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Abstract:In the independent component analysis (ICA) it is assumed that the
components of the multivariate independent and identically distributed ob-
servations are linear transformations of latent independent components. The
problem then is to find the (linear) transformation which transforms the ob-
servations back to independent components. In the paper the ICA is discussed
and it is shown that, under some mild assumptions, two scatter matrices may
be used together to find the independent components. The scatter matrices
must then have the so called independence property. The theory is illustrated
by examples.
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1 Introduction
Let x1,x2, . . . ,xn denote a random sample from a p-variate distribution. We also write

X = (x1 x2 · · · xn)′

for the corresponding n × p data matrix. In statistical modelling of the observed data,
one often assumes that the observations xi are independent p-vectors ”generated” by the
model

xi = Azi + b , i = 1, . . . , n ,

where the zi’s are called standardized vectors, b is a location p-vector, A is a full-rank
p× p transformation matrix and V = AA′ is a positive definite p× p (PDS(p)) scatter
matrix. In most applications (two-samples, several-samples case, linear model, etc.), b =
bi may be dependent on the design. In a parametric model approach, one assumes that the
distribution of the standardized vectors zi are i.i.d. from a distribution known except for
a finite number of parameters. A typical assumption then is that zi ∼ Np(0, I) implying
that x1, . . . ,xn are i.i.d. from N(b,V). A semiparametric elliptical model is constructed
as follows: We assume that Uzi ∼ zi for all orthogonal U. (By x ∼ y we mean that the
probability distributions of x and y are the same.) Then the distribution of zi is spherical,
and the xi’s are elliptically symmetric. The density of zi is then of the form

g(z) = exp {−ρ(||z||)} .

The distribution of the xi then depends on unknown location b, scatter V and function
ρ. If z is spherical then dUz is spherical as well, for all d 6= 0 and for all orthogonal U.
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This implies that A is not well defined, and extra assumptions, such as E(||zi||2) = 1 or
med(||zi||) = 1, are needed to uniquely define V and ρ.

In this paper we consider an alternative semiparametric extension of the multivariate
normal model called the independent component (IC) model. For this model one assumes
that the components zi1, . . . , zip of zi are independent. The model is used in the so called
independent component analysis (ICA) (Comon, 1994); recent textbooks provide an inter-
esting tutorial material and partial review on ICA (Hyvärinen et al., 2001; Cichocki and
Amari, 2002). In this model, the density of zi is

g(z) = exp



−

p∑

j=1

ρj(zj)



 .

The distribution of xi now depends on location b, transformation A and marginal func-
tions ρ1, . . . , ρp. If z has independent components then DPz has independent compo-
nents as well, for all diagonal p× p matrices D and for all permutation matrices P. Extra
assumptions are then needed to uniquely define A, b and ρ1, . . . , ρp.

In this paper, under some mild assumptions and using two scatter matrices, we re-
formulate (and restrict) the model so that A uniquely defined (up to sign changes of its
column vectors) even without specifying ρ1, . . . , ρp. The independent components are
then standardized with respect to the first scatter matrix, uncorrelated with respect to the
second one, and ordered according to kurtosis. The final aim often is to separate the
sources, i.e., to estimate the inverse matrix B = A−1; transformation B transforms the
observed vectors to to vectors with independent components.

Our plan in this paper is as follows. In Section 2 we introduce the concepts of mul-
tivariate location and scatter functionals, give several examples and discuss their use in
the analysis of multivariate data. We show, for example, how two scatter matrices can be
used to describe the multivariate kurtosis. In Section 3, the ICA problem is then discussed
and we introduce a new class of estimators of the ICA transformation matrix B. The as-
sumptions and properties of the estimators are shortly discussed. The paper ends with two
examples in Section 4. Throughout the paper, notations U and V are used for orthogonal
p×p matrices. D is a p×p diagonal matrix and P is a permutation matrix (obtained from
the identity matrix I by successively permuting its rows or columns). Finally, let J be a
sign change matrix, that is, a diagonal matrix with diagonal elements ±1. For a positive
definite symmetric matrix V, the matrices V1/2 and V−1/2 are taken to be symmetric as
well.

2 Location Vectors and Scatter Matrices

2.1 Definitions
We first define what we mean by a location vector and a scatter matrix. Let x be a p-
variate random variable with cdf F . A functional T(F ) or T(x) is a p-variate location
vector if it is affine equivariant, that is,

T(Ax + b) = AT(x) + b
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for all random vectors x, full-rank p × p-matrices A and p-vectors b. A matrix-valued
functional S(F ) or S(x) is a scatter matrix if it is a positive definite symmetric p × p-
matrix, write PDS(p), and affine equivariant in the sense that

S(Ax + b) = AS(x)A′

for all random vectors x, full-rank p×p-matrices A and p-vectors b. “Classical” location
and scatter functionals, namely the mean vector E(x) and the covariance matrix

cov(x) = E ((x− E(x))(x− E(x))′) ,

serve as first examples. If the distribution of x is elliptically symmetric around b then
T(x) = b for all location vectors T. Moreover, if the distribution of x is elliptically
symmetric and the covariance matrix cov(x) exists then S(x) ∝ cov(x) for all scatter
matrices S. There are several alternative competing techniques to construct location and
scatter functionals, e.g., M-functionals, S-functionals and τ -functionals just to mention
a few. These functionals and related estimates are thoroughly discussed in numerous
papers (Maronna, 1976; Davies, 1987; Lopuhaä, 1989; Lopuhaä, 1991; Tyler, 2002); the
common feature is that the functionals and related estimates are built for inference in
elliptic models only. Next we consider some M-functionals in more details.

2.2 M-Functionals of Location and Scatter
Location and scatter M-functionals are sometimes defined as functionals T(x) and S(x)
which simultaneously satisfy implicit equations

T(x) = [E[w1(r)]]
−1 E [w1(r)x]

and
S(x) = E [w2(r)(x−T(x))(x−T(x))′]

for some suitably chosen weight functions w1(r) and w2(r). The random variable r is the
Mahalanobis distance between x and T(x), i.e.

r2 = ||x−T(x)||2S(x) = (x−T(x))′[S(x)]−1(x−T(x)) .

Mean vector and covariance matrix are again simple examples with choices w1(r) =
w2(r) = 1. If T1(x) and S1(x) are any affine equivariant location and scatter functionals
then one-step M-functionals, starting from T1 and S1, are given by

T2(x) = [E[w1(r)]]
−1 E [w1(r)x]

and
S2(x) = E [w2(r)(x−T1(x))(x−T1(x))′] ,

where now r = ||x − T1(x)||S1(x). It is easy to see that T2 and S2 are affine equivariant
as well. Repeating this step until it converges often yields the “final” M-estimate with
weight functions w1 and w2. If T1 is the mean vector and S1 is the covariance matrix,
then

T2(x) =
1

p
E[r2x] and S2(x) =

1

p + 2
E[r2(x− E(x))(x− E(x))′]

are interesting one-step location and scatter M-functionals based on third and fourth mo-
ments, respectively.
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2.3 Multivariate Sign and Rank Covariance Matrices
Consider next multivariate sign and rank covariance matrices. Locantore et al. (1999),
Marden (1999), Visuri et al. (2000), and Croux et al. (2002) considered the so called
spatial sign covariance matrix with a fixed location T(x)

E
[
(x−T(x))(x−T(x))′

||x−T(x)||2
]

and used it as a tool for robust principal component analysis in the elliptic case. The
spatial sign covariance matrix is not a genuine scatter matrix, however. It is not affine
equivariant but only orthogonally equivariant.

To define a multivariate rank covariance matrix, let x1 and x2 be two independent
copies of x. The spatial Kendall’s tau matrix (Visuri et al., 2000)

E
[
(x1 − x2)(x1 − x2)

′

||x1 − x2||2
]

is not a scatter matrix either. It is again only orthogonally equivariant. Note that no
location center is needed to define the spatial Kendall’s tau.

Related scatter matrices may be constructed as follows. The Tyler (1987) scatter
matrix (with fixed location T(x)) is sometimes referred to as most robust M-functional
and is given by implicit equation

S(x) = pE


(x−T(x))(x−T(x))′

||x−T(x)||2S(x)


 .

Note that Tyler’s matrix is characterized by the fact that the spatial sign covariance matrix
of the transformed random variable S(x)−1/2(x−T(x)) is [1/p]I.

The Dümbgen (1998) scatter matrix is defined in an analogous way but using the
spatial Kendall’s tau matrix: Let x1 and x2 be two independent copies of x. Dümbgen’s
matrix is then implicitly defined by

S(x) = pE


(x1 − x2)(x1 − x2)

′

||x1 − x2||2S(x)


 .

Tyler’s and Dümbgen’s matrices are not genuine scatter matrices as they are defined only
up to a constant and affine equivariant only in the sense that

S(Ax + b) ∝ AS(x)A′ .

This is, however, sufficient in most of applications.

2.4 Why do we need different Location and Scatter Functionals?
Write again X = (x1, . . . ,xn)′ for a n × p data matrix with cdf Fn, and write T(X) and
S(X) for location and scatter statistics at Fn. Different location estimates

T(X),T1(X),T2(X), . . .
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and scatter estimates
S(X),S1(X),S2(X), . . . ,

possibly with correction factors, often estimate the same population quantities but have
different statistical properties (convergence, limiting distributions, efficiency, robustness,
computation, etc.) As mentioned before, this is true in the elliptic model, for example. In
practice, one can then just pick up an estimate which is most suitable to one’s purposes.

Location and scatter statistics may be used to describe the skewness and kurtosis prop-
erties of a multivariate distribution as well. Affine invariant multivariate skewness statis-
tics may be defined as squared Mahalanobis distances between two location statistics

||T1 −T2||2S .

If T1 and T2 are the multivariate mean vector and an affine equivariant multivariate me-
dian, and S = Cov is the covariance matrix, then an extension of the classical univari-
ate Pearson (1895) measure of asymmetry (mean-median)/σ is obtained. A multivariate
generalization of the classical standardized third moment, the most popular measure of
asymmetry, is given if one uses T1 = E and S = S1 = Cov and T2 is the one-step
location M-estimator with w1(r) = r2.

As u′Su is a scale measure for linear combination u′x, the ratio (u′S2u)/(u′S1u)
is a descriptive statistic for kurtosis of u′x, and finally all eigenvalues of S2S

−1
1 , say

d1 ≥ · · · ≥ dp may be used to describe the multivariate kurtosis. Again, if T1 and
S1 are the mean vector and covariance matrix, respectively, and S2 is the one-step M-
estimator with w2(r) = r2, the eigenvalues of S2S

−1
1 depend on the fourth moments of the

standardized observations only. For a discussion on multivariate skewness and kurtosis
statistics with comparisons to Mardia (1970) statistics, see Kankainen et al. (2005).

Scatter matrices are often used to standardize the data. The transformed, standardized
data set

Z = X[S(X)]−1/2

has uncorrelated components with respect to S (i.e., S(Z) = I), and the observations zi

tend to be spherically distributed in the elliptic case. Unfortunately, the transformed data
set Z is not coordinate-free: It is not generally true that, for any full rank A,

XA′[S(XA′)]−1/2 = X[S(X)]−1/2 .

The spectral or eigenvalue decomposition of S(X) is

S(X) = U(X) D(X) (U(X))′ ,

where the columns of p × p orthogonal matrix U(X) are the eigenvectors of S(X) and
diagonal matrix D(X) lists the corresponding eigenvalues in a decreasing order. Then
the components of the transformed data matrix Z = XU(X) are the so called principal
components, used in principal component analysis (PCA). The principal components are
uncorrelated with respect to S (as S(Z) = D(X)) and therefore ordered according to
their dispersion. This transformed data set is not coordinate-free either.
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2.5 Scatter Matrices and Independence
Write x = (x1, . . . , xp)

′ and assume that the components x1, . . . , xp are independent. It
is then well known that the regular covariance matrix cov(x) (if it exists) is a diagonal
matrix. The M-functionals, S-functionals, τ -functionals, etc., are meant for inference in
elliptical models and do not generally have this property:

Definition 1 If the scatter functional S(x) is a diagonal matrix for all x with independent
components, then S is said to have the independence property.

A natural question then is whether, in addition to the covariance matrix, there are any
other scatter matrices with the same independence property. The next theorem shows that,
in fact, any scatter matrix yields a symmetrized version which has this property.

Theorem 1 Let S(x) be any scatter matrix. Then

Ss(x) := S(x1 − x2) ,

where x1 and x2 are two independent copies of x, is a scatter matrix with the indepen-
dence property.
Proof Ss is affine equivariant as S is affine equivariant. Assume that the components
of x are independent. The components of x1 − x2 are then independent as well and
symmetrically distributed around zero implying that J(x1 − x2) ∼ (x1 − x2) for all di-
agonal matrices J with diagonal elements ±1. This further implies that [S(x1 − x2)]ij =
−[S(x1 − x2)]ij for all i 6= j and S(x1 − x2) must be diagonal. Q.E.D.

Another possibility to construct scatter matrix estimates with the independence prop-
erty might be to use quasi-maximum likelihood estimates (“M-estimates”) in the inde-
pendent component model, that is, the regular maximum likelihood estimates under some
specific choices of the marginal distribution (in which one not necessarily believes). See
e.g. Pham and Garat (1997) for the use of quasi-ML estimation in the ICA model.

3 Independent Component Analysis (ICA)

3.1 Problem
The ICA problem in its simplest form is as follows. According to the general independent
component model (IC), the observed random p-vector x is generated by

x = A0s ,

where s = (s1, . . . , sp)
′ has independent components and A0 is a full-rank p× p transfor-

mation matrix. For uniqueness of A0 one usually assumes that at most one component is
gaussian (normally distributed). The question then is: Having transformed x, is it possi-
ble to retransform to independent components, that is, can one find B such that Bx has
independent components? See e.g. Hyvärinen et al. (2001).

Clearly the above model is the independent component model (IC model) described
in the Introduction. If D is a p × p diagonal matrix and P a p × p permutation matrix,
then one can write

x = (A0P
−1D−1)(DPs) ,
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where DPs has independent components as well. Thus s may be defined only up to
multiplying constants and a permutation. In the estimation problem this means that, if
B is a solution, D is a diagonal matrix and P a permutation matrix, then also DPB is
a solution. In fact, it can be shown that Bx has independent components if and only if
B = DPA−1

0 for some D and P. The model is then called separable; see Comon (1994)
and Eriksson and Koivunen (2004).

3.2 Independent Component Models
We now try to fix the parameters in the IC model using a location functional T and two
different scatter functionals S1 and S2. Both scatter functionals are assumed to have the
independence property.

Definition 2 The independent component model I (IC-I), formulated using T, S1, and S2,
is

x = Az + b

where z has independent components with T(z) = 0,

S1(z) = I and S2(z) = D(z) ,

and D(z) is a diagonal matrix with diagonal elements d1 ≥ · · · ≥ dp in a descending
order.

If T is the mean vector, S1 is the covariance matrix, and S2 is the scatter matrix based
on fourth moment, see Section 2.2, then E(zi) = 0, var(zi) = 1 and the components
are ordered according to the classical univariate kurtosis measure based on standardized
fourth moment.

First note that the reformulation of the model in Definition 2 can always be done; it
is straightforward to see that z = D∗P∗s + b∗ for some specific choices D∗, P∗, and b∗

(depending on T, S1, and S2). In the model, the diagonal matrix D(z) lists the eigenvalues
of S2(x)[S1(x)]−1 for any x = Az + b in the model. Recall from Section 2.4 also that
the ratio

u′S2(z)u

u′S1(z)u
=

p∑

i=1

u2
i di

gives the kurtosis of u′z. Therefore, in this formulation of the model, the independent
components are ordered according to their marginal kurtosis. The order is either from
the lowest kurtosis to the highest one or vice versa, depending on the specific choices of
S1 and S2.

Next note that IC-I model is, in addition to the elliptic model, another possible exten-
sion of the multivariate normal model: If a p-variate elliptic distribution is included in the
IC-I model, it must be a multivariate normal distribution.

Finally note that the transformation matrix A is unfortunately not uniquely defined:
This happens, e.g., if any two of the independent components of z have the same marginal
distribution. For uniqueness, we need the following restricted model.

Definition 3 The independent component model II (IC-II) corresponding to T, S1, and
S2, is

x = Az + b ,
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where z has independent components with T(z) = 0, S1(z) = I, and S2(z) = D(z) and
D(z) is a diagonal matrix with diagonal elements d1 > · · · > dp in a descending order.

Note that the multivariate normal model is not included in the IC-II model any more;
z1, . . . , zp can not be i.i.d. The assumption that d1 > . . . > dp guarantees the unique-
ness of the location vector b and the transformation matrix A (up to sign changes of its
columns). The retransformation matrix B is then unique up to sign changes of its rows,
but could be made unique if one chooses the JB for which the highest value in each row
is positive.

Now we are ready to give the main result of the paper.

Theorem 2 Assume that the independent component model IC-II in Definition 3 is true.
Write

B(x) =
[
U2

(
[S1(x)]−1/2x

)]′
[S1(x)]−1/2 ,

where U2(x) is the matrix of unit eigenvectors of S2(x) (with corresponding eigenvalues
in a decreasing order). Then

B(x) (x−T(x)) = Jz

for some diagonal matrix J with diagonal elements ±1.
Proof Assume that the model is true and write (singular value decomposition) A = ULV′

where U and V are orthogonal matrices and L is a diagonal matrix (with nonzero diagonal
elements). It is not a restriction to assume that T(x) = b = 0. Thus

x = ULV′z .

Then S1(x) = UL2U′, [S1(x)]−1/2 = UL−1U′,

[S1(x)]−1/2x = UV′z ,

and

S2

(
[S1(x)]−1/2x

)
= UV′DVU′ ,

implying that

U2

(
[S1(x)]−1/2x

)
= UV′ .

The result then follows. Q.E.D.

Remark 1 From the proof of Theorem 2 one also sees that it is, in fact, enough to assume
that S2 (with the independence property) is only orthogonal equivariant in the sense that

S2(Ux + b) ∝ US2(x)U′

for all random vectors x, orthogonal U and p-vectors b. The functional S2 could then be
the spatial Kendall’s tau, for example.
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3.3 Discussion on ICA Transformation
Theorem 2 proposes a new class of estimators

B(X) =
[
U2

(
X[S1(X)]−1/2

)]′
[S1(X)]−1/2

for the transformation matrix B(x). In the two examples in Section 4, we use S1 = Cov
as the first scatter matrix, and the second functional is

S2(x) = cov
(
||x1 − x2||−1(x1 − x2)

)
and S2(x) = cov (||x1 − x2||(x1 − x2)) ,

respectively. Then S2 is orthogonally equivariant only, but see Remark 1. The first choice
of S2 is then the Kendall’s tau matrix and the second one is a matrix of fourth moments
of the differences. Note, however, that the matrices at the second stage might be seen as
the (affine equivariant) symmetrized one-step M-estimator as well (with weight functions
w2(r) = r−2 and w2(r) = r2, respectively). Further theoretical work and simulations are
needed to consider the efficiency and robustness properties of estimates B(X) based on
different choices of S1 and S2.

In our independent component model IC-II with B = A−1,

(S2(x))−1S1(x)B′ = B′(D(z))−1

and the estimates B̂ and D̂ solve

(S2(X))−1S1(X)B̂′ = B̂′D̂−1

(David Tyler, 2005, personal communication). The rows of the transformation matrix
B and diagonal elements of D−1 thus list the eigenvectors and eigenvalues of S−1

2 S1.
The asymptotical properties (convergence, limiting distributions, limiting variances and
covariances) of B̂ and D̂ may then be derived from those of S1(X) and S2(X). It
is also easy to see that, for any two scatter matrices S1 and S2, Z = X[B(X)]′ al-
lows a coordinate-free presentation of the data cloud up to signs of the components:
XA′[B(XA′)]′ = JX[B(X)]′ for any full-rank A. Recall also that the components of
Z are then ordered according to their kurtosis. In the literature, most of the algorithms
for finding an ICA transformation (i) start with whitening the data (with the regular co-
variance matrix), and (ii) end with rotating the transformed data to minimize the value
of an objective function. The objective function is then typically a measure of depen-
dence between the components, and an iterative algorithm is used for the minimization
problem. In our examples in Section 4, we use the regular covariance matrix and one-
step M-estimators; the transformation matrix can then be given as an explicit formula,
and no iteration is needed. The convergence of the transformation matrix estimate to the
true value as well as its distributional behavior may be traced from the corresponding
properties of the two scatter matrices.

The idea to use two scatter matrices in estimating the ICA transformation seems to be
implicit in many work reported in the literature. One of the first ICA algorithms FOBI,
Cardoso (1989), uses the regular covariance matrix S1(x) = cov(x) to whiten data, and
then in the second stage a fourth-order cumulant matrix S2(x) = cov(||x − E[x]||(x −
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Figure 1: Toy example: Scatter plots for independent components (Z)

E[x])), which is an orthogonally equivariant scatter matrix with the independence prop-
erty. The eigenvalues of S2(z) are given by E[z4

k] + p − 1, k = 1, . . . , p, and therefore
identically distributed components can not be separated by Theorem 2. This is often seen
as a severe restriction from the application point of view. Later FOBI was generalized to
JADE (Cardoso and Souloumiac, 1993; see also Cardoso, 1999), where the scatter matrix
S2 is replaced by other cleverly chosen fourth-order cumulant matrices. This general-
ization allows the separation of identically distributed components, but the independence
property is lost, and one needs to resort to computationally ineffective methods instead
of straightforward eigenvalue decompositions. We are currently investigating the possi-
bility of generalizing the cumulant-based view of JADE to general scatter matrices. We
still wish to mention one alternative approach: Samarov and Tsybakov (2004) simulta-
neously estimated the transformation matrix and unknown marginal distributions. In our
procedure we avoid the estimation of the margins.

4 Two Examples

4.1 A Toy Example
We end this paper with two examples. We first consider a 3-variate random vector z
whose components are independent and have the uniform distribution on [−√3,

√
3], the

standard normal distribution and the exponential distribution with scale parameter 1. A
sample of 200 observations from such a distribution is plotted in Figure 1.

To fix the model with the related estimate, choose as S1 the regular covariance matrix
and as S2 the one step Dümbgen estimator. In this case S1(z) is obviously the identity
matrix and numerical integration gives that S2(z) is

D = diag(0.37, 0.35, 0.28) .
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Figure 2: Toy example: Scatter plots for observed data cloud (X)

The assumptions of Theorem 2 are then met. With these choices, the order of the compo-
nents is then from the lowest kurtosis to the highest one. As a mixing matrix A consider
a combination of permutation of the components to the order 3, 1, 2, a rescaling of the
(new) second and third components by 3 and 5, respectively, and finally rotations of π/4
around the axis z, y, and x, in this order. The approximate value of the true unmixing
matrix, transformation matrix B is then

B =




0.17 0.28 −0.05
−0.20 0.14 0.14

0.50 −0.15 0.85


 .

See Figure 2 for a plot of the observed data set. Following our estimation procedure gives

B̂ =




0.14 0.30 −0.07
0.23 −0.11 −0.11
0.49 −0.15 0.89




as the estimated ICA transformation matrix (unmixing matrix) with the estimated kurtosis
matrix

D̂ = diag(0.39, 0.36, 0.25) .

Both are close to the true values but the second row of the unmixing matrix has changed
sign. The successful estimation is clearly visible in Figure 3 which shows a plot of the es-
timated independent components. Apart from the flipped axis the plot is almost identical
to the original plot.

4.2 Example: Swiss Bank Notes
Assume that the distribution of x is a mixture of two multivariate normal distribution
differing only in location: x has a Np(µ1,Σ)-distribution with probability 1 − ε and a
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Figure 3: Toy example: Scatter plots for estimated independent components (X(B(X))′)

Np(µ2,Σ)-distribution with probability ε. The distribution lies in the IC-I model, and one
possible vector of independent components s is the mixture of multivariate normal distri-
butions Np(0, I) and Np(µ, I), where µ′ = (0, . . . , 0, c) with c2 = (µ2−µ1)

′Σ−1(µ2−µ1).
Note that the last component with lowest kurtosis can be identified with two scatter ma-
trices; it is found in the direction of µ2 − µ1. In this example S1 is again chosen to be
the regular covariance matrix and S2(x) = cov(||x1 − x2||(x1 − x2)) (a matrix of fourth
moments of the differences). With these choices, the last row of the transformation matrix
B yields the direction of lowest kurtosis.

In this example we analyze the data set appeared in Flury and Riedwyl (1988). The
data contain measurements on 100 genuine and 100 forged thousand franc bills. Each
row in the data matrix contains the six measurements for a bill (n = 200, p = 6), namely
length of bill (x1), width of bill measured on the left (x2), width of bill measured on the
right (x3), width of the margin at the bottom (x4), width of the margin at the top (x5), and
length of the image diagonal (x6). See Figure 4 for the data set of 200 observations. We
analyze the data without knowing which of the bills are genuine and which are forged. So
the distribution of the 6-variate random variable x may be thought to be a mixture of two
normal distribution.

The estimates of B and D are now

B̂ =




−1.18 1.74 −0.07 −0.78 −0.71 −0.98
2.40 −2.33 1.03 −0.19 −0.29 −0.91
0.80 1.36 −3.61 0.17 0.71 −0.15
0.98 2.64 −1.24 0.15 −0.79 0.06

−0.39 −1.37 −0.50 0.09 −1.06 −0.68
−0.27 0.43 −0.20 0.57 0.35 −0.03




and
D̂ = diag(41.0, 39.7, 35.1, 32.9, 31.5, 26.4) ,
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Figure 4: Swiss bank notes: Original data set (X)
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Figure 5: Swiss bank notes: ICA transformed data set (X(B(X))′)

respectively, ordered according to kurtosis. The bimodality of the last estimated compo-
nent with lowest kurtosis (caused by the clusters of genuine and forged notes) is clearly
seen in Figure 5. Few outliers (forged bills) seem to cause the high kurtosis of the first
component.
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Dümbgen, L. (1998). On tyler’s M-functional of scatter in high dimension. Annals of
Institute of Statistical Mathematics, 50, 471-491.

Eriksson, J., and Koivunen, V. (2004). Identifiability, separability and uniqueness of
linear ICA models. IEEE Signal Processing Letters, 11, 601–604.

Flury, B., and Riedwyl, H. (1988). Multivariate statistics. a practical approach. London:
Chapman and Hall.

Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent component analysis. J.
Wiley.

Kankainen, A., Taskinen, S., and Oja, H. (2005). Tests of multinormality based on
location vectors and scatter matrices. submitted.

Locantore, N., Marron, J. S., Simpson, D. G., Tripoli, N., Zhang, J. T., and Kohen, K. L.
(1999). Robust principal components for functional data. Test, 8, 1-73.
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