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Abstract: In high-dimension (K) low sample size (n) environments, often
nonlinear, inequality, order or general shape constraints crop up in complex
ways, and as a result, likelihood based optimal statistical inference proce-
dures may not exist, at least, may not be in manageable form. While some
of these inference problems can be treated in asymptotic setups, the curse of
dimensionality (i.e., K >> n with often n small) calls for a different type
of asymptotics (in K) with different perspectives. Roy’s union-intersection
principle provides some alternative approaches, generally more amenable for
K >> n environments. This scenario is appraised with two important sta-
tistical problems in genomic studies: a large number of (possibly dependent)
genes with heterogeneity amidst a smaller sample create impasses for stan-
dard robust inference. These perspectives are examined here in a nonstandard
statistical analysis.
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1 Introduction
For large and possibly inequality, order or shape constrained parameter (and/or sample)
spaces, even in parametric setups, exact (and optimal) statistical inference based on the
classical likelihood principle (LP) may be computationally (or even theoretically) too
difficult to formulate; often they may not exist in adaptable forms. Without much suc-
cess with finite-sample optimality, statistical inference in such nonstandard/nonregular
environments has mostly taken an asymptotic (n large) approach that goes far beyond
the parametrics, albeit optimality properties may not transpire universally. Roy (1953)
union-intersection principle (UIP) seems to have some relative advantages in this setup
(Silvapulle and Sen, 2004, Tsai and Sen, 2005).

For high-dimension low sample-size (HDLSS) (i.e., K >> n) environments (with of-
ten n small), inference perspectives are quite different than conventional models where K
is small while n >> K. Robustness perspectives are even more nonstandard: Departures
from model assumptions can take place in more complex and involved ways. The usual
concepts of influence function, breakdown point and error-contamination (all posed in lo-
cal robustness contexts) need to be addressed in a far more complex setup: sparse activity
in high-dimensional data setups may distort local robustness perspectives considerably,
and thereby, call for more complex and generally highly nonstandard statistical measures.

The ongoing evolution of information and bio-technology has created an abundance
of complex and enormously large dimensional data models in some interdisciplinary re-
search setups. The K >> n with n possibly small scenario dominates in genomics (and
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bioinformatics at large), a different kind of asymptotics (in K, not n) being the focal point
of statistical modelling and analysis in this context. Two important and challenging statis-
tical problems in genomics, namely, (i) high-dimensional gene expressions in microarray
studies, and (ii) purely qualitative nucleotides in DNA / RNA studies, are appraised here
with the help of a subgroup decomposability characterization (Sen, 1999; H. P. Pinheiro
et al., 2005; A. S. Pinheiro et al., 2005).

The curse of dimensionality has led to some rather challenging tasks for valid and ef-
fective statistical appraisals in genomic studies. Most of the standard statistical inference
tools are of limited utility in such K >> N , with n possibly small, setups. The response
variables (even when continuous) may be distinctly nonnormal, (usually) count or dis-
crete, and in some cases, are purely qualitative. This feature with the high-dimensionality
makes it unreasonable to adopt standard (continuous / discrete or categorical) multivariate
models where the number of associated parameters may outnumber the sample size, and
thus creating roadblocks in statistical analysis. To illustrate this drawback, we consider
in Section 2 a simple multivariate analysis of variance (MANOVA) model and examine
the difficulties arising when K >> n. An alternative approach based on robust estima-
tion of dispersion and a suitable subgroup decomposability property is explored in this
setup. Section 3 deals with (differential) gene expressions in microarray studies where
quantitative (usually count), possibly nonnormal variables in a huge number (dimension)
vitiate the adaptability of standard MANOVA tools. We consider some nonparametric
resolutions based on suitable stochastic ordering characterizations. Section 4 relates to
some recent findings of A. S. Pinheiro et al. (2005) where the Hamming distance in a
purely categorical setup is incorporated in the subgroup decomposition. Section 5 deals
with the general distributional asymptotics pertaining to the K >> n with possibly n
small environment. The concluding section deals with some general remarks.

2 K >> n Impasses in MANOVA
Consider a one-way MANOVA model with G(≥ 2) groups of samples of sizes n1, . . . , nG,
respectively. The sample observations (K-vectors) in the gth group are denoted by Xg1,
. . . ,Xgng , and are assumed to be independent and identically distributed (i.i.d.) with
a K-variate distribution Fg; the mean vector and dispersion matrix for this distribution
(assumed to be finite and positive definite) are denoted by µg and Σg respectively, for
g = 1, . . . , G; all these n =

∑G
g=1 ng r.v.’s are assumed to be independent. We want to

test for the null hypothesis
H0 : µ1 = . . . = µG , (1)

against the set of alternatives

H1 : max{||µj − µl|| : 1 ≤ j < l ≤ G} > 0 , (2)

with some further regularity assumptions on the Σg. In the conventional case, we assume
that the Fg are all multinormal and further the Σg are all equal. A further condition needed
to have manageable distribution theory of the test statistic is

n−G > K i.e. n > G + K . (3)
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The classical MANOVA tests are based on the following two (random) matrices:

SW =
G∑

g=1

ng∑
i=1

(Xig − X̄g)(Xig − X̄g)
′ ,

SB =
G∑

g=1

ng(X̄g − X̄.)(X̄g − X̄.)
′ , (4)

where X̄g is the gth group mean vector, g = 1, . . . , G and X̄. is the combined group
mean vector. These are known as the ’within group’ and ’between group’ (centered)
sum of product matrices. The Lawley-Hotelling trace statistic (= trace(SBS−1

W )), Wilks’
likelihood ratio criterion (= |SB|/|SB + SW ) and the Roy largest root criterion (= largest
characteristic root of SBS−1

W ) are all functions of the characteristic roots of SBS−1
W , and

are all affine-invariant statistics. For G = 2, all the three statistics are equivalent and the
test for H0 based on either of them is best (i.e., uniformly most powerful) invariant. For
G ≥ 3, not only these statistics might differ from each other but also may not possess
this best invariance property. Asymptotically, the likelihood ratio test has the best average
power property over suitable ellipsoidal contours in the parameter space. Apart from
the basic requirement that n > K + G, these tests being based on second order sample
moments are generally quite nonrobust for gross-error contamination, outliers, non(multi-
)normality and possible heterogeneity of the Σg. These nonrobustness aspects are shared
by the sample mean vector Xg but to a relatively lesser extent.

Even under the assumed multi-normality condition, the rank of SW is (n − g) ∩ K
and the rank of SB is (G− 1) ∩K. So, if n−G < K, i.e., in the K >> n environment,
both SW and SB are highly singular matrices, creating impasses for the proper definition
of any of these three statistics. Further, because of this degeneracy, there is no simple way
of finding out their null distributions in a manageable form (while the nonnull distribution
theory is admittedly much more complex). The situation is totally out of hand when n is
small but K is very large, as is the case in genomics (we shall see in the next section). We
therefore take an alternative approach based on subgroup-decomposability which does
not put much emphasis on the high-dimensional homoscedasticity (i.e., homogeneity of
the Σg when K is greater than n), and amends well in the K >> n environment.

Assume that the distribution Fg (not necessarily multi-normal) admits finite mean
vector µg and finite (positive definite) dispersion matrix Σg, for g = 1, . . . , G. Then
based on the (symmetric) kernel (matrix of degree 2):

ψ(a,b) =
1

2
(a− b)(a− b)′ , a,b ∈ RK , (5)

we consider some estimable parameters (matrices) basically related to the within and
between group dispersion matrices. Let

Γgg = Eψ(Xg1,Xg2) = Σg , g = 1, . . . , G ; (6)

Γgg′ = Eψ(Xg1,Xg′1) =
1

2
(Γgg + Γg′g′) +

1

2
(µg − µg′)(µg − µg′)

′ , (7)
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for g 6= g′ = 1, . . . , G. Therefore, noting that the second matrix on the right hand side is
p.s.d. (of rank 1), we claim that for every pair (g, g′) : 1 ≤ g < g′ ≤ G,

∆gg′ = 2Γgg′ − Γgg − Γg′g′ (8)

is p.s.d., and for every λ ∈ RK ,

λ′∆gg′λ = ||λ′(µg − µg′)||2 ≥ 0 , (9)

where the equality sign holds only when λ′(µg − µg) = 0. Motivated by this feature,
we consider a (Kiefer-)class Φ = {φ(·)} of nonnegative real valued functions φ(A) of a
K ×K p.s.d. matrix A satisfying the inequality

φ(Γgg′) ≥ 1

2
(φ(Γgg + φ(Γg′g′)) , ∀ φ ∈ Φ , (10)

where the equality sign holds only when µg = µg′ , g 6= g′ = 1, . . . , G.
Note that an optimal, unbiased, nonparametric estimator of Γgg is

Sgg =

(
ng

2

)−1 ∑
1≤i<j≤ng

1

2
(Xgi −Xgj)(Xgi −Xgj)

′ , (11)

for g = 1, . . . , G. Similarly, we have

Sgg′ = (ngng′)
−1

ng∑
i=1

ng′∑
j=1

1

2
(Xgi −Xg′j)(Xgi −Xg′j)

′ (12)

an optimal unbiased nonparametric estimator of Γgg′ , for g 6= g′ = 1, . . . , G. Note that
these estimates are (Hoeffding, 1948) (generalized) U -statistics and they adapt well in
many environments, including K >> n. In the present context, G, the number of groups
(samples) is assumed to be fixed (and usually small). In this respect, we incorporate a
subgroup decomposability characterization (similar to the ANOVA decomposition), con-
sidered in Sen (1999) and H. P. Pinheiro et al. (2005), A. S. Pinheiro et al. (2005). In
their case, the specific case of φ(A) used is the trace criterion (i.e., trace(A) =

∑K
j=1 ajj)

which is analogous to the Hamming distance, and we shall discuss that briefly in the next
section.

In addition to the statistics Sgg′ , 1 ≤ g ≤ g′ ≤ G, we consider some pooled sample
statistics defined below. We pool the G sample observations and denote the n observation
(vectors) as X∗

r , 1 ≤ r ≤ n, where the first n1 observations correspond to the first group,
the next n2 to the second, and so on (the last nG to the Gth group). Then, based on the
same kernel ψ(·), we have the combined sample U -statistic (matrix)

S0 =

(
n

2

)−1 ∑
1≤r<s≤n

ψ(X∗
r,X

∗
s)

= (n− 1)−1

n∑
r=1

(Xr − X̄0)(Xr − X̄0)
′ , (13)
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where X̄0 is the pooled sample mean vector and whenever there is no confusion, we
denote the X∗

r by Xr. Then, by routine steps we obtain that

(
n

2

)
S0 =

G∑
g=1

(
ng

2

)
Sgg +

∑

1≤g 6=g′≤G

ngng′Sgg′ , (14)

and using the identity that

(
ng

2

)(
n

2

)−1

=
ng

n
− ng(n− ng)

n(n− 1)
, ∀ g = 1, . . . , G ,

we have

S0 =
G∑

g=1

ng

n
Sgg +

∑

1≤g<g′≤G

ngng′

n(n− 1)
(2Sgg′ − Sgg − Sg′g′) . (15)

Note that when φ(A) = trace(A), the last equation leads us to the following

φ(S0) =
G∑

g=1

ng

n
φ(Sgg) +

∑

1≤g<g′≤G

ngng′

n(n− 1)
(2φ(Sgg′)− φ(Sgg)− φ(Sg′g′)) , (16)

as φ(·) is additive. We denote the first and second terms on the right hand side of the
last equation by ∆̂W and ∆̂B respectively; they represent the within and between group
components in this subgroup representation. Note that this subgroup decompasibility is
somewhat different from the classical MANOVA decomposability, and here we are not
imposing the affine invariance which underlies the MANOVA case. The between group
component ∆̂B is an unbiased estimator of

∆B =
∑

1≤g<g′≤G

ngng′

n(n− 1)
trace(2Γgg′ − Γgg − Γg′g′) , (17)

which is a nonnegative entity, and is zero when the nullhypothesis H0 : µ1 = · · · = µG

holds, irrespective of the homogeneity of the Σg. Thus, ∆B is positive when the mean
vectors are not all the same, irrespective of possible heterogeneity of the dispersion ma-
trices. This feature makes ∆B insensitive to possible heteroscedasticity of the G groups.
The sample counterpart ∆̂B being unbiased, has under H0 : µ1 = · · · = µG zero expecta-
tion, and hence takes on both positive and negative values; it may also take on negative as
well as positive values when H0 does not hold, but it will be stochastically more positive.
The within group component ∆̂W is insensitive to the null hypothesis H0 being true or
not, and thereby serves as a good scaling factor for the between group component. Hence,
it seems logical to use the following (analogous to the ANOVA) test statistic

L∗1 = ∆̂B/∆̂W , (18)

for testing H0 against H1 : µ1, . . . , µG not all equal, rejecting the null hypothesis for large
positive values of L∗1. By its formulation, the test is robust to possible heteroscedasticity
of the dispersion matrices. However, being based on the sample second order moments,
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this test (like the ANOVA tests) is likely to be nonrobust to gross-error contamination or
outliers.

It is, therefore, of some interest to consider some alternative test tests based on a
similar subgroup decomposability but likely to be more robust in this respect. With that
in mind, we consider a (symmetric) kernel (of degree 2)

ψ(a,b) =
K∑

k=1

|ak − bk| , a,b ∈ RK (19)

and note that

Eψ(Xgi,Xgj) =
K∑

k=1

E|Xgki −Xgkj| =
K∑

k=1

γ∗gg,k , (20)

where γ∗gg,k is the Gini mean difference for the kth marginal distribution of Fg, the joint
distribution of Xg1, for g = 1, . . . , G. In the same vein, we have

Eψ(Xgi,Xg′j) =
K∑

k=1

E|Xgki −Xg′kj| =
K∑

k=1

γ∗gg′,k , (21)

for g 6= g′ = 1, . . . , G. The additively decomposition for the mean square distance
(displayed in (5) - (7)) may not pertain to the case of the γgg′,k. Nevertheless, under
certain mild conditions, an inequality like in (10) holds.

Consider first a shift model (without necessarily assuming that all the underlying
(marginal) distributions are symmetric). Thus, we take

Fg(x) = F0(x− µg) , x ∈ RK , g = 1, . . . , G , (22)

where F0 has not necessarily marginal distributions symmetric about 0. In this setup, note
that for every g, k, Xgki −Xgkj , i 6= j has a distribution (say F ∗

0 ) symmetric about 0, so
that the γgg,k do not depend on the µg, and

γ∗gg,k = γ∗0,k , ∀ g = 1, . . . , G ; k = 1, . . . , K , (23)

where, F ∗
0 is obtained from F0 by convolution, and of course, the γ∗0,k may vary from one

k = 1, . . . , K to another. Further, for this shift model, for any pair (g, g′) : g 6= g′(=
1, . . . , G),

(Xgi −Xg′j)− (µg − µg′) (24)

has a distribution (same as that of Xgi −Xgj) which is symmetric about 0. Thus, Xgki −
Xg′kj has the median µgk−µg′k (the same as their mean). Further, by the well known fact
that for any distribution, the mean absolute deviation is a minimum about the median (=
mean under symmetry), we obtain that for every k = 1, . . . , K, 1 ≤ g 6= g′ ≤ G,

γ∗gg′,k = E|Xgki −Xg′kj|
≥ E|Xgki −Xg′kj − µgk + µg′k|
= γ∗gg,k = γ∗g′g′,k =

1

2
(γ∗gg,k + γ∗g′g′,k) , (25)
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where the equality sign holds only when µgk = µg′k. Thus, in this setup, the subgroup
decomposability holds though the strict additively decomposability may not. This shows
that under the homogeneity of the Σg, even without normality, the Gini mean difference
based measures satisfy the subgroup decomposability and an ANOVA type test can be
incorporated under suitable regularity conditions.

Consider next an intermediate case where the marginal distributions (of the G K-
variate distributions F1, . . . , FG) are normal but not necessarily homoscedastic. Then, for
every g = 1, . . . , G and k = 1, . . . , K, and for i 6= j, the difference Xgki − Xgkj has
normal distribution with 0 mean and variance 2σg,kk, so that γ∗gg,k =

√
2/π

√
2σgg,k. On

the same count, for g 6= g′, Xgki − Xg′kj is normal with mean µgk − µg′k and variance
(σgg,k + σg′g′,k), so that

E|Xgki −Xg′kj − µgk + µg′k| =
√

2

π

(√
σgg,k + σg′g′,k

)
, (26)

where by the classical moment inequality,

1

2
(σgg,k + σg′g′,k) ≥ (

1

2
(
√

σgg,k +
√

σg′g′,k))
2 , (27)

where the equality sign holds holds only when σgg,k = σg′g′,k. The last two expressions
lead us to the following.

γ∗gg′,k = E|Xgki −Xg′kj| ≥
√

2

π
(σgg,k + σg′g′,k)

1/2

≥ 1

2
(

√
2

π
(
√

2σgg,k +
√

2σg′g′,k)

=
1

2
(γ∗gg,k + γ∗g′g′,k) , (28)

where in the first line, the equality sign holds only when µgk = µg′k while in the penulti-
mate line, the equality sign holds only when γ∗gg,k = γ∗g′g′,k, for k = 1, . . . , K, g 6= g′ =
1, . . . , G. Thus, even under H0, γ∗gg′,k ≥ (γ∗gg,k + γ∗g′g′,k)/2 with the equality sign holding
only when γ∗gg,k = γ∗g′g′,k that is in the marginal homoscedastic case. If we take, as before,
the sample counterparts of these γ∗gg′,k by m∗

gg′,k, that is

m∗
gg,k =

(
n

2

)−1 ∑
1≤i<j≤ng

|Xgki −Xgk,j| , (29)

mgg′,k = (ngng′)
−1

ng∑
i=1

ng′∑
j=1

|Xgki −Xg′kj| , (30)

for g 6= g′ = 1, . . . , G; k = 1, . . . , K, then the ’between group’ component may be
defined as before by

∑

1≤g<g′≤G

ngng′

n(n− 1)

K∑

k=1

[2mgg′,k −mgg,k −mg′g′,k] . (31)
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Note that in the general heteroscedastic case, even under H0, (31) has a nonnegative
expectation that depends on the degree of divergence of the γ∗gg′,k, g, g′ = 1, . . . , G,
k = 1, . . . , K. A similar feature holds for the between group component under the Huber
contamination model as well as general mixture normal distributions. This implies that in
such heteroscedastic environments, the use of (31) entails the estimation of the centering
constant, requiring in turn the estimation of the variances and covariances by some other
methods. Thus, we will confront nonrobustness aspects possibly to a similar extent as
in the case of the conventional variances. On the other hand, if we desire to have good
robustness properties without the normality assumption but retaining the homoscedastic-
ity assumption, the Gini mean difference based testing procedure can be advocated as a
strong contender to the mean square errors based measure.

The main advantage of using the Hamming-distance type measures as adapted for
quantitative responses (or trace-criterion based measures) comes from its amenability in
the K >> n environment with flexibility to choose a more robust version of the sample
second order moments. We shall illustrate this point more with the gene expression model
in the next section.

3 Microarray Gene Expression Model

Microarray technology allows studies of typically thousands of genes (K), possibly dif-
ferentially expressed under diverse biological / experimental setups, simultaneously with
only a few (n) arrays. Such experiments are excessively costly, thus preempting the pos-
sibility of having a very large number of arrays, and resulting in the K >> n environ-
ment. Gene expression differentials under different environment cast light on plausible
gene-environment interaction (or association), and thus may help mapping disease genes
whenever the arrays are so designed (e.g., normal vs. HIV positive patients at different
stages of AIDS infliction). Nevertheless, there are statistical challenges in microarray data
models (Sebastiani et al., 2003).

Typically, in an array there is a large number (K) of genes whose expression lev-
els are measured by their color intensity (or luminosity) as a quantitative variate on the
[0, 1] scale or as percentage ranging from 0 to 100. A gene associated (causally or sta-
tistically) with a target disease is termed a disease gene (DG), and others as nondisease
genes (NDG). Typically, only a few are DG while the vast majority NDG. A NDG is
expected to have a low gene expression level while DG is likely to have a high expres-
sion level. Thus, there may be a natural stochastic ordering of the gene expression levels
of DG’s with varying disease severity while the NDG expression levels are expected to
be stochastically unaffected by such disease level differentials. This makes it appealing
to incorporate MANOVA models to test for gene-environment interaction, albeit in the
K >> n environment with two different classes of genes (DG and NDG).

Suppose that there are Q DG and the remaining K − Q NDG. Typically, Q <<
K and it is unknown. In that setup, the primary statistical task is to ascertain the Q
DG’s in a statistical manner; both Q and the tags of the DG’s are unknown. Moreover,
the expression levels of all the K genes may not be statistically independent. However,
for the NDG, the expression levels being stochastically small, such inter-dependence is
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expected to be small and hence could be taken as statistically independent. But for the
DG, the stochastic interdependence may not be negligible. In the same vein, stochastic
dependence between DG and NDG’s can be ignored. Therefore, in our modelling in a
simple setup, we can assume that the gene expression level of the kth gene, denoted by
Xk, k = 1, . . . , K, though not stochastically independent, satisfy the following condition:

K−1Var

(
K∑

k=1

Xk

)
< ∞ . (32)

Or in other words, possible DG clustering effect does not alter the convergence order of
the variance of the sum. If Q is O(K1/2) (or of smaller order), then (32) holds when
the NDG’s are assumed to be uncorrelated with each other and with the DG’s as well.
It is also possible to conceive of other form of clustering of the genes for which the
sizes of the clusters are not large (while the number of clusters could be large) and the
clusters are uncorrelated. Further, if a suitable mixing condition (without possibly the
stationarity) can be assumed then under quite general conditions (Yoshihara, 1993) (32)
can be validated. We shall make more comments on this assumption in a later section.
Of course, when the arrays differ with respect to biological or environmental setups, the
variance functions also do so. In this sense, conventional MANOVA models may not be
appropriate in microarray studies.

We consider G groups of arrays (relating to G ≥ 2 possibly different biological / envi-
ronmental setups), the gth group having ng ≥ 2 arrays, 1 ≤ g ≤ G; all these n =

∑
g ng

arrays are assumed to be stochastically independent. In each array there are K (a large
number of) genes whose expression levels are measured simultaneously by microarray
technology. As these levels (denoted by l) are typically between 0 and 1, we use the log-
transformation, i.e.,− log(1−l) which will have the rangeR+ = [0,∞). It is also possible
to use some other transformation like the logit which corresponds to log{l/(1− l)} or the
normit which is defined by φ−1(l), φ being the standard normal distribution function. In
both the latter cases, the range is transformed to the real line R. For the ith microarray
in the gth group, the (K) vector of (possibly transformed) expression levels is denoted
by Xgi = (Xgi1, . . . , XgiK)′ where Xgik corresponds to the kth gene, for k = 1, . . . , K,
i = 1, . . . , ng, g = 1, . . . , G.

It is usually assumed, albeit often not quite justifiably, that Xgi has a K-variate normal
distribution with mean vector µg and dispersion matrix Σg, for g = 1, . . . , G; the µg may
then be allowed to be possibly different for different groups but it is traditionally addumed
that the Σg are all the same (but unknown). Thus, the homogeneity of the Σg and multi-
normality of the underlying distributions constitute the basic regularity assumptions, thus
relating possible group divergence solely in terms of the variability of the µg, 1 ≤ g ≤ G.
Even so, as explained in the previous section, for K >> n−G, classical MANOVA tools
become unusable. Faced with this discouraging feature of standard multivariate analy-
sis, we consider an alternative approach along the lines of the preceding section. Such a
quasi-marginal approach is amenable for the K >> n (with even n small) environment
and also for plausible stochastic dependence among the K genes (positions) in an array.

For the kth gene (position), consider the n (random) variables Xgik, i = 1, . . . , ng;
g = 1, . . . , G where k ranges over 1, . . . , K. Let Tnk be a suitable ANOVA test statistic
based on the ’within group’ and ’between group’ subgroup decomposability (in the sense
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of the developments in the preceding section. Both the mean square errors and Gini’s
mean difference criteria are bonafide members of this class. Note that we are not to
assume normality of the distributions, and even sometimes, homogeneity of their scale
parameters. In this context, it is also possible to use suitable rank statistics or some robust
M -statistics, provided they pertain to subgroup decomposability in a proper sense. We
illustrate this with a very simple case of the Wilcoxon-Mann-Whitney (WMW) statistics.
For the pair (g, g′) of groups, let Wgg′k be the WMW statistic, for 1 ≤ g < g′ ≤ G.
Note that, conventionally, we may let Wggk = 1/2, ∀ g = 1, . . . , G. In the same vein,
for the combined group, we have W0k = 1/2. Now, if the G groups are stochastically
ordered (as is the case when the biological / environmental factors across the groups are
in increasing level of dominance), then Wgg′k ≥ 1/2, ∀ 1 ≤ g < g′ ≤ G, with at least one
strict inequality. Thus, if we define

Tnk =
∑

1≤g<g′≤G

ngng′

n(n− 1)
{2Wgg′k −Wggk −Wg′g′k}

=
∑

1≤g<g′≤G

ngng′

n(n− 1)
{2Wgg′k − 1} , (33)

for k = 1, . . . , K, then the subgroup decomposability property holds. (Note that Wgg′k +
Wg′gk = 1, for every g 6= g′ = 1, . . . , G, so that in the above sum, we may not be able to
replace the range 1 ≤ g < g′ ≤ G by 1 ≤ g 6= g′ ≤ G.)

Within this general framework, we let Tn = (Tn1, . . . , TnK)′ and consider the null
hypothesis H0 that the G groups are statistically homogeneous, and the alternative hy-
pothesis H1 relates to possible group divergence with special emphasis on dispersions
(for which the subgroup decomposability was formulated in Section 2). Note that for the
MW statistics, the dispersion was measured in terms of plausible stochastic ordering of
the G groups. We define τ n = (τn1, . . . , τnK)′ with the elements

τnk = E{Tnk|H0} , k = 1, . . . , K . (34)

Under the null hypothesis, we may set without any loss of generality

τ 0
nk = E{Tn|H0} = 0 . (35)

On the other hand, under alternatives of possible group divergence,

τ ∗n = E{Tn|H1} ≥ 0 , (36)

where ||τ ∗n|| > 0. Next, we consider a set of nonnegative weights attaching plausible
(prior) importance to the K genes. Let w = (w1, . . . , wK)′ satisfying

w ≥ 0 ; w′1 = 1 . (37)

It should be kept in mind that generally there are a proportionately smaller number of
genes associated with a specific disease / disorder (or a small group of them), so that if
some prior knowledge is acquired on these candidate genes, one can attach greater weight
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to them and much less on the rest. Nevertheless, we assume that the Noether condition
holds, i.e., as K becomes large,

max{||w||−1wk : 1 ≤ k ≤ K} → 0 . (38)

If no prior information on candidate genes is available, we may take w = K−11, i.e.,
uniform weight to all the K genes. Consider then the convex combination

T ∗
wn = w′Tn , (39)

and note that by construction,

E{T ∗
wn|H0} = 0 , E{T ∗

wn|H1} ≥ 0 . (40)

This intuitively suggests that a one-sided test (for H0 vs. H1) with the rejection of H0 for
large positive values of T ∗

wn should be in order. In this respect, the crux of the problem
is to find suitable critical levels of T ∗

wn that would correspond to some preassigned level
of significance α(0 < α < 1). This is particularly needed in the context where the
K genes may not be statistically independent, nor even have marginally homogeneous
distributions.

4 Hamming Distance and Qualitative Data Models
Let us consider now the case of qualitative data models, as is typically encountered in
DNA nucleotide or RNA protein data models. Here usually there is a large number (K)
of genes or positions and in each position the response variables corresponds to one of
the C possible outcomes (e.g., C = 4 for A, C, G and T for nucleotides, or the codons,
some 20 in number, for RNA data). These outcomes are not ordered, even in a weak
sense, nor the positions are likely to be stochastically independent. Thus, we encounter
a multi-dimensional categorical data model with CK possible outcomes, implying that
the probability law is defined on a (CK−)-dimensional simplex, while we may have a
handful (n) of sequences (or samples) where typically, K >> n, so that CK is even of
much higher order compared to n. Since not all the CK cells are likely to be equally
likely, some (if not many) of the cells will have very low probability (or frequency count),
creating impasses for standard discrete multivariate analyzes to be properly applicable
in this setup. This is essentially the curse of dimensionality problem in qualitative ge-
nomics. However, mutations due to possible environmental factors are more likely to be
associated with increased genetic variability, causing gene-environment interaction (viz.,
Coffin, 1986; Hahn et al., 1986). As such, we conceive of a similar G group paradigm
corresponding to possibly different biological/environmental setups, and would like to
have suitable subgroup-diversity analysis.

As in Section 3, let Xgi = (Xgi1, . . . , XgiK)′ stand for the observation vector for
the ith unit in the gth group, for i = 1, . . . , ng(≥ 2); g = 1, . . . , G, where each Xgik

takes on one of the C possible realizations, labelled as 1, . . . , C (without any ordering
of the labels). The probability law of Xgi is denoted by πg = {πg(c) : c ∈ C} where
C = {(c1, . . . , cK) : ck = 1, . . . , C, k = 1, . . . , K}, and g = 1, . . . , G. Basically, we are
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interested in testing for the null hypothesis (H0) of homogeneity of the πg, g = 1, . . . , G.
The class of alternative hypotheses (of possible heterogeneity of these laws) is so big
that in the environment K >> n, conventional categorical data model tests are of very
little power. Therefore, we need to address specific subclasses of alternatives having
meaningful genomic as well as statistical interpretations, and for such directed alternatives
want to develop more powerful tests.

For each sequence (say, Xgi we may conceive of a transition model where at site k,
the response category is ck and there is a transition from ck to ck+1 from the site k to
k + 1, for k = 1, . . . K − 1, and each ck assuming one of the C possible response labels
1, . . . , C. We also consider the marginal (multinomial) law for the very first site by πg1.
It might be tempting to conceive suitable Markov chains to describe this stochastic flow
of responses from one site to the next one. Even so, the stationarity of the transition
probabilities may not be generally tenable, and as a result, the total number of parameters
arising in this modelling would be tremendously large, creating a similar impasse for
standard statistical analysis for simple stochastic processes to be genuinely applicable.
On top of that the usual K >> n environment can totally vitiate the use of nonstationary
Markov chain models in this context.

With established affinity of bio-diversity and genetic variability measures (see for ex-
ample, Chakraborty and Rao, 1991 for an excellent review), it is natural to incorporate
for each coordinate the celebrated Gini-Simpson index (Gini, 1912; Simpson, 1949; H. P.
Pinheiro et al., 2005; A. S. Pinheiro et al., 2005), and combine them linearly for a com-
posite measure. This is essentially the use of the Hamming distance in such qualitative
group divergence studies. For a pair of observations, say Xi and Xj , each having K co-
ordinates with each coordinate taking on the labels 1, . . . , C, let us define the Hamming
distance as

dH(Xi,Xj) = K−1

K∑

k=1

I(Xki 6= Xkj) , (41)

which can only take on the values 0/K, 1/K, . . . , K/K with a probability law that depend
on the joint law of Xi,Xj . It is clear that

δH = E{dH(Xi,Xj)} = K−1

K∑

k=1

P{Xki 6= Xkj} . (42)

Thus, if we denote the marginal multinomial law for Xgi by πgk = (πgk1, . . . , πgkC)′ for
k = 1, . . . , K; g = 1, . . . , G, then we have

Hgg = E{d(Xgi,Xgj} = K−1

K∑

k=1

{1− π′
gkπgk}

= K−1

K∑

k=1

C∑
c=1

πgkc(1− πgkc) (43)

which is the arithmetic mean of the K gene-wise Gini-Simpson indexes. In the same vein,
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we define

Hgg′ = E{d(Xgi,Xg′j)

= K−1

K∑

k=1

{1− π′
gkπg′k}

= K−1

K∑

k=1

C∑
c=1

πgkc(1− πg′kc) , (44)

as the population Hamming distance between the gth and g′th groups, for g 6= g′ =
1, . . . , G.

Using the last two equations, we immediately obtain that for every pair (g, g′) of
groups,

2Hgg′ ≥ Hgg +Hg′g′ , 1 ≤ g 6= g′ ≤ G , (45)

where the equality sign holds only when πgk = πg′k, ∀k = 1, . . . , K, i.e., all the G sets
of marginal multinomial laws are the same. As such, we can conceive of a generalized
Hamming distance measure for the G groups as

∑

1≤g 6=g′≤G

αgg′{2Hgg′ −Hgg −Hg′g′} = HB,α , (46)

where α = (αgg′ , 1 ≤ g 6= g′ ≤ G)′ is a nonnegative vector, and the index B stands for
the ’between group’ variability. This is nonnegative and is 0 only when the K marginal
probability laws for each of the G populations are the same.

As we have noted in the preceding section, the K positions or genes may not be
equally important for a specific genomic study or probe. Moreover, they may neither be
independent nor even marginally identically distributed. Therefore, as in (37)-(38) we
consider a convex combination

Hgg′(w) =
K∑

k=1

wkP{Xgki 6= Xg′kj} , g, g′ = 1, . . . , G . (47)

As such, we extend (4.6) to a more flexible measure
∑

1≤g<g′≤G

αgg′{2Hgg′(w)−Hgg(w)−Hg′g′(w) = HB;w,α , (48)

which has the same nonnegativity property as in (4.6). For a pair (i, j) of observations Xi

and Xj , we define a symmetric kernel (of degree 2)

φ(Xi,Xj) =
K∑

k=1

wkI(Xki 6= Xkj) (49)

and note that E(φ(Xgi,Xgj) = Hgg(w) and E(φ(Xgi,Xg′j) = Hgg′(w), for g 6= g′ =
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1, . . . , G. As such, if we obtain the corresponding U -statistics as

Ugg =

(
ng

2

)−1 ∑
1≤i<j≤ng

φ(Xgj,Xgj)

=
K∑

k=1

wk{
C∑

c=1

ngkc(ng − ngkc)

ng(ng − 1)
} , g = 1, . . . , G ; (50)

here ngkc stands for the number of sequences in the gth group for which in the kth position
the observed response label is c, for c = 1, . . . , C; k = 1, . . . , K; g = 1, . . . , K. Also,

Ugg′ = (ngng′)
−1

ng∑
i=1

ng′∑
j=1

φ(Xgi,Xg′j)

=
K∑

k=1

wk{
C∑

c=1

ngkc(ng′ − ng′kc)

ngng′
} , g 6= g′ = 1, . . . , G . (51)

Let n = n1 + . . . + nG and let U0 be the pooled group U -statistic corresponding to the
same kernel. Then, we have after some routine computations,

U0 =

(
n

2

)−1

{
G∑

g=1

(
ng

2

)
Ugg +

∑

1≤g 6=g′≤G

ngng′Ugg′}

=
G∑

g=1

ng

n
Ugg +

∑

1≤g<g′≤G

ngng′

n(n− 1)
{2Ugg′ − Ugg − Ug′g′}

= Wn + Bn , say, (52)

where Bn, the last term on the right hand side denotes the ’between group’ component
and the first term Wn as the ’within group’ one ( H. P. Pinheiro et al., 2005). Under the
null hypothesis, Bn has zero expectation and it is positive under alternatives. Also, Wn

has expectation equal to the average of the Hgg(w) which is always a positive quantity.
Let then

Ln = Bn/Wn . (53)

Based on the above (subgroup) decomposition , we consider Ln as a test statistic (for
testing the null hypothesis of homogeneity of the G groups against possible heterogeneity
with special emphasis on their diversity). It is also possible to use Bn as a test statistic,
but Wn serves as a scale factor, and hence, we prefer to use it. The critical region is to be
set by the right hand tail of Bn.

The above measure, however, is an unweighted one. As in (4.8), we extend this as

Ln,α =
∑

1≤g<g′≤G

αgg′{2Ugg′ − Ugg − Ug′g′}

=
K∑

k=1

wk

∑

1≤g<g′≤G

αgg′{2U (k)
gg′ − U (k)

gg − U
(k)
g′g′}

=
K∑

k=1

wkTnk(α) , say, (54)
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where the U
(k)
gg′ are the coordinatewise sample Gini-Simpson indexes, so that Tnk(α) is a

statistic based on the kth position alone, based on across the G groups of observations.
Note that Ln,α is an unbiased estimator ofHB;w,α. As such, we would use Ln,α as a test
statistic for testing the null hypothesis of homogeneity of the G groups against possible
heterogeneity with emphasis on their diversities.

5 K >> n Distributional Asymptotics
In the preceding two sections, in a quasi-marginal approach, we have advocated a convex
combination of of a set of gene-wise (weighted and centered) group divergence measures
as a plausible test statistic. The crux of the problem is to find the distribution theory
under K >> n environment, where n could be even small, but K is typically very large.
Keeping this scenario in mind we define a general statistic as

Tn =
K∑

k=1

wkTnk = w′Tn , (55)

where w is a nonnegative K vector, and the coordinatewise statistics Tnk have all null
expectation under H0 and positive under alternatives. However, the Tnk may neither be
independent nor marginally identically distributed.

If n were large and K >> n, one could have exploited the asymptotics for the Tnk,
and this has been systematically studied by A. S. Pinheiro et al. (2005). But, as has
been noted earlier, in the present context it might not be reasonable to assume that n is
adequately large to justify this approach. Even so, the asymptotics do work out well when
the null hypothesis does not hold. Under the null hypothesis, the set of (generalized)
U -statistics appearing in the expression of the Tnk end up with a degenerate case where
the first-order projections vanish and thereby create roadblocks for the elegant Hoeffding
(1948) projection to pave the way for asymptotic normality. For this reason, A. S. Pinheiro
et al. (2005) expressed (under H0) the test statistic Tn in an equivalent (in distribution)
form

T ∗
n =

∑
1≤r<s≤n

ηnrsψ(X∗
r,X

∗
s) , (56)

where the X∗
r , r = 1, . . . , n are i.i.d. random vectors and the (symmetric and square

integrable) kernel ψ(·) is first-order stationary in the sense that

E{ψ(X∗
r,X

∗
s)|X∗

r} = 0 (a.e.) , (57)

so that the different terms in (5.2) are uncorrelated. The ηnrs are nonstochastic con-
stants for which

∑
1≤r<s≤n ηnrs = 0 and without any loss of generality, we may set that∑

1≤r<s≤n η2
nrs = 1. Having observed this quasi-U -statistics structure, they exploited a

martingale-array characterization that provides an easy way to the asymptotic normality
result (under H0). Further, in the K >> n environment the rate of this convergence is
O(n

√
K) instead of the usual O(

√
nK).

Based on this observation, it is intuitive that when n is small but K is very large,
a similar asymptotic normality result should hold, albeit the rate of convergence would
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probably be O(
√

K). Indeed, if the genes are statistically independent this result would
follow directly from the classical central limit theorems for triangular arrays of centered
random variables. This result to extended to a class of dependent sequences without
imposing weak stationarity conditions. This large K small n scenario is appraised in
specific situations in Sen et al. (2005) and A. S. Pinheiro et al. (2005) with specific
emphasis on generalized U -statistics (see also Schaid et al., 2005) where n is allowed to
be large). Here, we consider a general approach that addresses the asymptotics in a more
general setup.

We let ZnK,k = wkTnk, k = 1, . . . , K. Our T ∗
n is then expressible as

∑K
k=1 ZnK,k.

Note that the Znk are gene specific statistics based on the entire set of n observations,
so that they are not generally independent. Moreover, their distributions depend on n as
well as the K-dimensional joint laws for each of the G subgroup populations. Under the
null hypothesis, these distributions are all the same, and hence the dependence is through
n1, . . . , nG and the common multidimensional categorical data model probability law that
pertain to them. Whenever K is large (but n is fixed), we can regard some weak depen-
dence pattern underlying them, and in particular, we can consider the usual (φ, ψ, ∗−, or
regular) mixing conditions under which central limit theorems apply to an array of such
weakly dependent variables. If we assume that the individual ZnK,k have finite second
order moments, they satisfy an appropriate mixing condition, and in addition,

K∑

k=1

w2
k = O(K) ; max{w2

k/(
K∑

i=1

w2
i : 1 ≤ i ≤ K} → 0 , as K →∞ , (58)

then we can apply such asymptotic results. We refer to Yoshihara (1993) where gen-
eral asymptotic normality results for weakly dependent sequences under diverse mixing-
conditions have been considered in detail; the only difference being the asymptotics in
n are to be replaced by the asymptotics in K. In a somewhat different context (empir-
ical Bayes methodology), the condition (32) is also justified in two recent papers (Qui,
Brooks, et al., 2005; Qui, Klebanov, and Yakovlev, 2005), although in the present non-
Bayesian setup, stationarity is not imposed in a prior distributional form. Although, there
has been some work on high dependence between gene expressions, in the setup of our
Section 3, with the classification of genes as DG and NDG, a high correlation may only
be expected among the disease genes, so that if the number of DG’s is small compared to
K, then as has been explained in Section 3, such high correlation does not pose any threat
to the assumption (32).

With respect to the MANOVA model in Section 2, we need in this context finiteness
of moments of order 4; for the Gini mean difference based statistics, second moment con-
dition would suffice. For the Hamming distance based statistics, we have bounded kernel
and hence moments of all finite order exist. In that case, the convergence to normality
under appropriate mixing-conditions is even expected to be faster.

6 Concluding Remarks
The main motivation of this study stems from the urge to exploit the subgroup decom-
posability of multi-group high dimensional low sample size data models and advocate
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an approach that allows for the inter-position stochastic dependence in some plausible
manner. This approach has some genuine utility in genomics data modelling and analy-
sis. Further, keeping robustness perspectives in mind, flexibility of choice of a suitable
statistic that is robust in a well defined manner is retained. A greater complexity arises
for qualitative data models in the K >> n setup and in that respect, Hamming-distance
type measures have been observed to be very useful.

Such methodological studies, albeit very useful, need to be supported by extensive
simulation studies to justify the adequacy of the contemplated asymptotics. In some cases,
when n is large, but K is even larger, a conventional (Hoeffding, 1948) decomposition is
useful in this respect. However, it should be noted that the residual term in this decompo-
sition (allowing only the first-order projection) is Op(n

−1) while the order of convergence
to asymptotic normality is typically O(n

√
K). As such, the contribution of the residual

term when standardized would be O(
√

K) and would not be negligible. To overcome
this difficulty, A. S. Pinheiro et al. (2005) have considered a martingale array character-
ization (under the null hypothesis) that clearly demonstrates how the asymptotics could
be worked out without encountering this impasse. In simulation studies, it is therefore
imperative to appraise such order of convergence first; otherwise, the simulated variance
factor could be considerably positively biased, resulting in some conservativeness of sta-
tistical conclusions to be drawn. Robust simulation methods in genomics are therefore
very essential in genomic studies.
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