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Charles University and Academy of Sciences, Prague, Czech Republic

Abstract: A motivation for the classical Instrumental Variables and the rea-
sons for here-proposed way of their robustification are discussed. The condi-
tions for the

√
n-consistency, the existence of Bahadur representation and the

asymptotic normality of the robustified estimator are given.
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1 Introduction, Instrumental Variables, and Objectives
Let N denote the set of all positive integers, R the real line and Rp the p-dimensional
Euclidean space. The linear regression model given as

Yi = X ′
iβ

0 + ei =
p∑

j=1

Xijβ
0
j + ei , i = 1, . . . , n

will be considered. We shall assume that:
C1 The sequence {(X ′

i, ei)
′}∞i=1 ⊂ Rp+1 is sequence of independent and identically

distributed (iid) random variables with absolutely continuous distribution function (d.f.)
FX,e(x, v). Moreover, E {(X ′, e)′ · (X ′, e)} is a positive definite matrix and the condi-
tional density fe|X(v|X1 = x) is uniformly in x bounded.

If orthogonality condition is broken, i.e. if E {ei|Xi} 6= 0 (an example follows), the
Ordinary Least Squares are inconsistent, as the following relations show:

β̂(OLS,n) = β0 +

(
1

n

n∑

k=1

XkX
′
k

)−1
1

n

n∑

i=1

Xiei and plim
n→∞

1

n

n∑

i=1

Xiei = EX1e1 . (1)

Let us assume the model with lagged explanatory variables (Judge et al., 1985; or
Vı́šek, 1998) in the simplest version, i.e. with the geometric structure of coefficients,

Yt = γ
∞∑

j=1

λj−1xt−j+1 + et , t = . . . ,−1, 0, 1, . . . , T ,

Eet = 0 , Ee2
t = σ2 ∈ (0,∞) , and λ ∈ (−1, 1) . (2)

Clearly, we are not able to estimate coefficients γ and λ directly, hence writing model for
t− 1, multiplying it by λ and subtracting from (2), we obtain

Yt = λYt−1 + γxt + et − λet−1 = λYt−1 + γxt + ut . (3)

Now, the “explanatory” variable Yt−1 is correlated with the error term ut and then (1)
indicates that OLS estimate of regression coefficients of model (3) is inconsistent. Another
frequently given example of failure of the orthogonality condition is the case of measuring
explanatory variables with random error (see Carroll et al., 1995; or Judge et al., 1985,
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Vı́šek (1998)). To cope with such situations the method of Instrumental Variables (IV)
was proposed (e.g. Carroll et al., 1995, Judge et al., 1985) as the solution of normal
equations

n∑

i=1

Zi (Yi −X ′
iβ) = 0 , (4)

where the elements of the sequence {Zi}∞i=1 are usually called instruments. At the end
of the last century IV became more or less a standard tool in many case studies of panel
data, especially in econometrics. Of course, this is only one of possibilities how to cope
with it. Another is e.g. the Total Least Squares, see Van Huffel (2004). Simplifying a
bit, we may say that decision which method to use in such a situation depends on the fact
whether for given data the error term of the regression model represents the measurement
error of the response variable, as in technical or natural sciences usually does, or if some
explanatory variables which are not available or not to easy to measure etc. are included
into the error term, as it is usual in social sciences to assume. Naturally, to obtain then
unbiased estimates of regression coefficients we have to believe that this implicit segment
of explanatory part of model (creating together with the possible measurement error of
response variable the error term) is orthogonal to the segment which is explicitly given in
the model, see Chatterjee and Hadi (1988).

In our example (with lagged variables) we can use as the instrument for Yt−1 the value
xt−1 (which is independent from ut = et − λet−1) or a linear combination

∑k
j=1 αjxt−j

for some k (which is also independent from ut) because we assume that Yt depends of the
xt−j’s for j = 0, 1, . . .. For the situation with measurement error consult please Carroll
et al. (1995). Moreover, a lot of recommendations how to select the instruments for
explanatory variables were established, see e.g. Arellano and Bond (1991), Arellano and
Bover (1995), Bowden and Turkington (1984), or Sargan (1988) (and for examples of
implementation see for SAS - Der and Everitt (2002), for R and S-PLUS - Fox (2002)).

Since the system of equations (4) is an analogy of normal equations for the OLS, the
estimate by means of Instrumental Variables suffer by the lack of robustness both in the
case of presence of outlier(s) among Yi − X ′

iβ, i = 1, . . . , n, as well as in the case of
presence of leverage point(s) among Zi’s. That is why the paper offers a proposal of
robustified version of IV based on the idea of implicit weighting the residuals, as it was
used by the Least Weighted Squares (LWS), see Vı́šek (2001).

2 The Least Weighted Squares
Hettmansperger and Sheather (1992), when processing the Engine Knock Data (Mason et
al., 1989), were surprised that the result of robust estimation may be considerably influ-
enced by a small change of data. Although their result was due to a bad algorithm they
employed for the Least Median of Squares (Rousseeuw, 1984), it began the studies look-
ing for an explanation of this fact. For the correction see Vı́šek (1994) where the faster
algorithm by Boček and Lachout (1995) gave (much) smaller value of the minimized
functional. Finally, it was given in Vı́šek (1996a) and Vı́šek (2000b). The explanation
demonstrated that even an arbitrarily small change of data may really cause - in the case
of the estimators with high breakdown point - a change of the estimates of regression co-
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efficients as large as you want. A numerical example was offered already in Vı́šek (1994);
the result of processing Engine Knock Data by the Least Trimmed Squares (by the algo-
rithm, performing a complete search and hence giving the precise value of the estimator)
demonstrated that the small change in data caused very large change of the estimate. The
asymptotic representation of the difference of the estimates for the all available data and
for a subsample obtained by trimming-off even only one observation in the case of the
M-estimators and the LTS indicate that this difference for the estimators with the discon-
tinuous weight functions may be rather large (although bounded in probability), see Vı́šek
(1992, 1996b, 2000a, 2002a), compare also Chatterjee and Hadi (1988)).

When processing the panel data, we cannot (generally) trim-off any observation, since
it could destroy (or at least considerably damage) the correlation structure of disturbances
and/or of explanatory variables. Moreover, trimming-off some observation may mask the
heteroscedasticity of data (compare the processing of the same data sets in Rousseeuw and
Leroy (1987) and in Chatterjee and Hadi (1988)). It indicates that the weighting down the
residuals may be sometimes reasonable solution. Of course, if all observations obtain
nonzero weights, the breakdown point becomes zero. However, it is due to theoretical
possibility of shifting some observations into the infinity. In fact, if the outliers as well
as leverage points obtain (“sufficiently”) small weights, we are able to cope with them;
of course, it requires to experiment with weight function w. However, simple examples
demonstrate that the weighting which is based on an external rule (e.g. a geometric rule)
may end in a considerable loss of information or can establish a misleading identification
of underlying model. Then a straightforward idea may be to employ an implicit weighting
(we shall indicate the fact that the weighting is implicit by the order of words in the name
of method).

For any β ∈ Rp, ri(β) = Yi−X ′
iβ denotes the i-th residual and r2

(h)(β) the h-th order
statistic among the squared residuals, i.e. we have

r2
(1)(β) ≤ · · · ≤ r2

(n)(β) .

Definition 2.1 For any n ∈ N let w1 ≥ · · · ≥ wn, wi ∈ [0, 1], be some weights. Then

β̂(LWS,n,w) = arg min
β∈Rp

n∑

i=1

wir
2
(i)(β) (5)

will be called the Least Weighted Squares (see Vı́šek, 2001; and also Vı́šek, 2002b).

The weights are usually generated by a weight function w with following properties (com-
pare Hájek and Šidák, 1967):
C2 Weight function w : [0, 1] → [0, 1] is absolutely continuous and nonincreasing, with
the derivative w′(α) bounded from below by −L, w(0) = 1.

Putting then wi = w(i− 1/n), we can rewrite (5) into the form (see also Čı́žek, 2002,
where the estimator is called the Smoothed Least Trimmed Squares)

β̂(LWS,n,w) = arg min
β∈Rp

n∑

i=1

w
(
n−1(i− 1)

)
r2
(i)(β) .

See also Koul (1992); Koul and Ossiander (1994) and references given there, for (much
more) general estimators of similar type, i.e. weighted by a function of ranks, considered



382 Austrian Journal of Statistics, Vol. 35 (2006), No. 2&3, 379–387

in the autoregression framework. Now, following Hájek and Šidák (1967), let us define
ranks. For any i = 1, . . . , n put π(β, i) = j ∈ {1, . . . , n} iff r2

i (β) = r2
(j)(β). Then we

arrive at

β̂(LWS,n,w) = arg min
β∈Rp

n∑

i=1

w
(
n−1(π(β, i)− 1)

)
r2
i (β) .

It is then easy to show that β̂(LWS,n,w) is (one of) solution(s) of the normal equations

n∑

i=1

w
(
n−1(π(β, i)− 1)

)
Xi (Yi −X ′

iβ) = 0 . (6)

Denoting by I{A} the indicator of the set A, for any β ∈ Rp and any r ∈ R define the
empirical distribution function (e.d.f.) of the absolute values of residuals as

F
(n)
β (r) =

1

n

n∑

j=1

I {ω ∈ Ω : |rj(β)| < r} =
1

n

n∑

j=1

I
{
ω ∈ Ω : |ej −X ′

jβ| < r
}

. (7)

Further, denoting |ri(β)| = ai(β), one can easily verify that the order statistics of the ab-
solute values of residuals a(i)(β)’s and the order statistics of the squared residuals r2

(i)(β)’s
assign to given fix observation the same rank, i.e. the residual of given fix observation is in
the sequences r2

(1)(β) ≤ · · · ≤ r2
(n)(β) and a(1)(β) ≤ · · · ≤ a(n)(β) on the same position.

It is then straightforward that due to the left-continuity of e.d.f. (7), we have

F
(n)
β (a(π(β,i))(β)) = F

(n)
β (|ri(β)|) = n−1(π(β, i)− 1)

and so the normal equations (6) can be written as

n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
Xi (Yi −X ′

iβ) = 0 . (8)

3 Instrumental Weighted Variables
Robustifying (4) in the analogy with (8) we define

Definition 3.1 For any sequence of random vectors {Zi}∞i=1 ⊂ Rp the solution(s) of the
normal equation

n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
Zi(Yi −X ′

iβ) = 0 (9)

is called the Instrumental Weighted Variables (IWV) estimator and denoted by β̂(IWV,n,w).

For the consistency of the IWV we will need some further assumptions.
C3 The instrumental variables {Zi}∞i=1 ⊂ Rp are iid with d.f. FZ(z). Moreover, they
are independent from the sequence {ei}∞i=1. Further, the joint d.f FX,Z(x, z) is absolutely
continuous. Finally, E{w(Fβ0(|e1|))Z1X

′
1} as well as EZ1Z

′
1 are positive definite (com-

pare C3 with Vı́šek, 1998, 1998b, where we considered instrumental M -estimators and
the discussion of assumptions for M -instrumental variables was given) and there is q > 1
so that E{‖Z1‖ · ‖X1‖}q < ∞.
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The conditions under which the IWV are consistent, requires some other notations.
For any β ∈ Rp the d.f. of the product β′Z1X

′
1β will be denoted Fβ′Z1X′

1β(u), i.e.

Fβ′Z1X′
1β(u) = P (β′Z1X

′
1β < u)

and as in previous, the corresponding e.d.f. will be denoted F
(n)
β′ZX′β(u), so that

F
(n)
β′ZX′β(u) =

1

n

n∑

j=1

I{β′ZjX
′
jβ < u} =

1

n

n∑

j=1

I{ω ∈ Ω : β′Zj(ω)X ′
j(ω)β < ut} .

For any λ ∈ R+ and any a ∈ R put

γλ,a = sup
‖β‖=λ

Fβ′ZX′β(a) . (10)

Notice, that due to the fact that the surface of the ball {β ∈ Rp, ‖β‖ = λ} is compact,
there is βγ ∈ {β ∈ Rp, ‖β‖ = λ} such that

γλ,a = Fβ′γZX′βγ (a) .

For any λ ∈ R+ let us denote

τλ = − inf
‖β‖≤λ

β′E [Z1X
′
1 · I{β′Z1X

′
1β < 0}] β . (11)

C4 There is a > 0, b ∈ (0, 1) and λ > 0 so that (for γλ,a and τλ see (10) and (11))

a · (b− γλ,a) · w(b) > τλ .

C5 There is the only solution of

β′E [w (Fβ(|r1(β)|)) Z1 (e1 −X ′
1β)] = 0 (12)

namely β0 (the equation (12) is assumed to be vector equation in β ∈ Rp, of course).

Lemma 3.1 Let the conditions C1, ..., C5 be fulfilled. Then any sequence {β̂(IWV,n,w)}∞n=1

of the solutions of normal equations (9) is weakly consistent.

Due to the limited space of paper we are not able to give proofs of the results (they need
about 65 pages, see Vı́šek, 2005a, where all proof are given in details), hence we offer
only a sketch of proof of

√
n-consistency of β̂(IWV,n,w) (given below, which is shortest)

to hint the character of ideas which are the proofs based on. They are mainly a long
chain of small technicalities with one exception - Skorohod’s embedding into Wiener
process. Fe(r) and fe(r) stay for for the marginal of FX,e(x, v) and the marginal density,
respectively.

Naturally, for the
√

n-consistency of β̂(IWV,n,w) we need to enlarge a bit the conditions.
NC1 The density fe|X(r|X1 = x) is uniformly with respect to x Lipschitz of the first
order. Moreover, f ′e(r) exists and is bounded in absolute value.
NC2 The derivative w′(α) of the weight function is Lipschitz of the first order.
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Lemma 3.2 Let the conditions C1, ..., C5, NC1 and NC2 be fulfilled. Then any sequence
{β̂(IWV,n,w)}∞n=1 of the solutions of normal equations (9) is

√
n-consistent.

Sketch of proof: We will need the following
Assertion 3.1 Let condition C1 hold and fix arbitrary ε > 0 and put K =

√
8/ε+1. Then

there is nε ∈ N so that for all n > nε

P

({
ω ∈ Ω : sup

v∈R+

sup
β∈Rp

√
n

∣∣∣F (n)
β (v)− Fβ(v)

∣∣∣ < K

})
> 1− ε .

For the proof of assertions see Vı́šek (2005b). Rewriting (9) as

1√
n

n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
Ziei =

1

n

n∑

i=1

w
(
F

(n)
β (|ri(β)|)

)
ZiX

T
i · √n

(
β − β0

)
,

we can employ Assertion 3.1 and arrive at

1√
n

n∑

i=1

w (Fβ(|ri(β)|)) Ziei+R(1)
n =

1

n

n∑

i=1

[
w (Fβ(|ri(β)|)) ZiX

T
i + R(2)

n

]
·√n(β−β0) ,

(13)
where

R(1)
n = R(1)

n (β, X, Z, e) with sup
β∈Rp

∥∥∥R(1)
n (β,X,Z, e)

∥∥∥ = Op(1) (14)

and
R(2)

n = R(2)
n (β,X,Z, e) with sup

β∈Rp

∥∥∥R(2)
n (β, X,Z, e)

∥∥∥ = op(1) . (15)

Utilizing standard steps of functional analysis we can modify (13) into

1√
n

n∑

i=1

{
w′(Fβ0(|ri(β)|)) · [Fβ(|ri(β)|)− Fβ0(|ri(β)|)] + R

(3)
ni

}
Ziei

+
1√
n

n∑

i=1

w (Fβ0(|ri(β)|)) Ziei + R(1)
n

=
1

n

n∑

i=1

{w′(Fβ0(|ri(β)|)) · [Fβ(|ri(β)|)− Fβ0(|ri(β)|)] +R
(4)
ni

}
· ZiX

T
i · √n

(
β − β0

)

+

[
1

n

n∑

i=1

w (Fβ0(|ri(β)|)) ZiX
T
i + R(2)

n

]
· √n

(
β − β0

)
(16)

where, of course, for all rests R(j)
n relations similar to (14) or (15) hold. Then a long

chain of steps proving that we may substitute in the previous expression the residual ri(β)
by ri(β

0) = ei follows. The full version of proof requires 11 pages which however
contain mostly small standard steps of approximating one expression by other, equivalent
in probability. It allows to show that the left-hand-side of (16) is Op(1) and that the terms
of the right-hand-side converge in probability to regular matrix times

√
n (β − β0). The

proof is then concluded by the employment of
Assertion 3.2 Let for some p ∈ N , {V(n)}∞n=1, V(n) = {v(n)

ij }j=1,...,p
i=1,...,p be a sequence of
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(p × p) matrices such that for i = 1, . . . , p and j = 1, . . . , p limn→∞ v
(n)
ij = qij in

probability, where Q = {qij}j=1,...,p
i=1,...,p is a fixed non-random regular matrix. Moreover, let

{θ(n)}∞n=1 be a sequence of p-dimensional random vectors such that

∃ (ε > 0) ∀ (K > 0) lim sup
n→∞

P
(
‖θ(n)‖ > K

)
> ε .

Then
∃ (δ > 0) ∀ (H > 0) =⇒ lim sup

n→∞
P

(∥∥∥V(n)θ(n)
∥∥∥ > H

)
> δ

(for the proof of assertions see Vı́šek, 2002a).
Of course, for the asymptotic representation we need again to strengthen our condi-

tions on the underlying d.f. Let g(z) be the density of the d.f. G(z) = P (e2
1 < z).

AC1 For any a ∈ R there is ∆(a) > 0 so that infz∈(0,a+∆(a)) g(z) > Lg,a > 0.
AC2 There is q > 1 so that E |e1|2q < ∞.

Lemma 3.3 Let the conditions C1, ..., C5, NC1, NC2, AC1, and AC2 hold and let Q =
E{w(Fβ0(|e|))Z1X

′
1}. Then

√
n

(
β̂(LWS,n,w) − β0

)
= Q−1 · 1√

n

n∑

i=1

w (Fβ0(|ei|)) · Ziei + op(1) .
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