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Abstract: A Gaussian process is usually used to model the sea surface ele-
vation in the oceanography. As the depth of the water decreases or the sea
severity increases, the sea surface elevation departs from symmetry and Gaus-
sianity. In this paper, a stationary non-Gaussian random process called the
generalized hyperbolic process is used as an alternative model. The process
generates a family of processes. We derive the rate of up-crossings for this
process and the distribution of the height of the process. We also derive the
duration distribution of an excursion for the generalized hyperbolic process.

Zusammenfassung:Für geẅohnlich wird ein Gauß Prozess verwendet, um
in der Meeresforschung die Höhenangabe der Meeresoberfläche zu model-
lieren. Wenn die Wassertiefe abnimmt oder der Wellengang zunimmt, dann
weicht die Ḧohe von Symmetrie und Normalverteilung ab. Hier verwenden
wir als alternatives Modell einen stationären, nicht-Gauß Prozess, einen so
genannten generalisierten hyperbolischen Prozess. Dieser wiederum gener-
iert eine Familie von Prozessen. Wir erhalten für diesen Prozess die Rate der
Überschreitungen und die Verteilung der Höhe dieses Prozesses. Wir leiten
auch noch f̈ur den generalisierten hyperbolischen Prozess die Verteilung der
Dauer einer Exkursion ab.
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1 Introduction

In oceanography, the sea surface elevation, at a fixed location, is modelled by a stationary
Gaussian random process. The statistical properties of the sea surface elevation are called
the sea state. These properties are very important for the reliability analysis in the ocean
engineering (Baxevani et al., 2005). Both the distribution of the maximum sea surface
elevation in a given period of time and the distribution of the time spent, above a given
level, by the sea surface elevation after an up-crossing (see Figure 1) are of great interest
in the oceanography. As the depth of the water decreases or the sea severity increases,
the sea surface elevation departs from both symmetry and Gaussianity (Baxevani et al.,
2005; Rychlik, 1993; Rychlik and Leadbetter, 2002; Cherneva et al., 2005). Under these
sea states, the Gaussian model will not capture the asymmetry in the data. Using the
Gaussian model leads to nonconservative estimates. So we should not ignore the asym-
metry when modelling the sea (Baxevani et al., 2005). In this case, we need an alternative
non-Gaussian stationary random process to model the sea surface elevation. The aim of
this paper is to use a non-Gaussian process called the generalized hyperbolic process and
to study some of its statistical properties. We derive the rate of up-crossings for this pro-
cess. We also derive approximations to both the height distribution of the process and the
duration distribution of its excursion.
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The following notation is used. We use the symbolsR and| . | for the set of real num-
bers and for the matrix determinant, respectively. The inverse of a matrixA is denoted
by A−1. Thed-dimensional Euclidean space is denoted byRd. We useexp(θ) for expo-
nential distribution andZ ∼ N(µ, σ2) to mean thatZ is a normal random variable with
meanµ and varianceσ2. The density and cumulative distribution function of the standard
normal random variable areφ(.) andΦ(.), respectively.

Let Z ∼ N(µ, σ2) andZ+ = max{0, Z}. The following basic result is from Adler
(1981) and will be used later

E{Z+} = µ (1− Φ(−µ/σ)) +
σ√
2π

exp(−µ2/2σ2) .

2 Crossings and Duration of a Process

Let X(t), t ∈ [0, A], A > 0, be a random process.X(t) is said to be differentiable att
in the mean square sense or simply differentiable, if there exists a random processẊ(t)
such that

lim
h→∞

E

{∣∣∣∣
X(t + h)−X(t)

h
− Ẋ(t)

∣∣∣∣
2
}

= 0 .

For a differentiable random processX(t), t ∈ [0, A], an up-crossing (down-crossing) of
the levelu occurs att0 ∈ [0, A], if X(t0) = u andẊ(t0) > 0 (Ẋ(t0) < 0), whereẊ(t)
refers to the derivative ofX(t). The length of the interval between an up-crossing and the
subsequent down-crossing is called the duration of the excursion ofX(t). The excursion
set of the processX(t) above a levelu is defined to be the set of pointst ∈ [0, A], where
X(t) exceedsu, i.e., the set{t ∈ [0, A] : X(t) ≥ u}. This set represents the extreme
events ofX(t). According to the Poisson Clumping Heuristic (PCH), the excursion set
can be viewed as a set of disjoint independent and identically distributed clumps (Aldous,
1989). So the length of each clump is viewed as a duration. The number of such intervals
is approximated a Poisson random variable.

Let N(u,X) be the number of up-crossings ofu by X(t). The mean number of the
random variableN(u,X) is given (under certain conditions) by the Rice’s Formulae

E{N(u,X)} = A

∫ ∞

0

yfX,Ẋ(u, y)dy ,

wherefX,Ẋ(·, ·) is the joint density ofX and Ẋ. The mean value ofN(u,X) is very
important in many applications of random processes. For example, it can be used to
approximate the tail distribution ofsupt∈[0,A] X(t), for large values ofu andA, i.e.,

Pr{ sup
t∈[0,A]

X(t) ≥ u} ≈ E{N(u,X)} .

For more information about the use ofE{N(u,X)} see Leadbetter and Spaniolo (2002)
and Rychlik (1993). IfX(t) is a differentiable Gaussian process andλ2 = var(Ẋ(0)),
then

E{N(u,X)} =
A
√

λ2

2π
exp(−u2/2) .
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Figure 1: The excursion set of Gaussian processX(t) above the levelu = 0.52 is [t1, t2]∪
[t3, t4] ∪ [t5, t6] ∪ [t7, t8]. The arrows↑ and↓ refer to up-crossings and down-crossings,
respectively.

3 Generalized Hyperbolic Distribution

A random variableW is said to have a generalized inverse Gaussian distribution if it has
the density function

fW (w; λ, χ, ψ) =
χ−λ(

√
χψ)λ

2Kλ(
√

χψ)
wλ−1 exp(−(χw−1 + ψw)/2) , w, χ, ψ > 0 , (1)

whereKλ(·) is the modified Bessel function of the third kind with indexλ ∈ R. The GIG
distribution was introduced by Good (1953) as a model for the species distribution. Jor-
gensen (1982) studied this distribution in details. We use the notationW ∼ N−(λ, χ, ψ)
to mean that the random variableW follows a generalized inverse Gaussian distribution
with parametersλ, χ, andψ. The functionKλ(x) has the following properties

Kλ(x) =





Γ(λ)2λ−1x−λ asx ↓ 0,√
π

2x
exp(−x) asx ↑ ∞,

(2)

and
Kλ(x) = K−λ(x) . (3)

It can be shown that

E{W α} =

(
χ

ψ

)α/2
Kλ+α(

√
χψ)

Kλ(
√

χψ)
. (4)
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Blasild (1981) defines the multivariate generalized hyperbolic distribution as follows: A
random vectorV is said to have ad-dimensional generalized hyperbolic distribution with
parametersλ, ψ, χ, γ, µ, andΣ if it has the joint density

fV(v) = c
Kλ− d

2

(√
(χ + (v− µ)TΣ−1(v− µ))(ψ + γTΣ−1γ)

)
exp((v− µ)TΣ−1γ)

(√
(ψ + (v− µ)TΣ−1(v− µ))(ψ + γTΣ−1γ)

) d
2
−λ

,

wherev,γ,µ ∈ Rd, Σ is ad× d matrix, and

c =
(
√

χψ)−λψλ(ψ + γTΣ−1γ)
d
2
−λ

(2π)
d
2 |Σ| 12 Kλ(

√
χψ)

.

Any d−dimensional generalized hyperbolic distribution has the following stochastic rep-
resentation

V = µ + γW +
√

WZ , (5)

whereµ, γ are constant vectors andW is a GIG random variable independent ofZ, a
multivariate normal vector with mean vector0 and covariance matrixΣ. The mean vector
of V is given by

E{V} = µ + γ

(
χ

ψ

)1/2
Kλ+1(

√
χψ)

Kλ(
√

χψ)
. (6)

Consider the following partitions ofV,γ,µ, andΣ:

V =

(
V 1

V 2

)
, γ =

(
γ1

γ2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then the conditional distribution ofV 2 givenV 1 = v1 is multivariate generalized hyper-
bolic distribution with parameters

λ̃ = λ− k1

2
, ψ̃ = ψ + γ1

TΣ−1
11 γ1 ,

χ̃ = χ + (v1 − µ1)
TΣ−1

11 (v1 − µ1) , γ̃ = γ2 − γT
1 Σ−1

11 Σ12 , (7)

µ̃ = µ2 + (v1 − µ1)
TΣ−1

11 Σ12 , Σ̃ = Σ22 −Σ21Σ
−1
11 Σ12 .

The one-dimensional generalized hyperbolic distribution was introduced by Barndorff-
Nielsen (1977). In the recent years, the generalized hyperbolic distributions were used by
many authors to fit the financial time series by stochastic processes (Rydberg, 1997; Bibby
and Sorensen, 1997; Raible, 2000; Schoutens, 2003; Cont and Tankov, 2004; Emmer and
Kl üppelberg, 2004). For example, ifSt, t = 1, 2, . . . , represents the sequence of prices of
a stock, then the sequence of the log returns,Xt = log(St) − log(St−1), t = 1, 2, . . . , is
well fitted by a generalized hyperbolic process.

4 Generalized Hyperbolic Process

In this section, we define a continuous version of the generalized hyperbolic process. Let
X(t), t ∈ [0, A], be a stationary and differentiable Gaussian random process with mean
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zero and variance equal one. We define the generalized hyperbolic processY (t) by

Y (t) = µ + γW +
√

WX(t) ,

whereγ, µ ∈ R andW ∼ N−(λ, χ, ψ). It can be noted that every finite dimensional
distribution of the processY (t) is a multivariate generalized hyperbolic distribution.

It easy to see that stationarity ofX(t) implies the stationarity ofY (t). If RX(t) is the
covariance function ofX(t), then the covariance function ofY (t) is

RY (t) = E{Y (t)Y (0)} ,

= E{(µ + γW +
√

WX(t))(µ + γW +
√

WX(0))} ,

= γ2var(W ) + E{W}RX(t) .

The last equation implies thatY (t) is differentiable in the mean square sense andẎ (t) =√
WẊ(t). The random variablesX(0) and ˙X(0) are independent and normally dis-

tributed such thatX = X(0) ∼ N(0, 1) andẊ = Ẋ(0) ∼ N(0, λ2). Conditional on
W , the joint distribution of(Y, Ẏ ) = (Y (0), Ẏ (0)) is bivariate normal with joint density
function

fY,Ẏ (y, ẏ|W = w) =
1

w
√

λ2

φ

(
y − µ− γE{W}√

w

)
φ

(
ẏ√
wλ2

)
,

with E{W} given by (4). Using total probability law and the Fubini’s theorem, we get

E{N(u, Y )} = A

∫ ∞

0

ẏfY,Ẏ (u, ẏ)dẏ ,

= A

∫ ∞

0

∫ ∞

0

ẏfY,Ẏ (u, ẏ|W = w)fW (w)dwdẏ ,

= A

∫ ∞

0

∫ ∞

0

ẏ

w
√

λ2

φ

(
u− µ− γE{W}√

w

)
φ

(
ẏ√
wλ2

)
fW (w)dẏdw ,

= A

∫ ∞

0

1√
w

φ

(
u− µ− γE{W}√

w

)
E{Ẏ +|W = w}fW (w)dw ,

= A

∫ ∞

0

1√
w

φ

(
u− µ− γE{W}√

w

) (√
wλ2

2π

)
fW (w)dw ,

=
A
√

λ2

2π

χ−λ(
√

χψ)λ

2Kλ(
√

χψ)

∫ ∞

0

wλ−1 exp

(
−1

2
(
χ∗

w
+ ψw)

)
dw ,

whereχ∗ = (u− µ− γE{W})2 + χ. Using (1), we simplify the last equation to

E{N(u, Y )} =
A
√

λ2

2π

(
χ∗

χ

)λ/2
Kλ(

√
χ∗ψ)

Kλ(
√

χψ)
.

According to the PCH, the number of up-crossings,N(u, Y ), can be approximated by
a Poisson point process with meanE{N(u, Y )}. We may use the standard parametric
methods for the Poisson distribution to estimate the parametersλ, ψ, andχ if realizations
of the point processN(u, X) are available.
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5 Special Cases

If S is a chi-square random variable withν degrees of freedom, then the random variable
W = ν/S has density

fW (w) =
w−ν/2−1 exp(−ν/2w)

Γ(ν/2)2ν/2νν/2
, w > 0 ,

which isN−(−ν/2, ν, ψ) asψ → 0. For the caseµ = γ = 0, Y (t) is a Student-t random
variable withν degrees of freedom. Therefore,

E{N(u, Y )} =
A
√

λ2

2π

(
u2 + ν

ν

)−ν/4 K−ν/2(
√

χ∗ψ)

K−ν/2(
√

χψ)
.

Using (2) and (3), it is easy to show that

lim
ψ→0

K−ν/2(
√

χ∗ψ)

K−ν/2(
√

χψ)
=

(
1 +

u2

ν

)−ν/4

.

This leads to

E{N(u, Y )} =
A
√

λ2

2π

(
1 +

u2

ν

)−ν/2

, (8)

which is the rate of the up-crossings of the Student-t process given in Alodat and Aludaat
(2006). Asν → ∞, the Student distribution goes to the Gaussian distribution. Note,
as ν → ∞, the right hand side of (8) tends toE{N(u, X)}, the expected number of
up-crossings ofu by the Gaussian processX(t).

6 Height Distribution of Y (t)

The distribution of the height ofY (t) above the levelu is defined to be the distribution of
Y (0) − u, given thatY (t) has a local maximum of height exceedsu at t = 0. This can
be calculated according to Rychlik (1993). Since the expected number of up-crossings of
Y (t) approximates the expected number of local maxima ofY (t), we may calculate the
height distribution ofY (t) according to Adler (1981, p. 158). So asu → ∞, the ratio
E{N(u + y, Y )}/E{N(u, Y )} tends to1 − G(y), whereG(y) is the height distribution
of the processY (t). Using (2) and taking the limit asu →∞, we get

1−G(y) = lim
u→∞

exp
(
−

√
((u + y − µ− γE{W})2 + χ)ψ

+
√

((u− µ− γE{W})2 + χ)ψ
)

= exp(−
√

ψy) , y, ψ > 0 .
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7 Approximating the Duration Distribution

In this section, we suggest an approximation to the duration distribution ofY (t). To do
this we propose the following steps:

1. ApproximateY (t) near its local maximum att = 0 by Ỹ (t) = Y (0)+Ẏ (0)t+ 1
2
Ÿ t2,

the Taylor polynomial of degree 2.

2. Replace the random variablëY by E{Ÿ |Y = u, Ẏ = 0}.
3. The difference between the two real roots of the equationu = Ỹ (t) represents an

approximation to the duration ofY (t).

4. Find the distribution of the random variable in step 3.

We go over this step by step:
Step 1. SinceY (t) has a local maximum att = 0, the Taylor polynomial of degree 2 is
reduced tõY (t) = Y (0) + 1

2
Ÿ t2.

Step 2. Note thatẎ (t) =
√

WẊ(t) and Ÿ (t) =
√

WẌ(t). Using (5), we see that
the joint distribution ofV = (Y, Ẏ , Ÿ ) = (Y (0), Ẏ (0), Ÿ (0)) is multivariate generalized
hyperbolic distribution with parametersλ, ψ, χ

γ∗ =




γ
0
0


 , µ =




µ
0
0


 , Σ = cov(X, Ẋ, Ẍ) =




1 0 −λ2

0 λ2 0
−λ2 0 λ∗2


 ,

whereλ∗2 = var(Ẍ). The conditional distribution of̈Y , givenY = u andẎ = 0, is uni-
variate generalized hyperbolic distribution with parameters computed from the equations
(??)-(??) as follows

γ1 =

(
γ
0

)
,γ2 = 0 ,µ1 =

(
µ
0

)
,µ2 = 0 ,Σ11 =

(
1 0
0 λ2

)
,Σ12 =

(−λ2

0

)
,Σ22 = λ∗2 .

This givesλ̃ = λ − 1, ψ̃ = ψ + γ2, χ̃ = χ + (u − µ)2, γ̃ = γλ2, µ̃ = −λ2(u − µ), and
Σ̃ = λ∗ − λ2

2. Using (6) we get

E{Ÿ |Y =u, Ẏ =0} = µ̃ + γ̃

(
χ̃

ψ̃

)1/2 Kλ̃+1

(√
χ̃ψ̃

)

Kλ̃

(√
χ̃ψ̃

)

= −λ2(u−µ)+γλ2

√
χ+(u−µ)2

√
ψ+γ2

Kλ

(√
(ψ+γ2)(χ+(u−µ)2)

)

Kλ−1

(√
(ψ+γ2)(χ+(u−µ)2)

) .

Using (2), we get

E{Ÿ |Y = u, Ẏ = 0} ≈ −λ2(u− µ)


1− γ

√
χ

(u−µ)2
+ 1

√
ψ + γ2




= −λ(u− µ)h(γ, ψ, µ, γ, u) , say,
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Figure 2: Empirical distributions for large simulated samples from the two distributions
of S; exact (smooth) and approximate (steps).

for largeu. If we seth = h(γ, ψ, µ, γ, u), thenỸ (t) = Y (0)− 1
2
λ2(u− µ)ht2.

Step 3. The roots of the last equation aret = ∓
√

2(Y − u)/λ(u− µ)h. The random
variableS = 2

√
2(Y − u)/λ(u− µ)h approximates the duration ofY (t) above the level

u. Section 6 provides the distribution of the random variableY − u which isexp(1/
√

ψ).
So the density function ofS is given by

fS(s) =
1

4
λ
√

ψh(u− µ)s exp

(
−1

8
λ
√

ψh(u− µ)2s2

)
, for s > 0 , (9)

andfS(s) = 0 for s < 0.

8 Simulation of Y (t)

To simulate from the generalized hyperbolic processY (t) we follow the following steps

1. Simulate a generalized inverse Gaussian variableW .

2. Simulate a Gaussian processX(t).

3. RealizeY (t) asY (t) = µ + γW +
√

WX(t).

Atkinson (1982) gives an algorithm to simulate from a generalized inverse Gaussian dis-
tribution. We follow the above algorithm to simulate a large sample from the exact du-
ration distribution of the generalized hyperbolic process for the caseµ = 0, γ = 0 and
W ∼ exp(1). We also simulated a large sample from the density (9). The two samples
are described by their empirical distribution functions in Figure 2. It can be noted that the
maximum difference between the two empirical distribution functions is very small for
large values ofu, which means that the approximation is good.

9 Conclusions

In this paper, we used a non-Gaussian process called the generalized hyperbolic process.
This process generates a family of random processes. As limit processes, the Gaussian
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and the Student processes are members of this family. This makes the generalized hy-
perbolic process a flexible model in many practical problems. We derived a closed form
approximation to the duration distribution its excursion. Simulation shows that the ap-
proximation works well.
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Raible, S. (2000). Lévy Processes in Finance: Theory, Numerics and Empiri-
cal Facts. Unpublished doctoral dissertation, Mathematische Fakultat, Albert-
Ludwigs-Universitat Freiburg im Breisgau.

Rychlik, I. (1993). On the narrow-band approximation for expected fatigue damage.
Probabilistic Engineering Mechanics, 8, 1-4.

Rychlik, I., and Leadbetter, M. R. (2002). Analysis of ocean waves by crossings and
osciallation intensities.International Journal of Offshore and Polar Engineering,
10, 282-289.

Rydberg, T. H. (1997). The normal inverse Gaussian Lévy process: Simulation and
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