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Abstract: In this article we are interested in the beginnings and the develop-
ment of the sampling theory in signal analysis of stochastic signals, locating
these in the early fifties. Besides the most important papers by Parzen (1956),
Balakrishnan (1957), Belyaev (1959), and Lloyd (1959) we expose and report
on few other interesting articles not widely known, giving an overview of the
topic.

Zusammenfassung: In dieser Arbeit sind wir an den Anfängen und den
ersten Entwicklungen auf dem Gebiet der Stichprobentheorie in der Signal
Analyse von Stochastischen Prozessen interessiert, wobei wir diesen An-
fang den frühen Fünfziger Jahren zuordnen. Neben den wichtigsten Arbeiten
Parzen (1956), Balakrishnan (1957), Belyaev (1959), wie auch Lloyd (1959)
berichten wir über einige weitere interessante Artikel, die relativ unbekannt
sind, und geben dadurch einen Überblick über dieses Thema.
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1 Introduction

A communication system is a system which consists of essentially five parts: an informa-
tion source (e.g., in telephony, a human voice), a transmitter (a telephone), the channel (a
pair of wires or a band of radio frequency), the receiver (a telephone), and the destination
(a human ear).

The communication process is apt to errors. For example, the wire might be damaged
so the transfer of the signal can be interrupted by some kind of noise. If this happens, the
receiver should be able to reconstruct the original, or almost surely original signal.

In the modelling of a communication procedure and the information transmission the
role of the sampling theorem in crucial. Let us consider a class of functions which is
defined on some common domain. The main question is: can we find a discrete subset
Λ of this domain such that every member of the class is determined uniquely by the
collection of values that it takes on Λ and, if this is the case, how can we recover such a
function completely using these ”sampled values” only? This is the problem of sampling
(analogue to digital transform) and reconstruction (digital to analogue transform).

For a deterministic band-limited function X(t) (signal in the sequel) on the segment
[−π/∆, π/∆], ∆ > 0, (band-limited means that any component of this function which
has a frequency above a certain bound should be zero, or at least sufficiently close to zero
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to allow us to neglect its influence on the resulting reconstruction) representable in the
form of a Fourier or Fourier-Stieltjes integral

X(t) =

∫ π/∆

−π/∆

exp(itλ)X̂(λ)dλ where X̂(λ) =
1

2π

∫

R
exp(−itλ)X(t)dt ,

an interpolation formula was obtained by Whittaker (1915). If X is stationary in the wide
sense, Shannon’s sampling Theorem reads as follows:

X(t) =
∆

π

∑

n∈Z
X(n∆)

sin π
∆

(t− n∆)

t− n∆
, t ∈ R (1)

(still in sense of formal equality). We point out that Whittaker is calling the (1) like series
”cardinal series”.

Independently of the mathematicians’ works, the same formula was obtained by Ko-
tel’nikov (1933), who pointed out its great importance for communication theory, and
by Shannon (1948), who deals with the problems that can occur in some communication
system. For this reason the above mentioned formula in the Russian literature is called
Kotel’nikov formula whereas in the Western literature it is known as the Shannon Formula
or the Shannon Principle.

We would like to point out the following: At the end of the 1940s all prerequisites
for the extension of sampling theorem to stochastic weakly stationary processes were
developed—the Nyquist–Shannon or Sampling Principle (the band-limited signal X(t)
can be perfectly reconstructed linearly by means of its values sampled at equidistant val-
ues, if X(t) is band-limited to less then half of the sampling rate), the spectral represen-
tation formula for wide sense stationary stochastic processes, and the Karhunen theorem
(Yaglom, 1987, pp. 447-448). So, the stochastic sampling theorem could be expected
soon. Therefore, except Belyaev’s oversampling paper, all other mentioned results follow
the described research direction (Oswald, Parzen, Balakrishnan, Lloyd).

2 Early Sampling Results
Here and in what follows we are interested in sampling of stochastic signals in its early
phase. In case where X(t) is a stationary random process the interpolation problem of
the best approximation of the random variable X(t) by the mean square limit X∗(t) of a
sequence of variables X∗

n(t), n = 1, 2, . . . of the form

X∗
n(t) =

n∑

k=−n

a
(n)
k (t)X(k∆) , where {a(n)

k (t)}n∈Z ⊂ C ,

was studied by Yaglom (1949). The general mean squared error is

σ2
∆(t) = min

a
(n)
k

E|X(t)−X∗(t)|2

expressed in terms of the spectral distribution function F (λ) of the process X(t) is given
in there. This expression implies that σ2

∆ = 0 for any t if the distance between any two
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points of the frequency spectrum of X(t) differs from any multiple of 2π/∆. Obviously,
the last condition is satisfied, if the entire frequency spectrum Λ of X(t) lies within the
segment −π/∆ < λ < π/∆. The same result also implies that the above mentioned
equality also holds, if all the points of the frequency spectrum belong to the closed interval
−π/∆ ≤ λ ≤ π/∆, but its two endpoints do not belong simultaneously to the discrete
spectrum of the process.

One of the earliest articles touching the sampling of band-limited stochastic signals is
Oswald’s Signaux aleatoires a spectre limité, published in 1951. There he considers the
band-limited signals and their transformations and takes the sampling principle as true
without giving a proof (even Shannon gave only a nice construction of the principle but
without exact proof):

”... On sait que tout signal X(t) dont le spectre occupe la bande de
fréquences (−F/2, F/2) est entièremant caractérisé par les valeurs Xk =
X(tk) qu’il prend aux instants lk = kT .

X(t) =
∞∑

k=−∞
X(tk)

sin πF (t− tk)

πF (t− tk)
=

∞∑

k=−∞
Xkuk(t) (2)

... Un tel signal X(t) est aléatoire, lorsque les ordonnées X obéissent à une
loi de probabilié quelconque, de densité p(Xk). Dans le cas plus simple,
celui d’un processus stationnaire, p(Xk) = p(X) ne dépend pas de l’instant
tk considéré...” (Oswald, 1951)

The first published proof of the Shannon formula for stationary process is given by
Balakrisnan in 1957, and later on, other proofs of the same theorem were proposed (for
example Lloyd, 1959, Belyaev, 1959, and Beutler, 1961, who assumed that only one of
the end points of the segment −π/∆ ≤ ω ≤ π/∆ may be a discontinuity point of F (λ),
since F (λ) is left-continuous).

A quite simple proof of the Shannon principle is given in Parzen (1956) and is nicely
presented in the book Rozanov (1967). Parzen’s famous article is a Technical Report
of the Stanford University and was in fact never published. This paper was submitted
approximately in the same time when Balakrishnan submitted his pioneering article, at
the end of 1956. He gives

”... a method of proof of the sampling theorem, both for the cases where
the (support, op.au.) interval I is centered at the origin and where it is not ...
and yields several useful generalizations to functions of several variables and
random functions...” (Parzen, 1956)

This shows that the publishment of the Balakrishnan’s proof started an avalanche of
the development of the sampling theory, which later led to a great number of published
papers. Sampling theory is still of great interest to mathematicians all over the world and
there is still a great number of open problems that can be discussed.
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3 The Shannon Principle
Considering the signal reconstruction, Shannon introduced the above mentioned princi-
ple and announced the proof to be given in a subsequent article. In this second article
(Shannon, 1949) he gave a very nice construction of the sampling series like (1), but still
without a formal proof (for details, see (Shannon, 1949)). The formal proof was given
eight years later in the famous article of Balakrishnan (1957).

Before we state the Shannon Principle, let us introduce same definitions. Assume that
we observe a characteristic X of some physical system at time t of some time interval T .
More specifically, let the value of X at time t be not given in advance, but be described
by a random variate. Then the collection of all random values X(t) for t ∈ T can be
considered as a random variable changing over time, i.e. we can say that X(t), t ∈ T ,
is a random function of time. In this case we also say that X(t), t ∈ T is a random or
stochastic process. Here we are interested in stationary stochastic processes. We say that
a stochastic process is stationary in the ”wide sense” or second order stationary, if

1. µ(t) = EX(t) = µ, ∀t ∈ R, and σ2(t) = E|X(t)|2 = const. < ∞, ∀t ∈ R;

2. B(s, t) = cov(X(s), X(t)) = EX(t)X(s) = B(s− t).

If the autocorrelation function ρ of the process X(t) satisfies

ρ(t) =

∫ ∞

−∞
eitλdF (λ)

then F is called the spectral distribution function and the spectral density function is the
density function which corresponds to the distribution function f , whenever a density
exists.

The following formulation of the sampling theorem is due to Balakrishnan (1957):

Theorem 1 Let {X(t),−∞ < t < +∞} be a real or complex-valued stochastic process,
stationary in the wide sense possessing a spectral density which vanishes outside the
interval of angular frequency [−2πW, 2πW ], W > 0. Then X(t) has the representation:

X(t) = lim
∞∑

n=−∞
X

( n

2W

)sin π(2Wt− n)

π(2Wt− n)
(3)

for every t, where lim stands for the limit in the mean square sense, i.e.

lim
N→∞

E
{∣∣∣X(t)−

N∑
n=−N

X
( n

2W

)sin π(2Wt− n)

π(2Wt− n)

∣∣∣
2}

= 0 .

The idea of the proof is that the right hand side of (3) is the best linear estimate in the
mean square sense of X(t) in terms of X(n/2W ), such that we have zero estimation error
and the sampling principle per se for non-random functions is applied to the covariance
function B(t) of the process to yield

B(t) =
∞∑

n=−∞
B

( n

2W

)sin π(2Wt− n)

π(2Wt− n)
.
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Then bearing in mind the Karhunen theorem we arrive at (3) in the mean square sense.
Balakrishnan also went a bit further and derived some useful results from the Shannon

principle. All these results will be given without proofs which can be found in Balakrish-
nan (1957). He relaxed the requirements that the process has a density function and got
the following theorem:

Theorem 2 Let {X(t),−∞ < t < +∞} be a real or complex-valued stochastic process,
second order stationary, having a spectral distribution function Φ(λ) such that

1.
∫ −W

−∞ +
∫∞

W
dΦ(λ) = 0,

2. Φ(λ) is continuous at ±W .

Then X(t) has again the representation (3).

If the spectral distribution function has a jump at one or both end points, the following
holds:

Corollary 1 Let X(t) be a real or complex-valued second order stationary stochastic
process having a spectral distribution function Φ(λ) such that for some W0 > 0

Φ(+∞)− Φ(W+
0 ) + Φ(−W−

0 )− Φ(−∞) = 0 .

Then the mean square error in the representation of X(t) as

lim
N→∞

+N∑
n=−N

X
( n

2W

)sin π(2Wt− n)

π(2Wt− n)

is given by

B(0)[(jump of Φ(λ) at +W0) + (jump of Φ(λ) at −W0)] sin
2(2πW0t) .

However, for every W > W0 the display (3) is valid again with zero error.

Balakrishnan also deals with the inverse problem of obtaining a continuous signal
from a discrete signal which gives a useful converse of the Shannon principle, see his
Theorem 3.

4 Sampling Reconstruction of Stochastic Signals in the
Almost Sure Sense

All these results given by Balakrishnan involve limits in the mean square sense. The first
two papers in which sampling reconstruction of stochastic signals in the almost sure sense
is considered are those of Belyaev and Lloyd in 1959.

Belyaev used an oversampling approach to prove the sampling reconstruction of the
band-limited weakly stationary stochastic process in almost sure sense, i.e. with probabil-
ity 1.
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We say that a complex function is an entire function if it is analytical at all finite
points of the complex plane, and the random process X(t) is called analytic in the region
D if almost all sample functions of its components can be analytically continued in D.
The necessary and sufficient conditions for the analyticity of a process are that if the
covariance B(t, s) is an analytic function of two variables in a neighborhood of the point
(t0, t0), then the random process is analytic in a neighborhood of this point.

It can be also shown that for the Gaussian process this condition is necessary and
sufficient (see Belyaev, 1959).

For the covariance

B(t) =

∫ +∞

−∞
exp(itλ)dF (λ)

of a stationary process to be analytic for |t| ≤ r it is necessary and sufficient that
∫ +∞

−∞
exp(rλ)dF (λ) < ∞ ,

where F (λ) is a spectral distribution function.
For a band-limited random processes it also holds that if the covariance B(t) of a

stationary process is an entire function of exponential type with exponent not exceeding σ,
then almost all the sample functions are entire functions of exponential type with exponent
not exceeding σ.

The proofs of the above stated claims can be found in e.g. (Belyaev, 1959).

Theorem 3 Let {X(t), −∞ < t < +∞} be a zero-mean weakly stationary stochastic
process, band-limited to w̃ > 0 whose covariance function has the form

B(t) =

∫ +w̃

−w̃

exp(itλ)dF (λ) .

Then for almost all sample functions the formula

X(t) =
∞∑

n=−∞
X

(nπ

w
, ω

)sin w
(
t− nπ

w

)

w
(
t− nπ

w

) , t ∈ R (4)

is valid, where w > w̃ is any fixed number.

In the proving procedure Belyaev took the idea of the so-called ”oversampling procedure”.
Namely, if the stochastic signal is band-limited to some bandwidth w̃, then it is band-
limited to any bandwidth w > w̃. We define the truncated Kotel’nikov series

XN(t) :=
N∑

n=−N

X
(nπ

w

)sin(wt− nπ)

wt− nπ
.

The mean-square truncation error εn(X, t) attains the upper bound

εn(X, t) = E|X(t)−XN(t)|2 ≤ 16B(0)(2π + |t|w)2

π4(1− w̃ − w)2N2
, t ∈ R ,
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so by Chebyshev inequality
∑
n≥N

Pr{|X(t)−Xn(t)| ≥ ε} =
∑
n≥N

O(n−2) < ∞

and by the Borel-Cantelli lemma the convergence in (4) follows in the almost sure sense.
The almost sure convergence rate can be evaluated as follows. As

Pr{∃n ≥ N : |X(t)−Xn(t)| ≥ g(n)} ≤
∑
n≥N

εn(X, t)

g2(n)

≤ 16B(0)(2π + |t|w)2

π4(1− w̃/w)2

∑
n≥N

1

n2g2(n)
,

the convergence of the series
∑

n≥N 1/(n2g2(n)) ensures by the Borel-Cantelli lemma
the existence of a positive integer N(ω), ω ∈ Ω, such that |X(t) − Xn(t)| < g(n),
∀n ≥ N(ω), with probability 1. Therefore, we can take

|X(t)−Xn(t)| < (log n)(1+ε)/2

√
n

; ε > 0 , a.s. ∀n ≥ N(ω) .

The next very important person in the development of the sampling reconstruction
of stochastic signals is Lloyd (1959). In a very serious and demanding article he gives a
necessary and sufficient condition on the random spectral measure for a weakly stationary
stochastic process, which allows a process to be exactly restored from its samples. Here
we only consider his main theorem.

Theorem 4 Suppose the spectral distribution of process X(t) has an open support Λ
whose translates {Λ− nh−1, −∞ < n < ∞} are mutually disjoint. Suppose further that
there exist numbers a, b such that

a > 1/2 , b > 0 , a + b/2 > 1

max
{

sup
t∈R

|taK(t)|
}

< ∞

max
{

sup
t∈R

|tbB(t)|
}

< ∞

K(t) :=
1

2w

∫

Λ

exp(itλ)dλ

Then the sampling series converges to X(t) with probability 1, i.e.

P
{

lim
N→∞

∑

|n|≤N

X
(nπ

w

)
K

(
t− nπ

w

)
= X(t)

}
= 1 .
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