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Abstract: The multivariate multi-sample location problem is considered and
two generalizations of the Lawley-Hotelling test statistic based on spatial me-
dian are studied under the null hypothesis and Pitman alternatives. An asymp-
totic comparison with certain type of multi-sample sign test statistics is also
made. Finally, a Monte Carlo study is presented.
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1 Introduction
Consider q independent random samples from q continuous d-variate distributions having
the densities f(· − µi), i = 1, . . . , q. The µi’s are called location parameters and our aim
is to test the hypothesis

H0 : µ1 = · · · = µq .

This is known as multivariate multi-sample location problem. We will focus on the case
of spherically symmetric distributions around the location parameters µi, i.e. f(x−µi) is
determined by the Euclidean distance from x to µi.

First, let us denote X
(a)
i , i = 1, . . . , na, a random sample of size na from the a-th

population, X̄(a) the corresponding arithmetic mean and X̄ the arithmetic mean obtained
from the pooled sample of size n =

∑q
a=1 na. Let S := (n − q)−1

∑q
a=1

∑na

i=1(X
(a)
i −

X̄(a))(X
(a)
i − X̄(a))T be the sample covariance matrix. One of the best-known test statis-

tics for testing the above hypothesis is the Lawley-Hotelling generalised T 2 based on the
sample arithmetic means:

T 2 :=

q∑
a=1

na(X̄
(a) − X̄)T S−1(X̄(a) − X̄) . (1)

When the underlying density f(·) yields a finite covariance matrix then the asymptotic
distribution of T 2 under the hypothesis is chi-squared χ2

(q−1)d. It is easy to compute and
it also enjoys affine invariancy. However, it was shown (see e.g. Um and Randles, 1998)
that its performance is rather poor when the underlying distribution is heavy-tailed.

But provided the probability distribution is spherically symmetric, the center of sym-
metry, location parameter, mean and spatial median of the distribution coincide! So we
introduce in Section 2 a generalization of the Lawley-Hotelling test statistic by replacing
sample means with spatial medians of the samples. Nowadays, computation of spatial
median is no more a serious problem: several good algorithms have been developed and
computers are still faster. We have also been motivated by the fact that in case of heavy-
tailed distribution the sample spatial median is a more efficient estimator of location than
the sample mean (see e.g. Bai et al., 1990).
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In the following we will need some basic facts about spatial median. In general,
spatial median of the random sample X1, . . . , Xn is the quantity

µ̂ := arg min
M∈Rd

n∑
i=1

‖Xi −M‖ ,

where ‖ · ‖ denotes the usual Euclidean norm in Rd. Milasevic and Ducharme (1987)
proved that the spatial median is unique unless the points X1, . . . , Xn are concentrated on
a line and it was shown in Bai et al. (1990) that under some weak conditions the spatial
median is asymptotically normal with the covariance matrix

V := D−1
1 D2D

−1
1 , (2)

where

D1 := E
(

1

‖X − µ‖
(

Id − (X − µ)(X − µ)T

‖X − µ‖2

))
, D2 := E

(
(X − µ)(X − µ)T

‖X − µ‖2

)

and µ := arg minM∈Rd E(‖X −M‖) is the spatial median of the underlying probability
distribution. A consistent estimate is V̂ := D̂−1

1 D̂2D̂
−1
1 , where

D̂1 :=
1

n

n∑
i=1

1

‖Xi − µ̂‖
[
Id − (Xi − µ̂)(Xi − µ̂)T

‖Xi − µ̂‖2

]
,

D̂2 :=
1

n

n∑
i=1

(Xi − µ̂)(Xi − µ̂)T

‖Xi − µ̂‖2
.

Most of our asymptotic results were derived using the Bahadur-type representation of
the sample spatial median (see Chaudhuri, 1992). Let us assume throughout the rest of
the paper that the underlying density is bounded on every bounded subset of Rd. Then

µ̂ = µ +
1

n
D−1

1

n∑
i=1

U(Xi − µ) + Rn , (3)

and the asymptotic normality of µ̂ is also ensured. Here U(X) := X/‖X‖ denotes the
spatial sign of the vector X (i.e. the unit vector in the direction of X) and the remainder
Rn converges almost everywhere at a sufficiently fast rate to the zero vector.

2 Two Median-Based Statistics
Now, in the Lawley-Hotelling test statistics (1) we replace the arithmetic means X̄(a) with
the spatial medians µ̂a and the matrix S (= estimator of the asymptotic covariance matrix
of the mean) with the matrix V̂ (= estimator of the asymptotic covariance matrix of the
spatial median obtained from the pooled sample).

The arithmetic mean X̄ in (1) obtained from the pooled sample can be also viewed as
the weighted arithmetic mean of the sample means X̄(a) (with the weights na). So there
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are two ways how to replace the arithmetic mean X̄ . We can use either the weighted mean
µ̄ of the spatial medians µ̂a of the samples:

µ̄ :=
1

n

q∑
a=1

naµ̂a ,

or the spatial median µ̂ obtained from the pooled sample:

µ̂ := arg min
M∈Rd

q∑
a=1

na∑
i=1

‖X(a)
i −M‖ .

Despite of the ”X̄-situation”, the vectors µ̄ and µ̂ are not the same. However, they
are asymptotically equal under the hypothesis; it is a simple consequence of the Bahadur-
type representation (3) of the spatial median (see the proof of Theorem 1). So we get two
median analogues of the Lawley-Hotelling test statistic:

M1 :=

q∑
a=1

na(µ̂a − µ̄)T V̂ −1(µ̂a − µ̄) , M2 :=

q∑
a=1

na(µ̂a − µ̂)T V̂ −1(µ̂a − µ̂) .

According to the following theorem, M1 and M2 are asymptotically the same (note that
for this theorem no spherical symmetry is required) but we will be also interested in their
finite sample performance (see Section 4).

Theorem 1 M1 and M2 are asymptotically equal under the hypothesis and their asymp-
totic distribution is χ2

(q−1)d.

We note that the asymptotic chi-squared distribution occurs very frequently in multi-
sample situations, see e.g. Rublı́k (2001).

Now we are going to examine the asymptotic behavior of M1 and M2 under Pitman
alternatives, i.e. the location parameters are considered not to be equal, but µ + ha/

√
n in

the a-th sample. The ha’s are some constant vectors fromRd satisfying a natural condition
q∑

a=1

paha = 0 (4)

with pa = lim(na/n) > 0 being the asymptotic ’contribution’ of the a-th sample. Pitman
alternatives are contiguous to the null hypothesis when the underlying distribution sat-
isfies some regularity conditions: an acceptable class of distributions is for example the
exponential power family (see e.g. Um and Randles, 1998 for details) and in the following
we restrict our attention to this class.

Theorem 2 Under Pitman alternatives the asymptotic distribution of M1 is noncentral
chi-squared χ2

(q−1)d(δM1) with noncentrality parameter

δM1 =

q∑
a=1

pah
T
a V −1ha . (5)

Because of Theorem 1 and the contiguity, M1 and M2 are asymptotically equal under
Pitman alternatives; so the asymptotic distribution of M2 will be the same as that of M1

(with the same noncentrality parameter δM2 = δM1) under Pitman alternatives.
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3 Asymptotic Comparison with other Test Statistics
The presence of the spatial sign U(·) in the Bahadur-type representation (3) suggests that
there could be a connection between M1 (or M2) and the multi-sample spatial sign test
statistics based on U(·). A class of test statistics for the multivariate multi-sample location
problem was used in the proofs in Um and Randles (1998) and is given by

Wφ :=

q−1∑
a=1

q∑

b=a+1

nanbd

nE(φ2)

∥∥∥∥∥
1

na

na∑
i=1

U(X
(a)
i −θ̂)φ(R

(a)
i )− 1

nb

nb∑
j=1

U(X
(b)
j −θ̂)φ(R

(b)
j )

∥∥∥∥∥

2

,

where D
(a)
i is the Mahanalobis distance of the point X

(a)
i from a consistent estimate θ̂

of the common location parameter µ, R
(a)
i is the rank of D

(a)
i among D

(1)
1 , . . . , D

(q)
nq

and φ is the score function (an arbitrary nondecreasing function on (0, 1) with E(φ2) :=∫ 1

0
φ2dP < +∞). Two special cases φ1(t) ≡ 1 and φ2(t) = t were considered.
Wφ1 does not depend on the ranks R

(a)
i and is a multi-sample extension of the multi-

variate one-sample sign test statistic (studied e.g. by Möttönen, Oja, and Tienari, 1997).
Moreover, in case of spherical symmetry the equality UT (X)U(Y ) = cos(X, Y ) entails
that Wφ1 is a multi-sample version of the well-known cosine-based Rayleigh test statistic
which is being used for testing of uniformity of the distribution on the unit sphere.

The next theorem shows that the expected connection between M1 (or M2) and Wφ1

is really close:

Theorem 3 The median-based statistic M1 (and M2 too) and the sign-based Wφ1 are
asymptotically equal under the null hypothesis. Consequently, their asymptotic distribu-
tions and noncentrality parameters are the same under Pitman alternatives.

Finally, the Pitman asymptotic relative efficiencies ARE (=ratio of noncentrality param-
eters) of M1 (or M2) with respect to the three test statistics mentioned above can be
computed using (5). In case of spherical symmetry the ARE’s depend on the type of the
distribution, on the dimension d but never on the ha’s or pa’s!

Table 1: AREs of M1 and M2 with respect to T 2, Wφ1 , Wφ2 for different dimensions d.
Laplace Nd(0, Id)

d T 2 Wφ1 Wφ2 T 2 Wφ1 Wφ2

2 1.500 1 1.333 0.785 1 0.798
3 1.333 1 1.333 0.849 1 0.871
4 1.250 1 1.333 0.884 1 0.919
5 1.200 1 1.333 0.905 1 0.954
6 1.167 1 1.333 0.920 1 0.981
7 1.143 1 1.333 0.931 1 1.002
8 1.125 1 1.333 0.940 1 1.020
9 1.111 1 1.333 0.946 1 1.036
10 1.100 1 1.333 0.951 1 1.049
∞ 1 1 1.333 1 1 1.333
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As an example, numerical results for the Laplace (representant of heavy-tailed dis-
tribution) and normal distribution (representant of light-tailed distribution) are given in
Table 1, including the limit values for d → +∞. The explicit formulas for the noncen-
trality parameters of T 2 and Wφ2 can be found e.g. in Um and Randles (1998). For the
diagonal entries of the matrix V (needed for the computation of the noncentrality param-
eter δM1) we used the formulas in Chaudhuri (1992).

One can see a very good performance of M1 in case of the heavy-tailed Laplace dis-
tribution. When the distribution is multivariate normal the superior performance of T 2

diminishes with higher dimension d, since the numbers in the corresponding column con-
verge to 1. A very interesting phenomenon can be noticed in the last column: M1 is less
efficient than Wφ2 only for dimensions d ≤ 6.

4 Monte Carlo Study
We carried out a simulation study to illustrate the finite-sample performance of our median-
based test statistics M1 and M2. The study also includes the test statistics T 2, Wφ1 , Wφ2

and a well-known nonparametric statistic L based on component-wise ranks (see e.g. Um
and Randles, 1998). The underlying distributions were 3-variate Cauchy or 3-variate nor-
mal. In each case we sampled 1000 times from q = 3 populations with sample sizes
n1 = n2 = n3 = 30, centered around the location parameters θ1, θ2 and θ3 suitable cho-
sen to show a reasonable range of powers. The 5% critical value of χ2

6 was used to reject
H0. The values in the tables are proportions of times the statistic rejected H0.

In case of Cauchy distribution, both M1 and M2 clearly outperform T 2, Wφ2 , L. Also
note a very poor performance of Lawley-Hotelling T 2. The nominal level 0.05 is not
attained by M1 or M2 under H0, the reason are small sample sizes (but already the sample
sizes of 100 provide a very satisfactory 0.051)

When the underlying distribution was multivariate normal the performance of Wφ2 is
better with respect to M1 and M2. But the ”winner” is Lawley-Hotelling T 2 and it has to
do with the fact that arithmetic mean is the optimal estimator of location under normality.

According to the simulations the median-based test statistics M1, M2 seem to be
preferable especially for heavy-tailed distribution. The results also suggest that the power
of M2 is slightly higher than the power of M1 in the finite-sample situations (despite of
their asymptotic equality stated in Section 2).

Table 2: Monte Carlo comparison of M1 and M2 with other test statistics.
Statistics

θ1 θ2 θ3 M1 M2 T 2 Wφ1 Wφ2 L

Cauchy distribution
(0,0,0) (0,0,0) (0,0,0) .075 .082 .025 .051 .058 .056
(0,0,0) (.3,.3,.3) (0,-.3,0) .330 .343 .048 .380 .196 .236
(0,0,0) (.6,.6,.6) (0,-.6,0) .761 .780 .065 .863 .537 .608

Normal distribution
(0,0,0) (0,0,0) (0,0,0) .049 .051 .083 .061 .063 .062
(0,0,0) (-.1,-.1,0) (.1,.1,0) .089 .094 .140 .103 .097 .109
(0,0,0) (-.2,-.2,0) (.2,.2,0) .256 .262 .354 .291 .276 .317
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5 Remark on Spatial Median Algorithms
In statistical papers the most often suggested algorithms to compute the sample spatial
median are the Gower’s based on the gradient method (see Gower, 1974) and the Be-
dall & Zimmermann’s based on the Newton-Raphson method (see Bedall and Zimmer-
mann, 1979). Bedall and Zimmermann (1979) claim their algorithm is at least 10-times
faster than the Gower’s. However, we used a very simple iterative algorithm proposed by
Weiszfeld (already in 1937!) and recently refined by Vardi and Zhang (2000) to ensure
its convergence from an arbitrary starting point. And our simulations have shown that it
performs 10-times as fast as the Bedall & Zimmermann’s!
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Appendix
Proof of Theorem 1: Using (3) we have

µ̂ = µ +
1

n
D−1

1

q∑
a=1

na∑
i=1

U(X
(a)
i − µ) + Rn =

=
1

n

q∑
a=1

na

[
µ +

1

na

D−1
1

na∑
i=1

U(X
(a)
i − µ)

]

︸ ︷︷ ︸
=µ̂a−R

(a)
na

+Rn = µ̄− 1

n

q∑
a=1

naR
(a)
na

+ Rn

and the rate of convergence of the remainders R’s (see Chaudhuri, 1992) implies that for
every a = 1, . . . , q √

na(µ̂a − µ̂) =
√

na(µ̂a − µ̄) + oP (1) ,

hence, the statistics M1 and M2 are asymptotically equal.
To establish the asymptotic distribution of M1 we rewrite it into the matrix form

M1 = ZT (Iq ⊗ V̂ −1)Z , (6)

where Z := (
√

n1(µ̂1 − µ̄), . . . ,
√

nq(µ̂q − µ̄))T = B̂(
√

n1(µ̂1 − µ), . . . ,
√

nq(µ̂q − µ))T

and

B̂ =


Iq −




√
n1

n
...√
nq

n




(√
n1

n
, . . . ,

√
nq

n

)

⊗ Id .

Since we assume that lim(na/n) = pa > 0, we have

Z = BX + oP (1) (7)
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with X := (
√

n1(µ̂1 − µ), . . . ,
√

nq(µ̂q − µ))T , B := (Iq − √p
√

pT ) ⊗ Id and
√

p :=
(
√

p1, . . . ,
√

pq)
T . Combining (6) and (7) we obtain

M1 = XT B(Iq ⊗ V −1)BX + oP (1) = XT AX + oP (1) ,

where A := (Iq −√p
√

pT )⊗ V −1.
According to (2), the asymptotic covariance matrix of the asymptotically normal vec-

tor X is W := Iq ⊗ V and one can easily verify that

WAWAW = WAW (8)

and trace(AW ) = (q − 1)d. So the asymptotic distribution of M1 is χ2
(q−1)d.

Proof of Theorem 2: As in the proof of Theorem 1, we get M1 = XT AX + oP (1),
but the mean vector of X is changed: asymptotically X ∼ Nqd(h

∗,W ), where h∗ :=
(
√

p1h
T
1 , . . . ,

√
pqh

T
q )T . In addition to (8), the equality h∗T Ah∗ = h∗T AWAh∗ holds

and WAh∗ belongs to the linear subspace spanned by the columns of the matrix WAW .
Hence, the asymptotic distribution of M1 under Pitman alternatives will be noncentral
chi-squared χ2

(q−1)d(δM1). Making use of (4), the noncentrality parameter δM1 is δM1 =

h∗T AWAWAh∗ = h∗T Ah∗ =
∑q

a=1 pah
T
a V −1ha.

Proof of Theorem 3: Let us denote Ū(a) := (na)
−1

∑na

i=1 U(X
(a)
i − µ). According to the

assumptions θ̂ = µ + oP (1) and following the idea of the proofs in Peters and Randles
(1991) one can show that

Wφ1 =

q−1∑
a=1

q∑

b=a+1

nanbd

n
(Ū(a) − Ū(b))

T (Ū(a) − Ū(b)) + oP (1) .

After a straight-forward computation we get

Wφ1 =

q∑
a=1

nadŪT
(a)Ū(a) −

q∑

a,b=1

nanbd

n
ŪT

(a)Ū(b) + oP (1) . (9)

Using (3) we have for a = 1, . . . , q:

√
naŪ(a) = D1

√
na

(
µ +

1

na

D−1
1

na∑
i=1

U(X
(a)
i − µ)− µ

)
=

= D1

√
na(µ̂a −R(a)

na
− µ) = D1

√
na(µ̂a − µ) + oP (1) , (10)

where R
(a)
na is the remainder from the Bahadur-type representation corresponding to µ̂a

(see Chaudhuri, 1992 for the rate of convergence). Making use of spherical symmetry it
is easy to show that D2 = 1

d
Id. Putting (10) into (9) and with (2) in mind we finally have:

Wφ1 =

q∑
a=1

na(µ̂a−µ)T D1dD1(µ̂a−µ)−
q∑

a,b=1

nanb

n
(µ̂a−µ)T D1dD1(µ̂b−µ)+oP (1) =

=

q∑
a=1

na(µ̂a − µ̄)T V −1(µ̂a − µ̄) + oP (1) = M1 + oP (1) ,

and the proof is complete.
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