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Abstract: This article summarizes the ideas behind a few programs we devel-
oped for spatial data analysis in EViews and MATLAB. They allow the user
to check for spatial autocorrelation using Moran’s I and provide a spatial fil-
tering procedure based on the Gi statistic by Getis and Ord (1992). We have
also implemented graphical tools like Moran Scatterplots for the detection of
outliers or local spatial clusters.

Zusammenfassung: Dieser Artikel beschreibt einige Programme, die wir
zur Analyse räumlicher Daten in EViews und MATLAB entwickelt habe.
Sie erlauben dem Anwender eine Überprüfung auf räumliche Autokorrela-
tion mittels Moran’s I und ermöglichen ein räumliches Filterungsverfahren
basierend auf der Gi Statistik von Getis and Ord (1992). Außerdem haben wir
grafische Werkzeuge (z.B. Morans Streudiagramme) zur Analyse auf Aus-
reisser und zum Auffinden lokaler räumlicher Zusammenschlüsse implemen-
tiert.
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1 Introduction

In recent years spatial econometric methods gained in popularity. Nevertheless, the widely
used econometric software package EViews1 does not contain functions for spatial data
analysis. Therefore, we have developed a few scripts which can be started by a short entry
in the command line. For users of the spatial econometrics toolbox by James P. LeSage2

the MATLAB3 version of the functions is an appropriate extension.
The programs calculate the global and local Moran’s I statistic for spatial autocorre-

lation and its moments using the normal approximation and the more accurate saddlepoint
approximation by Tiefelsdorf (2002). It is possible to check the data with graphical tools
like Moran Scatterplots for outliers or local spatial clusters. Finally, we have implemented
a filtering procedure based on the Gi statistic, which is another measure for local spatial
dependence. So the user has an uncomplicated possibility to handle the presence of spa-
tial autocorrelation in the data. For further details about the programs and the theoretical
background see Ferstl (2004).

1http://www.eviews.com/
2http://www.spatial-econometrics.com/
3http://www.mathworks.com/
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2 Spatial Structures

2.1 Global Spatial Structures
The analysis of spatial data begins with a feasible measure to represent the inherent spatial
dependence. The elements of a symmetric n×n spatial distance matrix D are defined by

dij =

{√
(θi − θj)2 + (ωi − ωj)2 , i 6= j ,

0 , i = j ,

where (θ, ω) are the cartesian coordinates. In contrast to such a matrix, which measures
dissimilarities, it is possible to use a spatial weight matrix to describe the similarities
between the i-th and j-th spatial object.

There are several methods to transform a distance matrix to a global spatial weight
matrix G. We implemented the widely used negative exponential function to model the
distance decay function (see e.g. Badinger et al., 2004). Therefore, the geographical
distances are transformed to spatial weights by

gij =

{
exp(−δdij) > 0 if objects i and j are spatially connected,
0 otherwise,

with 0 < δ < ∞.

2.2 Coding Schemes for Spatial Weight Matrices
The programs provide three common coding schemes for standardization of the spatial
weight matrix G. Tiefelsdorf (2000) defines the linkage degree of the i-th spatial object
by di =

∑n
j=1 gij . Therefore, the overall connectivity in G is D ≡ ∑n

i=1

∑n
j=1 gij .

The globally standardized C-coding scheme is defined as

C ≡ n

D
G .

In the row-sum standardized W -coding scheme the spatial weight matrix is transformed
by

W ≡ [diag(d)]−1 G ,

where d is a vector with the row-sums of G. In the variance stabilizing S-coding scheme
Tiefelsdorf (2000) defines the vector q by

q ≡



√√√√
n∑

j=1

g2
1j ,

√√√√
n∑

j=1

g2
2j , . . . ,

√√√√
n∑

j=1

g2
nj



>

.

As in the row-sum standardization the spatial weight matrix is transformed by S∗ ≡
[diag(q)]−1 G. Finally, it is scaled by

S ≡ n

Q
S∗ ,

where Q ≡ ∑n
i=1

∑n
j=1 s∗ij .

Following the notation of Tiefelsdorf (2000), we use V as a placeholder for a spatial
weight matrix which has been transformed by one of the three mentioned coding schemes.
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2.3 Local Spatial Structures
The local spatial weight matrix for the i-th spatial object consists of a copy of the i-th row
and column of the global spatial weight matrix and zeros elsewhere. This definition leads
to the following star-shaped form for the standardized local spatial weight matrices

Vi ≡ si ·




0 · · · 0 g1i 0 · · · 0
... . . . ...

...
... . . . ...

0 · · · 0 gi−1,i 0 · · · 0
gi1 · · · gi,i−1 0 gi,i+1 · · · gin

0 · · · 0 gi+1,i 0 · · · 0
... . . . ...

...
... . . . ...

0 · · · 0 gni 0 · · · 0




.

The scaling coefficient si depends on the applied coding scheme (see Tiefelsdorf, 2000,
p. 35)

si =





n2/2D , for the C-coding scheme,
n/2di , for the W-coding scheme,

n2/2Qqi , for the S-coding scheme.
The sum over all local spatial weight matrices equals the global spatial weight matrix, i.e.

n∑
i=1

Vi =
1

2

(
V + V >)

. (1)

3 Spatial Autocorrelation

3.1 Global Moran’s I
Having the spatial structure summarized in a spatial weight matrix, it is possible to define
a measure for the spatial autocorrelation. The most prominent one is a statistic developed
by Moran (1948), which is called Moran’s I in the literature. According to Tiefelsdorf
(2002) it is defined as follows.

Let y be a system of n spatially distributed observations that are related to a set of k
exogenous variables via a linear regression model y = Xβ + ε. The n× k design matrix
includes the usual constant vector. The disturbances are distributed as ε ∼ N (0, σ2Ω).
The n × n matrix Ω reflects the covariance structure and σ2 the variance of the distur-
bances. For independent disturbances the covariance structure is σ2I . The OLS regres-
sion residuals ε̂ = My are distributed as ε̂ ∼ N (0, σ2MΩM) using the projection
matrix M ≡ I − X(X>X)−1X>. For an underlying autoregressive spatial process
Ω ≡ (I − ρV )−1(I − ρV T )−1, where ρ is the spatial autocorrelation coefficient.

Global Moran’s I is defined as a scale invariant ratio of quadratic forms in the nor-
mally distributed vector of regression residuals ε̂

I =
ε̂> 1

2

(
V + V >)

ε̂

ε̂>ε̂
. (2)

The multiplication with
(
V + V >)

/2 in the numerator ensures symmetry of the stan-
dardized spatial weight matrix.
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3.2 Local Moran’s I
Frequently the spatial dependencies are not the same for the whole dataset. Therefore,
it is advisable to calculate a local test statistic. Local Moran’s Ii is defined by using the
local spatial weight matrix introduced in Section (2.3), i.e.

Ii =
ε̂>Viε̂

ε̂>ε̂
.

Due to the additivity property in (1) the global Moran’s I can be expressed as sum over
all local Moran’s Ii.

3.3 Moments of Moran’s I
The moments of the global and local Moran’s I statistic are calculated under the assump-
tion of spatial independence. The moments of I can be expressed in terms of the rese-
quenced spectrum of eigenvalues {λ1, . . . , λn−k, 0, . . . , 0} of K ≡ M (V + V >)M/2
(see Tiefelsdorf, 2000, chapter 9).

Expected value E[I] = µ1, variance var[I] = µ2, skewness µ3/(µ2)
3/2 and kurtosis

µ4/(µ2)
2 of Moran’s I are given by

µ1 ≡
∑n−k

i=1 λi

n− k
= λ

µ2 ≡ 2
∑n−k

i=1 (λi − λ)2

(n− k)(n− k + 2)

µ3 ≡ 8
∑n−k

i=1 (λi − λ)3

(n− k)(n− k + 2)(n− k + 4)

µ4 ≡
48

∑n−k
i=1 (λi − λ)4 + 12

(∑n−k
i=1 (λi − λ)2

)2

(n− k)(n− k + 2)(n− k + 4)(n− k + 6)
.

3.4 Distribution of Moran’s I
The z-transformed observed Moran’s Io is asymptotically normal distributed, i.e.

z(Io) =
Io − E[I]√

var[I]
≈ N (0, 1) .

Tiefelsdorf (2000) was the first who published the exact reference distribution of Moran’s
I. Its evaluation is complicated and computationally expensive. He proposed a saddle-
point approximation which is fast and accurate. Our software implementation yields the
same results as the SPSS macro on the authors homepage4. For the mathematical back-
ground of the saddlepoint approximation see e.g. Tiefelsdorf (2002) or Ferstl (2004).

4http://geog-www.sbs.ohio-state.edu/faculty/tiefelsdorf/GeoStat.htm
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4 Moran Scatterplots

Anselin (1996) describes the Moran scatterplot as a tool for exploratory spatial data anal-
ysis (ESDA). Using the definition of global Moran’s I in (2), it is possible to interpret I
as the coefficient in a regression of the spatially lagged variable (V + V >)ε̂/2 on ε̂. In
other words, the slope of the regression line equals global Moran’s I.

Moran scatterplots can be used to find local patterns of spatial association. They
also provide an easy way to detect outliers. Additionally, our programs plot a smoothed
curve through the datapoints (instead of the regression line), and line diagrams of the
studentized residuals and the Cook’s distances. It is also possible to generate a so called
Moran scatterplot matrix, which helps to visualize spatial interactions between two or
more variables (see Anselin et al., 2002)

5 Spatial filtering

After having successfully detected spatial autocorrelation in the data, the question is how
to handle it. The simplest alternative is to spatially filter the data, and estimate the model
with the usual OLS procedure.

5.1 The Gi Statistic

A spatial filter is based on a local statistic of spatial dependence. Contrary to the version
developed by Getis and Ord (1992), we use a non-binary weight matrix like in Section
(2.1). This extension was introduced by Getis and Ord (1995) and was recently used in
Badinger et al. (2004)

Gi(δ) =

∑n
j=1 vij(δ)xj∑n

j=1 xj

, j 6= i .

The vij terms are the elements of a standardized weight matrix V . The xj represent
observations of a random variable Xj . The expected value of the Gi statistic is given by

E[Gi] =
Vi

(n− 1)
, (3)

with Vi =
∑

j 6=i vij(δ). The variance is

var[Gi] =
Vi(n− 1− Vi)

(n− 1)2(n− 2)

Yi2

Y 2
i1

,

where
∑n

j=1 xj/(n− 1) = Yi1 and
∑n

j=1 x2
j/(n− 1)− Y 2

i1 = Yi2.
The distribution of the z-standardized statistic z(Gi) is like Moran’s I asymptotically

N (0, 1). The G∗i statistic differs from the Gi statistic by including the value of xi if i = j.
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5.2 The Filtering Process
The expected value in (3) represents the realized value in the i-th region when no autocor-
relation occurs. Dividing it by the Gi statistic results in a ratio that represents the spatially
uncorrelated part of the data, i.e. the filtered variable X∗

x∗i =
xi (Vi/(n− 1))

Gi(δ)
.

Purely the spatial effects are stored in a new variable L = X − X∗. The goal is
to minimize the remaining spatial autocorrelation in the filtered variable by varying the
distance decay parameter δ. That leads to the optimization of the objective function

δopt = min
δ
|zI(X∗)| , 0 < δ < ∞ . (4)

6 Programs
Table 1 shows a list of available program files for EViews and MATLAB. Detailed de-
scriptions of the syntax are included as comments. Demos of the functions can be found
in the example files mentioned in Table 2.

Table 1: Programs

EViews MATLAB Description
subroutines functions
moransad.prg moransad.m Global and local Moran’s I

(including saddlepoint approximation)
moranplot.prg moranplot.m Moran scatterplot (with outlier detection)

moranplotmatrix.m Moran scatterplot matrix
opt delta.prg optimum delta for weights matrix
distance2weight.prg distance2weight.m convert distance matrix to weight matrix
getis.prg getis.m spatial filtering with Getis statistic
optim.prg objfct.m one-dimensional optimization

Table 2: Examples

EViews MATLAB Description
subroutines functions
ex_a.prg ex_a.m Example A: calculate Moran’s I
ex_b.prg ex_b.m Example B: Moran scatterplot for one variable
ex_c.prg ex_c.m Example C: Moran scatterplot for one variable (with outliers)
ex_d.prg ex_d.m Example D: Moran scatterplot matrix for two variables
ex_e.prg ex_e.m Example E: calculate optimum δ for spatial filtering
ex_f.prg ex_f.m Example F: spatial filtering with a given δ
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7 Practical Example
The following examples are taken from Ferstl (2004). The analyzed series represents the
gross value added per capita in million ECU in 1975 based on price and exchange rate
levels from 1990. The i = 1, . . . , 194 spatial objects are NUTS 2 regions of the EU-15
countries. Table 3 shows the result of a test for global spatial autocorrelation. To perform
the calculations in EViews these commands must be entered in the command line.

’ Open d a t a s e t :
open Data \ eu . wf1

’ C a l c u l a t e g l o b a l and l o c a l Moran ’ s I :
run moransad s e r 0 1 c o n s t u w g l j

Table 3: Global Moran’s I with normal and saddlepoint approximation

Results using normal approximation
0.6185 Global Moran’s I

–0.0052 Expected Value
0.0006 Variance
0.4355 Skewness
3.3800 Kurtosis
1.0000 Probability (I ≤ Io)

25.7052 z(Io)
Results using saddlepoint approximation
1.2877 Saddlepoint

13.0177 r-parameter for distribution
68.1026 u-parameter for distribution
1.0000 Probability (I ≤ Io)

The analyzed variable shows a highly positive and significant spatial autocorrelation.
Taking a look at a Moran scatterplot yields the same conclusion. Figure 1 also includes
measures to identify influential observations. The following code constructs a Moran
scatterplot in EViews.

’ Moran s c a t t e r p l o t :
run m o r a n p l o t s e r 0 1 w

The Moran scatterplot in Figure 1 shows a cluster of small values in the third quadrant.
Alternatively, this local spatial dependence can be visualized by a choroplethe map of the
G∗i statistics, see Figure 2. There occur negative significant values in the region around
Portugal.

The spatial filtering program finds a δopt at 138.1611. Figure 3 shows a plot of the
objective function. Using the optimum δ parameter the spatial autocorrelation is success-
fully removed from the variable. The following commands are necessary to do this in
EViews.
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Figure 1: Moran Scatterplot with statistics for outlier detection

’ S p a t i a l f i l t e r i n g :
run o p t d e l t a s e r 0 1 d s t 70 80 100 0 .00001 100

8 Conclusions
In this paper we shortly demonstrate a collection of programs we have developed for spa-
tial data analysis in Ferstl (2004). The idea was to offer users of the widespread economet-
ric software package EViews simple functions to analyze data for spatial dependencies.
We have implemented functions to calculate Moran’s I and its central moments using the
normal and the saddlepoint approximation. Influential observations and spatial clusters
can be visualized by Moran scatterplots. One way to deal with the presence of spatial
autocorrelation is to filter the data. For this purpose functions are available, too.

All programs are available on request by email from the authors. They have been
tested under Windows 2000/XP in EViews 4/5 and MATLAB 6/7.
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Figure 2: Classified choroplethe map of the G∗i statistics

Source: Macon AG 1999 (Geodata Europe NUTS, Department for Economic Geography and Geoinformatics,
University of Economics and Business Administration, Vienna)

shape file used in the cartographic visualization.
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