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Abstract: The contribution deals with a stochastic process cumulating ran-
dom increments at random moments (the compound point process). First, its
martingale - compensator decomposition is recalled. Then a multiplicative
form of the model with the regression on covariates, simultaneously for the
intensity of counting process and for the distribution of increments, is con-
sidered. Finally, a semi-parametric model is studied, the uniform consistency
of estimators and the asymptotic normality of the process of residuals are
proved.
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1 The Model of Compound Process
In the present paper, we consider the random process cumulating random increments at
random time points, i.e. the compound (or cumulative) point process

C(t) =
∑

Ti≤t

X(Ti) =
∫ t

0
X(s) dN(s) , (C(0) = 0) , (1)

where t is the time, N(t) is a counting process, Ti are its random points, and X(t) is
a set of random variables. The model is suitable for the description of many real-world
technological (e.g. shock models in reliability analysis), environmental, biological and
also financial processes (especially in the field of insurance).

In the scenario considered in Volf (2000) it was assumed that each X(t) was indepen-
dent of the history of the process C(s) up to t (on the other hand, the intensity of N(t)
could depend on the history). In the present paper we generalize the setting, i.e. we allow
for the dependence of both process components on S(t−), where S(t) is a correspond-
ing filtration, i.e. a nondecreasing sequence of σ-algebras defined on the sample space of
{N(s), Y (s), Z(s), X(s), 0 ≤ s ≤ t}; by S(t−) we mean its left-continuous version, a
’history’. Y (t) and Z(t) are S(t−) measurable predictable processes, namely Y (t) is the
indicator of observability of C(t) and Z(t) is a K-dimensional covariate process which
has its values from a given set Z ⊂ RK . A review of the theory and application of count-
ing process models is given for instance in Andersen et al. (1993). Intensity of N(t) is
λ(t) = h(t, Z(t))Y (t), cumulative intensity L(t) =

∫ t
0 λ(s)ds, h(t, z) ≥ 0 is a hazard

function.
As regards the distribution of random variables X(t), we assume that the conditional

distribution of X(t), given S(t−), can be described with a density or probability function
f(x; t, Z(t)) and that it also possesses two first conditional moments E(X(t)|S(t−)) =
µ(t, Z(t)), var(X(t)|S(t−)) = σ2(t, Z(t)). These definitions imply that the process N(t)
and increments X(t) depend on S(t−) (and hence on each other) through Z(t) and Y (t).
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The processes are followed throughout a time interval [0, T ]. We assume that the indicator
processes Y (t) are observed fully and the covariates at least at the times when Y (t) = 1.

There are several ways how to specify the model of increments. For instance Scheike
(1994) considered an additive regression model, X(t, z) = µ(t, z) + σ(t, z) · ε with the
focus on estimation of parametrized function µ, and, eventually, on a kernel estimation in
a nonparametrized scheme. Here, we shall deal with a multiplicative form of the model,
for instance X(t, z) = X0(t) · exp(a(z)), which will lead to the model of Cox’s type,
even for the rate of growth of C(t). Nevertheless, we shall formulate first some results in
a quite general setting. Sections of the present paper deal with the following problems:
Compensator – martingale decomposition of C(t), estimate of the growth rate of C(t)
and its properties, multiplicative regression model both for hazard rate and increments, its
semi-parametric form, method of estimation and asymptotics of estimates.

2 Compensator of Compound Process

Let us first recall the compensator – martingale decomposition of the counting process,
namely N(t) = L(t)+M(t), with M(t) being the martingale adapted to σ-algebras S(t),
with predictable variation process L(t) (cf. for instance Andersen et al., 1993). Notice
that under our assumptions on its conditional moments, X(t) is conditionally orthogonal
to dM(t), where by dM(t) we denote formally the increment of M(t) in a small interval
[t, t + dt). By d〈M〉(t) = var{dM(t)|S(t−)} we mean the increment of the predictable
variation process of M(t), which we denote by 〈M〉(t). While the martingales have
trajectories with jumps, their predictable variation is continuous and finite provided all
involved functions are bounded in [0, T ].

The compound process is actually a case of the marked point process (e.g. Brémaud,
1981). Let us recall here its martingale-compensator decomposition, too. The result is
well-known, a proof (in a less general setting) has been included also in Volf (2000). Let
us denote X∗(t) = X(t)− µ(t, Z(t)), so that E(X∗(t)|S(t−)) = 0. Then we can write

C(t) =
∫ t

0
(X∗(s) + µ(s, Z(s))) dN(s) =

∫ t

0
µ(s, Z(s)) dL(s) +M(t) (2)

where

M(t) = M1(t) +M2(t) =
∫ t

0
X∗(s) dN(s) +

∫ t

0
µ(s, Z(s)) dM(s) .

Proposition 1. The processesM(t),M1(t),M2(t) are martingales adapted to σ-algebras
S(t), the predictable variation process of M(t) is

〈M〉(t) =
∫ t

0
(σ2(s, Z(s)) + µ2(s, Z(s))) dL(s) . (3)

Corollary. Process
∫ t
0 µ(s, Z(s)) dL(s) is the compensator of process C(t).
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2.1 Process Characteristics

From (2) and (3) it follows that important functions characterizing the behavior of the
process and of corresponding (residual) martingale are:

h(t, z) – the hazard rate of counting process N(t),
k(t, z) = h(t, z) · µ(t, z) – the rate of cumulation of C(t),
(µ2(t, z) + σ2(t, z)) · h(t, z) – characterizing the variation process of residuals.

Naturally, we are also interested directly in µ(t, z), σ(t, z), f(y; t, z) describing the distri-
bution of increments. Quite natural approach prefers to estimate the characteristics sep-
arately, i.e. from observed random points of Ni(t) and from observed increments Xi(t).
However, we shall concentrate to the estimation of joint rate k(t, z) (resp. of its integrated
version), eventually in special model form cases.

Let n realizations Ci(t) =
∫ t
0 Xi(s) dNi(s) of process C(t), together with correspond-

ing processes Yi(t), Zi(t), be observed in finite interval [0, T ]. More precisely, we ob-
serve moments of events Tij of counting processes Ni(t), increments Xi(Tij), and also
the paths of processes Yi(t), Zi(t) (for i = 1, . . . , n, j = 1, . . . , ni = Ni(T )). It is
assumed that random variables Xi(t) have the same conditional probability densities
f(y; t, z) and that Ni(t) are characterized by the same hazard function h(t, z). Now
the common filtration S(t) contains all paths of {Ci(s), Ni(s), Yi(s), Zi(s), s ≤ t, i =
1, . . . , n}. Counting processes Ni(t) have intensity processes λi(t) = h(t, Zi(t))Yi(t), by
Li(t) =

∫ t
0 λi(s) ds we denote the cumulative intensity process, Mi(t) = Ni(t) − Li(t)

and Mi(t) = Ci(t) −
∫ t
0 µ(s, Zi(s)) dLi(s) are martingales. If we assume the uni-

form boundedness of h(t, z) on [0, T ] × Z , the martingales are mutually orthogonal, i.e.
d〈Mi,Mj〉(t) = 0 for i 6= j. The same then holds also for Mi(t), i.e. d〈Mi,Mj〉(t) = 0
for i 6= j, as a consequence of orthogonality of Mi,Mj and of the null probability of
two increments at one moment. Finally, from this impossibility of simultaneous events
it also follows that the increments of Ci(t) are mutually conditionally independent, given
the history of the process.

3 Multiplicative Hazard Regression Model

A general form of Cox regression model (or multiplicative, log-additive, proportional
hazard model) of hazard rate of a counting process is

h(t, z) = h0(t) · exp(b(z)) ,

where b(z) is a response function and h0(t) is a baseline hazard rate. The most popular is
the log-linear form with b(z) = β · z. The estimation uses the Breslow-Crowley estimator
of the cumulated baseline hazard rate H0(t) =

∫ t
0 h0(s) ds

Ĥ0(t) =
∫ t

0

n∑

i=1

dNi(s)∑n
k=1 exp(b(zk(s)))Yk(s)

,
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and the estimator of response function maximizing the logarithm of partial likelihood, Lp,
namely by the solution of equations (formally) dLp/db = 0, i.e.

1

n

∑

i

{∫ T

0
b′(zi(t))−

∑
k b′(zk(t)) · exp(b(zk(t))) Yk(t)∑

j exp(b(zj(t))) Yj(t)

}
dNi(t) = 0 , (4)

where (4) represents K equations (with K the dimension of covariate).
Let us further recall the conditions of stability assumed by Andersen and Gill (1982)

in order to guarantee the consistency of estimation of H0(t) and β. Namely, they assume
(except other conditions) the uniform (in t ∈ [0, T ]) P -convergence (for n →∞)

1

n

n∑

i=1

exp(b(zi(t)))Yi(t) → s0(t) , (5)

where the function s0(t) is bounded and bounded away from zero.

3.1 Multiplicative Models for the Rate of Cumulation
The idea is to use a quite similar specification of the model for the main characteristics of
increments. Namely, let us assume that

µ(t, z) = µ0(t) · exp(a(z)) .

Then the rate of cumulation of C(t) is

k(t, z) = µ0(t) · h0(t) · exp(a(z) + b(z)) = k0(t) · exp(c(z)) .

We assume that µ0(t), a(z) are bounded functions, the same for h0(t), b(z). Let us further
denote K0(t) =

∫ t
0 k0(s) ds and let us assume for the function c(z) = a(z)+b(z) a similar

condition as (5), i.e. the uniform P -convergence:

1

n

n∑

i=1

exp(c(zi(t)))Yi(t) → s∗0(t) , (6)

with function s∗0 possessing the same properties as s0 above. Here we still assume that
a, b are the ’true’ data-generator functions. The first consequence are the following two
propositions. In them we assume that either the function c(z) is known, or, at least,
it is consistently estimated, uniformly in z (such a property suffices for the validity of
Proposition 2).

Proposition 2. Let (6) hold and function c(z) be given. Then the estimator

K̂0(t) =
n∑

i=1

∫ t

0

dCi(s)∑
k exp(c(zk(s)))Yk(s)

(7)

is a P -consistent, uniformly in t ∈ [0, T ], estimator of K0(t).
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Proposition 3. Together with the assumptions of Proposition 2, let us assume also the
existence of bounded P -limit, uniform on [0, T ]:

r∗(t) = lim
n→∞

1

n

n∑

i=1

(σ2(t, zi(t)) + µ2(t, zi(t))) exp(b(zi(t)))Yi(t) . (8)

Then the process
√

n(K̂0(t) − K0(t)) converges weakly on [0, T ] to a Gauss random
process with independent increments and with variance function

w0(t) =
∫ t

0

r∗(s)
s∗0(s)2

dH0(s) .

The proofs are quite analogous to the proofs of Propositions 2 and 3 in Volf (2000)
and are based on the form of residual process

K̂0 −K0 =
n∑

i=1

∫ t

0

dMi(s)∑
k exp(c(zk(s)))Yk(s)

.

Proposition 3 suggests the way of construction of confidence bands for K0(t), provided
we are able to estimate all involved functions (and then also w0(t)). Simultaneously,
Proposition 3 can serve as a basis for the goodness-of-fit test, because such a test compares
the data with hypothetical (i.e. ‘known’) model functions. Such a test has been discussed
for instance in Volf (2000). Naturally, the results can be modified if the functions are
further specified. For instance let us imagine that X(t, z) = X0(t) · exp(a(z)), so that
µ(t, z) = µ0(t) · exp(a(z)), σ(t, z) = σ0(t) · exp(a(z)), and (8) simplifies, too.

Finally, let us recall that the estimate of the rate k0(t) is standardly obtained by the
kernel smoothing the increments of K̂0(t), and is even uniformly consistent, under certain
smoothness conditions on k0(t) and a proper selection of the window-width.

In the sequel, we shall parametrize functions a(z), b(z), c(z) and use the analogy with
the semi-parametric Cox model analysis. We shall follow the arguments formulated for
the Cox hazard regression model in Andersen et al. (1993, chapter VII.2).

3.2 Inference in Semiparametric Model
Let us consider the case that h(t, z) = h0(t) ·exp(βz) and also X(t, z) = X0(t) ·exp(αz).
Hence c(z) = γz, γ = α + β, and µ(t, z) = µ0(t) · exp(αz), σ(t, z) = σ0(t) · exp(αz).

We also assume the existence and boundedness of all model functions on [0, T ], i.e. of
h0(t), µ0(t), σ0(t), further also uniform boundedness of covariates (w.r.t. i and t, we then
can skip one of additional assumptions of Andersen et al., 1993).

In the next part, by α0, β0, γ0 we shall mean the ’true’ values of parameters. Let us
now consider the process analogous to the logarithm of Cox partial likelihood:

Ln(γ) =
n∑

i=1

∫ T

0
{log

exp(γzi(t))∑n
j=1 exp(γzj(t))Yj(t)

}dCi(t) ,

the K-dimensional score function, the derivative of Ln(γ), i.e.

Un(γ) =
n∑

i=1

∫ T

0
{zi(t)−

∑n
k=1 zk(t) exp(γzk(t))Yk(t)∑n

j=1 exp(γzj(t))Yj(t)
}dCi(t) ,
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and the derivative of Un, namely the K ×K matrix

U ′n(γ)=
n∑

i=1

∫ T

0



−

∑
k zk(t)

2exp(γzk(t))Yk(t)∑
jexp(γzj(t))Yj(t)

+

(∑
k zk(t)exp(γzk(t))Yk(t)∑

jexp(γzj(t))Yj(t)

)2


 dCi(t) .

Further, let us once more re-formulate already mentioned stability and regularity condi-
tions. Let us first denote:

S0(γ, t) =
1

n

n∑

i=1

exp(γzi(t))Yi(t) , S1(γ, t) =
1

n

n∑

i=1

zi(t) exp(γzi(t))Yi(t) ,

S2(γ, t) =
1

n

n∑

i=1

zi(t)
2 exp(γzi(t))Yi(t) ,

E(γ, t) =
S1(γ, t)

S0(γ, t)
, V (γ, t) =

S2(γ, t)

S0(γ, t)
− E(γ, t)2 .

Assumption A1:
1. There exists a neighborhood C of γ0 and bounded functions s0, s1, s2 (a scalar, vector

and matrix) such that for j = 0, 1, 2: Sj(γ, t) → sj(γ, t) in probability, uniformly
on C × [0, T ], as n → ∞. Moreover, let functions sj be continuous functions
of γ ∈ C, uniformly in t ∈ [0, T ], s0(γ, t) be also bounded away from zero on
C × [0, T ], and

s1 = ds0/dγ , s2 = d2s0/dγ2 .

2. Let the matrix Σ =
∫ T
0 v(γ0, t)s0(γ0, t)k0(t)dt, where e = s1/s0 and v = s2/s0 − e2,

be positive definite.

We add some more conditions of the same type, their sense will be obvious from the
following context. Let us first denote, similarly as above, three functions of α, β, t

R0 =
1

n

n∑

i=1

exp((β + 2α)zi(t))Yi(t) , R1 =
1

n

n∑

i=1

zi(t) exp((β + 2α)zi(t))Yi(t) ,

R2 =
1

n

n∑

i=1

zi(t)
2 exp((β + 2α)zi(t))Yi(t) .

Assumption A2:
1. There exist neighborhoods A of α0 and B of β0 and bounded functions r0, r1, r2

such that for j = 0, 1, 2: Rj(α, β, t) → rj(α, β, t) in probability, uniformly on
A × B × [0, T ], as n → ∞. Moreover, let functions rj be continuous functions of
α, β ∈ (A× B), uniformly in t ∈ [0, T ].

2. Let the matrix

V =
∫ T

0

[
r2 − 2

s1

s0

r1 + s2
1r0

]
h0(t)(µ0(t)

2 + σ0(t)
2)dt ,

evaluated at α0, β0, be positive definite.

Under these conditions, we are able to prove the analogs of both crucial theorems on
asymptotics of estimators of Cox parameter, as formulated e.g. by Andersen et al. (1993)
in Theorems VII.2.1 and VII.2.2.



P. Volf 395

Proposition 4. When n →∞, the probability that the equation Un(γ) = 0 has a solution
γ̂ tends to 1 and P-limγ̂ = γ0.

It is worth to notice that the solution is unique (if any), because functions Ln(γ)
are concave strictly (−U ′n(γ) is actually a variance of certain multinomial distribution,
hence positive definite, except in the case that the model is over-fitted, similarly as in the
standard linear regression). The only difference in comparison with the Cox model for
the hazard rate case is that now we need finite limits r0(t) and r1(t) of corresponding
expressions, originated from the predictable variation process of our residual martingales
Mi(t).

The goal of the next proposition is to show the asymptotic normality of
√

n(γ̂ − γ0).
We have to consider two points:
1) asymptotic normality and variance of n−1/2Un(γ0).
2) limit of −n−1U ′n(γ).
As regards 1), first notice that

Un(γ0) =
n∑

i=1

∫ T

0

{
zi(t)−

∑n
k=1 zk(t) exp(γ0zk(t))Yk(t)∑n

j=1 exp(γ0zj(t))Yj(t)

}
dMi(t)

and also that d〈Mi〉(t) = exp((β + 2α)zi(t))Yi(t)h0(t)(µ0(t)
2 + σ0(t)

2)dt. Hence, the
asymptotic variance of n−1/2Un(γ0) equals the limit of

Vn =
1

n

n∑

i=1

∫ T

0

[
R2 − 2

S1

S0

R1 + S2
1R0

]
h0(t)(µ0(t)

2 + σ0(t)
2)dt ,

evaluated at estimated parameters. This limit equals V , due assumptions A1, A2, and the
consistency of both β̂ (Cox model parameter) and γ̂, with α̂ = γ̂/β̂ (provided β̂ 6= 0). It
is seen that in order to get fully empirical version V̂n as a consistent estimator of V , we
need also an uniformly in [0, t] consistent estimator of σ0, while h0, k0 and µ0 = k0/h0

are already available (the latter at t where estimated h0(t) is positive).
The second point leads, again by the compensator - martingale decomposition, to the

expression

−n−1U ′n(γ) ∼ Σn(γ) =
∫ T

0
V (γ, t)S0(γ, t)dK0(t)

(martingale part vanishes asymptotically and uniformly, again due the uniform bounded-
ness of the predictable variation process of residual martingales). And when we consider
γ between γ0 and the estimate γ̂ (in Taylor expansion of Un(γ) at γ0), then Σn(γ), thanks
assumptions A1 and A2, tends to Σ. The same then holds also for the fully empirical
version

Σ̂n =
∫ T

0
V (γ̂, t)S0(γ̂, t)dK̂0(t) .

Therefore, we may state the following proposition (the analog to Theorem VII.2.2 of
Andersen et al. (1993)).

Proposition 5. When n → ∞, n1/2(γ̂ − γ0) → N (0, Σ−1VΣ−1) in distribution. The
asymptotic variance matrices can be estimated consistently with the aid of Σ̂n, V̂n.
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4 Conclusion
The main purpose of the paper was to propose a multiplicative form of regression model
for the cumulative process and to study the methods of its evaluation. The obtained results
can be summarized to the following points:

In general, the estimator of function c(z) is available from the normal equations sim-
ilar to (4). Estimates of a(z) and µ0(t) follow immediately. If response functions are
parametrized, consistent and asymptotically normal estimates of parameters exist, un-
der proper stability conditions. However, the estimates of variance σ(t, z) (or σ0(z),
respectively) are not available and should be obtained in a standard way, from the anal-
ysis of increments. The case simplifies if the increments are modelled via a distribution
with one parameter, for instance in the case of exponential distribution, when σ = µ =
µ0(t) · exp(αz), or in the case of integer-valued increments described by a Poisson model
(then σ2 = µ). Finally, it has also been shown that there exists a potentially consistent and
asymptotically normal estimator of the cumulated baseline rate K0(t) of process C(t).
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