t)) = v andX(t,) > 0 (X(ty) < 0), whereX (t)
refers to the derivative ok (¢). The length of the interval between an up-crossing and the
subsequent down-crossing is called the duration of the excursidr{®f The excursion
set of the procesX (¢) above a level: is defined to be the set of points= [0, A], where
X(t) exceeds., i.e., the seft € [0,A] : X(¢t) > u}. This set represents the extreme
events ofX (¢). According to the Poisson Clumping Heuristic (PCH), the excursion set
can be viewed as a set of disjoint independent and identically distributed clumps (Aldous,
1989). So the length of each clump is viewed as a duration. The number of such intervals
is approximated a Poisson random variable.

Let N(u, X) be the number of up-crossings @by X (¢). The mean number of the
random variabléV (u, X) is given (under certain conditions) by the Rice’s Formulae

E{N(u, X)} = A / "y x(w)dy.

where f (-, ") is the joint density ofX and X. The mean value oN(u, X) is very
important in many applications of random processes. For example, it can be used to
approximate the tail distribution efip,¢ 4 X (¢), for large values of and 4, i.e.,

Pr{ts[léa]X(t) >u} ~ E{N(u,X)}.

For more information about the use Bf N (u, X)} see Leadbetter and Spaniolo (2002)
and Rychlik (1993). IfX(¢) is a differentiable Gaussian process aad= var(X(0)),

then
AV
2T

E{N(u,X)} = exp(—u?/2).



M. T. Alodat and K. M. Aludaat 209

15

X(t)

-0.51 B

-151 b

-25 g 7
0 20 40 60 80 100 120 140

Figure 1: The excursion set of Gaussian procéss above the level = 0.52 s [t;, to] U
[ts,t4] U [ts,t6] U [t7,1s]. The arrows] and| refer to up-crossings and down-crossings,
respectively.

3 Generalized Hyperbolic Distribution

A random variabléV is said to have a generalized inverse Gaussian distribution if it has
the density function

—A A
fwidont) = SO0 oxp( (4 vw)f2), wot =0, @
whereK), () is the modified Bessel function of the third kind with index R. The GIG
distribution was introduced by Good (1953) as a model for the species distribution. Jor-
gensen (1982) studied this distribution in details. We use the notHfien N~ (), x, ¥)
to mean that the random varialilé follows a generalized inverse Gaussian distribution
with parameters, y, andy. The functionk,(x) has the following properties

(A2 '™ asx | 0,
\/gexp(—x) asx 1 oo, 2)

(@) = Kx(x). 3)

K)\<£IZ') =

and

It can be shown that

B(W°) = (K>a/2 EoralVX¥). (4)

(0 Kx(vV/xv)
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Blasild (1981) defines the multivariate generalized hyperbolic distribution as follows: A
random vecto#/ is said to have d-dimensional generalized hyperbolic distribution with
parameters, v, x, v, u, andX if it has the joint density

oy 2t (VO V= =TV = @) (6 + 475 1) ) exp((v — )5 )
\V; =C d_ ) )

(VEF V=S @)+ )
wherev, v, u € R¢, 3 is ad x d matrix, and

R R U >
()i [SE K (Vi)

Any d—dimensional generalized hyperbolic distribution has the following stochastic rep-
resentation

V=p+W+VWZ, (5)

where i, are constant vectors aridl is a GIG random variable independentbf a
multivariate normal vector with mean vectdand covariance matriX. The mean vector
of V is given by

_ X V2 K (Vxw)
E{V}‘“”(¢> (o) ©)

Consider the following partitions &f, v, u, andX::

Vi Y1 ,U1> <211 Z312)
(V2) 7 ('72) e (Mz ’ o1 Mg

Then the conditional distribution af , givenV'; = v, is multivariate generalized hyper-
bolic distribution with parameters

. L ~ _

A=A-5 b=y +m S,

X=X+ ('Ul - Hl)Tzl_f('Ul - Hl) ) i’ =72 — 71T21_112127 (7)
Bo= o+ (01— py) S 0, 3 =3 — I3 S

The one-dimensional generalized hyperbolic distribution was introduced by Barndorff-
Nielsen (1977). In the recent years, the generalized hyperbolic distributions were used by
many authors to fit the financial time series by stochastic processes (Rydberg, 1997; Bibby
and Sorensen, 1997; Raible, 2000; Schoutens, 2003; Cont and Tankov, 2004; Emmer and
Kluppelberg, 2004). For exampleSf,t = 1,2, ..., represents the sequence of prices of

a stock, then the sequence of the log retutis= log(S;) — log(Si—1),t = 1,2,...,is

well fitted by a generalized hyperbolic process.

4 Generalized Hyperbolic Process

In this section, we define a continuous version of the generalized hyperbolic process. Let
X(t), t € [0, A], be a stationary and differentiable Gaussian random process with mean
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zero and variance equal one. We define the generalized hyperbolic proee sy
Y(t)=p+yW+VIWX(t),

wherevy,u € RandW ~ N~(A,x,). It can be noted that every finite dimensional
distribution of the process (¢) is a multivariate generalized hyperbolic distribution.

It easy to see that stationarity &f(¢) implies the stationarity of (¢). If Rx (¢) is the
covariance function oK (¢), then the covariance function bf(¢) is

Ry (t) = E{Y()Y(0)},
= B{(p+ AW + VIVX () (1 + AW + VIVX (0))},
= v*var(W) + E{W}Rx(t).

The last equation implies that(t) is differentiable in the mean square sense ¥ =
VW X(t). The random variables(0) and X (0) are independent and normally dis-
tributed such that{ = X(0) ~ N(0,1) andX = X(0) ~ N(0, ;). Conditional on
W, the joint distribution of Y, Y") = (Y'(0), Y (0)) is bivariate normal with joint density
function

P 9lW = w) = — (y — & ;%E{W}) " (ﬁ}_A) |

with E{WW} given by (4). Using total probability law and the Fubini’s theorem, we get

E{N(,Y)} = A / iy (ud)dy,

A / / 3y (51 = ) fi (w)dwdy

A7 i () o () i,

o [T L (vt VB IWE v r — i fo (0 o
—af ﬁd)( 2 )E{Y W = w f (),

:A/OOO \/1#5 (u—/l\—/%E{W}> (@) fu(w)duw

_ AV XWX [ (X Y e
_ A 2KA(@)/O p< (=49 >>d ,

2
wherex* = (u — p — vE{W})? + x. Using (1), we simplify the last equation to

AV (X M2 (VXD)
e =52 (V) R

According to the PCH, the number of up-crossinggu, Y), can be approximated by
a Poisson point process with meBAN (u,Y)}. We may use the standard parametric
methods for the Poisson distribution to estimate the paramgtérsandy if realizations

of the point proces#/ (u, X) are available.
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5 Special Cases

If S'is a chi-square random variable witltdegrees of freedom, then the random variable
W = v/S has density

/271 exp(—v/2w)
L(v/2)2v/2pv/2

w

fw(w) =

w >0,

which isN~(—v/2,v,v) asy — 0. For the cas@ = v = 0, Y (¢) is a Student-random
variable withr degrees of freedom. Therefore,

E{N(u,Y)}

SR e
2m v K_, (VX))

Using (2) and (3), it is easy to show that

lim ——————= =

im R - (0%)

This leads to

E{N(u,Y)} =

—v/2
A (1) o

2 v

which is the rate of the up-crossings of the Studgmtecess given in Alodat and Aludaat
(2006). Asr — oo, the Student distribution goes to the Gaussian distribution. Note,
asv — oo, the right hand side of (8) tends to{ N (u, X)}, the expected number of
up-crossings of, by the Gaussian process(t).

6 Height Distribution of Y (¢)

The distribution of the height df (¢) above the level is defined to be the distribution of

Y (0) — u, given thatY (¢) has a local maximum of height exceedatt = 0. This can

be calculated according to Rychlik (1993). Since the expected number of up-crossings of
Y (t) approximates the expected number of local maxim#& @f, we may calculate the
height distribution ofY’(¢) according to Adler (1981, p. 158). So as— oo, the ratio
E{N(u+1y,Y)}/E{N(u,Y)} tends tol — G(y), whereG(y) is the height distribution

of the proces¥’(¢). Using (2) and taking the limit ag — oo, we get

1= Gly) = lim exp (—v/((wty— p— BV + )0
+/((w=p =BV +)0)
- exp(—\/t_by), Y, >0.
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7 Approximating the Duration Distribution

In this section, we suggest an approximation to the duration distributidn(©f To do
this we propose the following steps:

1. ApproximateY (t) near its local maximum at= 0 by Y (t) = Y (0)+Y (0)t+1V?,
the Taylor polynomial of degree 2.

2. Replace the random variabieby E{Y|Y = u,Y = 0}.

3. The difference between the two real roots of the equatiea Y (t) represents an
approximation to the duration of (¢).

4. Find the distribution of the random variable in step 3.

We go over this step by step:

Step 1. SinceY (t) has a local maximum at= 0, the Taylor polynomial of degree 2 is
reduced td’ () = Y (0) + 1V,

Step 2. Note thatY'(t) = VW X(t) andY(t) = VWX (t). Using (5), we see that
the joint distribution oft” = (Y,Y,Y) = (Y(0), Y (0), Y (0)) is multivariate generalized
hyperbolic distribution with parameteks v, x

Y " - 10—
=10, p=10], T=cov(X,; X, X)=[ 0 X O ,
0 0 X 0N

where); = var(X). The conditional distribution of’, givenY = » andY = 0, is uni-
variate generalized hyperbolic distribution with parameters computed from the equations
(??)-(??) as follows

Y1 = <g) 772:07/“"1: (g) 7’""’2:07211: <O )\2> 7212:( 02> 7222:)\2‘

This givesh = A — 1,0 =9 +19% ¥ = x + (u— )% 7 = Y\g, ji = —Xo(u — ), and
3 = \* — \3. Using (6) we get

~\ 1/2 KS\H ~Q/~)
E{V|Y =u,V =0} = i+7 (i) / <( X)>
K5 | Vxv
e (Ve )
0477 Ko (VT O =)

Using (2), we get

; . o 1
BVY =,V =0} ~ —dg(u—p) |17

Vo

= —)\<’U, - M)h<77 2/)7 m, 7, U) ) say,
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Figure 2: Empirical distributions for large simulated samples from the two distributions
of S; exact (smooth) and approximate (steps).

for largew. If we seth = h(v,1, 1,7, u), thenY (t) = Y(0) — SXo(u — p)ht?.
Step 3. The roots of the last equation are= F/2(Y — u)/A(u — p)h. The random

variableS = 2,/2(Y — u)/A(u — u)h approximates the duration &f(¢) above the level
u. Section 6 provides the distribution of the random varidble v which isexp(1/v/%).
So the density function of is given by

fs(s) = i)\\/@h(u — [t)S exp (—é)\\/@_bh(u — ,u)252> : for s>0, (9)

andfs(s) = 0fors < 0.

8 Simulation of Y (¢)

To simulate from the generalized hyperbolic procEss) we follow the following steps
1. Simulate a generalized inverse Gaussian variéble
2. Simulate a Gaussian procekst).
3. RealizeY (t) asY (t) = p + W + VWX (t).

Atkinson (1982) gives an algorithm to simulate from a generalized inverse Gaussian dis-
tribution. We follow the above algorithm to simulate a large sample from the exact du-
ration distribution of the generalized hyperbolic process for the pase0, v = 0 and

W ~ exp(1). We also simulated a large sample from the density (9). The two samples
are described by their empirical distribution functions in Figure 2. It can be noted that the
maximum difference between the two empirical distribution functions is very small for
large values ofi, which means that the approximation is good.

9 Conclusions

In this paper, we used a non-Gaussian process called the generalized hyperbolic process.
This process generates a family of random processes. As limit processes, the Gaussian
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and the Student processes are members of this family. This makes the generalized hy-
perbolic process a flexible model in many practical problems. We derived a closed form
approximation to the duration distribution its excursion. Simulation shows that the ap-
proximation works well.
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