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Abstract: The standard form of Pearson’s chi-squared statistic ignores vari-
ation due to estimating the mean vector in settings where the mean vector
is not completely specified by the null hypothesis, as is the case when test-
ing for homogeneity or independence in two-way tables. The root form of the
statistic is formulated here with and without that additional variance included,
resulting in somewhat different expressions.
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1 Introduction
Pearson (1900) derived the probability distribution of

χ2 = UT{var(U)}−1U , (1)

where U is an n-variate normal random variable with mean 0 and variance-covariance
matrix var(U). Although his notation and terminology are different – he wrote in terms
of “a system of deviations from the means of n variables” – it is clear that this was his
starting point.

After this derivation, he applied the results “to the problem of the fit of an observed to
a theoretical frequency distribution”. This involved substituting the first η of η + 1 differ-
ences oi − ei, i = 1, . . . , η + 1, between observed frequencies oi and known theoretical
frequencies ei in place of U . After considerable algebra, he arrived at the now-ubiquitous
formulation for comparing observed and expected frequencies,

χ2 =

η+1∑
i=1

(oi − ei)
2

ei

. (2)

In his Illustration II, Pearson used the observed total number of fives and sixes in
26,306 tosses of twelve dice to estimate the binomial parameter, from which estimated
theoretical frequencies êi for each of the thirteen possibilities i = 0, . . . , 12 were then
computed. The differences oi − ei became oi − êi. Still, following a two-plus-page
rationalization, he used (2) directly, simply replacing ei by êi, instead of starting with
the basic form (1) with u = (o − ê) − E(O − ê) and var(U) = var(O − ê) (denoting
by O the random variable of which o is the realization). Derivations of E(O − ê) and
var(O − ê) in the context of Illustration II appear to be complicated, and they involve a
nuisance parameter for which a value would have to be substituted in order to derive a
formulation from (1). Something much more complicated than (2) might have resulted,
which likely would not have stuck so well.
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Pearson’s justification for using (1) when the parent distribution must be estimated
from the sample is based on having “a fairly numerous series”. In recent decades, much
attention has been given to the accuracy of probability approximations related to (2), and
to so-called exact probability computations, in settings where sample sizes are not large.
See Agresti (2001). Although the differences shown in the next sections are inconse-
quential for large samples, for small samples they can affect the accuracy of approximate
p-values based on (2).

We shall examine the formulation of (1) in the familiar setting of two-way tables of
frequencies, testing for independence or homogeneity when conditioning on both row and
column marginal totals, one set of marginal totals, or neither. We shall see that (1) leads
to (2) in some settings but not in others.

It is hoped that the notation used here and the background are familiar. Notation is
defined, and some useful results given, in Appendix A.

Denote by F an r × c table of frequencies arising from n independent observations
on the bivariate random variable (I, J), taking pairs of values {(i, j) : i = 1, . . . , r, j =
1, . . . , c}. The entry Fij of F is the number of times that the pair (i, j) occurs among
the n trials. Denote column sums and row sums by N = (n1, . . . , nc)

T and M =
(m1, . . . , mr)

T, respectively. Re-express F as a vector as f = vec(F ). In this form,
we shall use the symbol f to denote both the random variable and its realized value.

Let Π denote the r × c matrix with ij-th entry πij = Pr(I = i, J = j), i = 1, . . . , r,
j = 1, . . . , c. Let πR and πC denote the row and column marginal probability distributions
of (I, J), and let π̂R = M/n and π̂C = N/n.

2 Independent Observations
With n independent observations, f follows a multinomial distribution with parameters n
and vec(Π). Under the null hypothesis that the row and column categories are indepen-
dent, Π = πRπT

C . Estimating expected frequencies under the null hypothesis by nπ̂Riπ̂Cj

and substituting directly into (2) gives

Q0 =
r∑

i=1

c∑
j=1

(Fij − nπ̂Riπ̂Cj)
2

nπ̂Riπ̂Cj

. (3)

It is possible that some π̂Ri or π̂Cj is 0, leaving the term that involves it undefined. Using
(2) directly provides no resolution of this problem, but starting with Pearson’s root form
(1) resolves it neatly, as shown below.

Although this is now one of the most routine applications of Pearson’s chi-squared
statistic, the setting is different from the one for which Pearson derived the statistic. Not
only must the expected frequencies be estimated, but a whole family of distributions of
f satisfies the null hypothesis. The hypothesis of independence itself may be considered
to be different from a hypothesis of goodness-of-fit. Still, it is true that, under the null
hypothesis, the expected value of Fij is πRiπCj , and so Q0 looks like (2) with ei estimated
from the observed frequencies.

Now let us derive the statistic based on f , beginning with Pearson’s original starting
point (1). The vector f of frequencies follows a multinomial distribution with expected
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value nvec(Π) and variance-covariance matrix n{Diag[vec(Π)]− vec(Π)vec(Π)T}. Un-
der the null hypothesis, Π = πRπT

C , and so vec(Π) = πC ⊗ πR. Then the variance-
covariance matrix of f under the null hypothesis is

var0(f) = n{Diag(πC ⊗ πR)− (πC ⊗ πR)(πC ⊗ πR)T} . (4)

Substituting into (1), for any f , πC , and πR such that f − nπC ⊗ πR ∈ sp{var0(f)},
Proposition 3 in Appendix A shows that

(f − nπC ⊗ πR)T{var0(f)}+(f − nπC ⊗ πR)

= (f − nπC ⊗ πR)T{nDiag(πC ⊗ πR)}+(f − nπC ⊗ πR)

=
r∑

i=1

c∑
j=1

(Fij − nπRiπCj)
2(nπRiπCj)

+ . (5)

Values of the nuisance parameters πR and πC are not specified in the null hypothesis. The
question, which values should be used for them, is interesting, but we shall simply substi-
tute the estimates π̂R and π̂C for them. These preserve the desired asymptotic properties
of the statistic, while others might not. (Cramér (1946, p. 426 and p. 442) notes that these
estimates result from the “modified χ2 minimum method”.) Call the resulting statistic Q1;
with these substitutions, it is the same as Q0.

Proposition 3 requires the inclusion relation z ∈ sp(D−DAD), which here becomes
f−nπC⊗πR ∈ sp{var0(f)}. That it be satisfied here requires only that Fij−nπRiπCj = 0
whenever πRiπCj = 0, that is, that πRiπCj = 0 implies that Fij = 0, which is satisfied
when π̂R and π̂C are used. This fact is used in subsequent developments, but it will not be
discussed again.

It is straightforward to show that E0(f − nπ̂C ⊗ π̂R) = 0. One way to derive an
expression for its variance is to uncondition (9). This gives

var0(f − nπ̂C ⊗ π̂R) =

(
n− 1

n

)
n{Diag(πC)− πCπT

C} ⊗ {Diag(πR)− πRπT
R} . (6)

Using f − nπ̂C ⊗ π̂R and its estimated variance-covariance matrix in (1) results in

Q2 = (f − nπ̂C ⊗ π̂R)T{v̂ar0(f − nπ̂C ⊗ π̂R)}+(f − nπ̂C ⊗ π̂R)

=

(
n

n− 1

)
Q0 , (7)

upon applying Proposition 3 again.

3 Conditioning on Column Totals
Now consider the same setting, but conditional on the column totals. Denote the condi-
tional expected value of the j-th column of F by njµj . The null hypothesis is H0 : µ1 =
· · · = µc. Under H0, denote this common mean vector by µ0, and note that it is the same
as πR.
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Conventionally, Q0 is used in this setting to test H0. We shall derive Pearson’s statis-
tic from (1) based on f and on f − Ê0(f |N). The conditional distribution of f is the
product of multinomial distributions, and under H0 all have the same vector of category
probabilities πR. Denote the j-th column of F by fj , so that fT = (fT

1 , . . . , fT
c ). Then

E0(fj|N) = njµ0 = nπ̂CjπR, and so we see that f − E0(f |N) = f − nπ̂C ⊗ πR.
The variance-covariance matrix of f is block-diagonal, the j-th diagonal block being
var0(fj|N) = nj{Diag(πR)− πRπT

R}, that is,

var0(f |N) = nDiag(π̂C)⊗ {Diag(πR)− πRπT
R} . (8)

Noting that, conditional on the column sums N , f − nπ̂C ⊗ π̂R is a linear transformation
of f , it may be shown that

var0(f − nπ̂C ⊗ π̂R|N) = n{Diag(π̂C)− π̂C π̂T
C} ⊗ {Diag(πR)− πRπT

R}. (9)

With these expressions, substituting π̂R for πR and using Proposition 3, we have

Q3 = (f − nπ̂C ⊗ π̂R)T{v̂ar0(f |N)}+(f − nπ̂C ⊗ π̂R)

= Q0

and

Q4 = (f − nπ̂C ⊗ π̂R)T{v̂ar0(f − nπ̂C ⊗ π̂R|N)}+(f − nπ̂C ⊗ π̂R)

= Q0 .

In this setting, conditioning on column totals, whether Pearson’s statistic (1) is constructed
from f , Ê0(f |N), and v̂ar0(f |N) or from f − nπ̂C ⊗ π̂R and its estimated variance-
covariance matrix, the result is Q0 either way.

4 Conditioning on Both Row and Column Totals
Finally, consider the setting conditional on both row and column totals. The null hy-
pothesis is that the c columnwise conditional expected values µ1, . . . , µc are all the same.
With π̂C and π̂R fixed, var0(f |M, N) and var0(f − nπ̂C π̂R|M,N) are the same. An ex-
pression for var0(f |M, N) can be derived, with care and perseverance, directly from the
conditional distribution of f . It is

var0(f |M, N) = var0(f − nπ̂C ⊗ π̂R|M, N)

=

(
n

n− 1

)
n{Diag(π̂C)− π̂C π̂T

C} ⊗ {Diag(π̂R)− π̂Rπ̂T
R} . (10)

Note that, due to the conditioning, there are no nuisance parameters; the conditional dis-
tribution of f is completely specified under H0. From (1), the statistic is

Q5 = (f − nπ̂C π̂R)T{var0(f |M, N)}+(f − nπ̂C π̂R)

=

(
n− 1

n

)
(f − nπ̂C π̂R)T{nDiag(π̂C ⊗ π̂R)}+(f − nπ̂C π̂R)

=

(
n− 1

n

)
Q0 . (11)



L.R. LaMotte 303

Steyn and Stumpf (1984) show (10) in their discussion of asymptotics, but it is the
same as the expressions they derived earlier (pp. 144–145), rearranged in the compact
form of Kronecker products of matrices. For 2× 2 tables, Upton (1982) based an adjust-
ment to the chi-squared statistic on the ratio n/(n − 1), implicitly following (1), basing
the statistic on the difference between the two sample proportions and using the variance
of that difference conditioning on both row and column totals.

Conditional on M and N , the distribution of Q0 is completely specified by the null
hypothesis, but intractable. Because Q5 is a quadratic form in f − nπ̂C π̂R, its expected
value can be derived directly from the first two moments of f :

E0(Q5|M, N) = tr[(nD̂C ⊗ D̂R)+n{(D̂C − π̂C π̂T
C)⊗ (D̂R − π̂Rπ̂T

R)}]
= tr{(D̂+

CD̂C − D̂+
C π̂C π̂T

C)⊗ (D̂+
RD̂R − D̂+

R π̂Rπ̂T
R)}

= (c+ − 1)(r+ − 1),

where D̂C = Diag(π̂C), D̂R = Diag(π̂R), and c+ and r+ are the numbers of non-zero
column and row sums, respectively. Because Q0 = n/(n− 1)Q5,

E0(Q0|M, N) =
n

n− 1
(c+ − 1)(r+ − 1), (12)

which agrees with expressions found by Haldane (1940), Steyn and Stumpf (1984), and
others. Expressions for the expected values of Q0 conditional on column sums or un-
conditional can be derived by unconditioning (12), but they depend on πR and π̂C or πC

and do not appear to be informative. It is perhaps interesting to note that (12) appears as
n(r − 1)(c− 1)/(n− 1) in Haldane (1940) and Steyn and Stumpf (1984). In both refer-
ences, though, it is clear that the derivation is for conditioning on both row and column
totals, and that it is assumed that all row and column totals are positive. Cramér (1946)
quotes the same result, first in what appears to be the unconditional setting (p. 443) and
again in the column conditional setting (p. 447). The expression (12) is not correct when
either or both conditions are relaxed, although there is very little difference except for
small n. For example, for a 2 × c table, the approximating chi-squared distribution has
expected value c− 1. Unconditioning on the row sums, it may be seen that

E0(Q0|N) =
n

n− 1
(c+ − 1)(1− πn

R1 − πn
R2).

Depending on πR1 = 1 − πR2, the expected value can be anything between 0 at πR1 = 0
or 1 and n(c+ − 1)(1− 1/2n−1)/(n− 1) at πR1 = 1/2.

5 Conclusion
In practice, the form (2) is used in all three of the settings addressed here. If the test
statistic is developed from Pearson’s root form (1) instead, different statistics result when
there is no conditioning or when conditioning on both row and column totals. However,
the differences are slight, involving factors n/(n− 1) and (n− 1)/n, respectively, while
the basic quadratic form persists throughout.
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So far as I have been able to tell, the derivations of (2) from (1) for two-way tables
have not appeared before. Rather, the canonical form (2) has simply been applied directly
without going back to the root form. Perhaps that’s not surprising – Pearson’s (1900)
derivation of (2) from (1) is a long and busy algebraic argument. The same sort of deriva-
tion in two-way tables appears at first to be considerably more complicated. However,
by formulating the problem in terms of matrices and exploiting the structures entailed in
Propositions 1–3 in the Appendix, the derivations becomes reasonably straightforward.

A Notation and Propositions
Denote transpose of a matrix A by AT. If A has an inverse, denote it by A−1. For a
ν-vector a, Diag(a) = Diag(a1, . . . , aν) denotes the ν × ν diagonal matrix with diagonal
elements a1, . . . , aν . For a real number x, let x+ be 1/x if x 6= 0 and 0 if x = 0. Denote the
Moore-Penrose pseudoinverse of a matrix A by A+. The Moore-Penrose pseudoinverse
of a diagonal matrix D = Diag(a) is D+ = Diag(a+

1 , . . . , a+
ν ). A symmetric matrix A

has the spectral decomposition A = PΛPT, where Λ is diagonal with diagonal elements
that are the eigenvalues of A (repeated according to their multiplicities), and columns
of P are corresponding orthonormal eigenvectors. Then A+ = PΛ+PT. Denote the
linear subspace spanned by the columns of a matrix A by sp(A). Denote the trace of a
square matrix A by tr(A). Denote the Kronecker product of matrices A and B by A⊗B.
For an r × c matrix A, let vec(A) denote the column vector formed by concatenating
the columns of A vertically, that is, the ((j − 1)c + i)-th entry in vec(A) is the (i, j)-th
entry of A, i = 1, . . . , r, j = 1, . . . , c. Unless specified otherwise, vectors are column
vectors, that is, matrices with one column. When a denotes a vector, its i-th element is
denoted ai. For vectors a and b, vec(abT) = b⊗ a. For a random variable U and a vector
a, var(a ⊗ U) = (aaT) ⊗ var(U). Denote expected value and variance of the random
variable U under a null hypothesis (like independence or homogeneity) H0 by E0(U) and
var0(U). For the most part, a random variable and a realization of it will be distinguished
notationally by upper-case and lower-case letters, like U for the random variable and u for
a realization. In the case of f , though, this convention is clumsy and so will be violated,
and the meanings of expressions like E0(f) and var0(f) must be taken from context.

For propositions 1 and 2 below, let V be an n × n symmetric nonnegative-definite
matrix of rank r, where r is an integer between 1 and n. Note that there exists an n × r
matrix L such that LTV L is positive definite. One choice is L = P , where columns of
P comprise a basis for sp(V ). Proposition 1, which may be proved easily, shows that for
any such matrix L, columns of V L form a basis for sp(V ).

Proposition 1. Let L be an n × r matrix. In order that LTV L be nonsingular it is
necessary and sufficient that columns of V L be linearly independent.

Proposition 2. If L1 and L2 are n × r matrices such that LT
1 V L1 and LT

2 V L2 are
positive definite, then for any vector u ∈ sp(V ),

(LT
1 u)T(LT

1 V L1)
−1(LT

1 u) = (LT
2 u)T(LT

2 V L2)
−1(LT

2 u) .

Proposition 2 may be proved by noting that, since V L1 and V L2 are both bases for
sp(V ), there exists a nonsingular matrix B such that V L1 = V L2B.
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When an n-variate random variable U has mean vector 0 and variance-covariance
matrix V having rank r, then positive density of U is restricted to u ∈ sp(V ). The
distribution of U can be represented in terms of the non-degenerate random variable LTU ,
where L is n×r and LTV L is nonsingular. For u ∈ sp(V ), u and LTu are one-to-one. For
two different such matrices L1 and L2, LT

1 U and LT
2 U may be different, but Proposition

2 shows that the indicated quadratic forms are the same. Let P be a matrix with columns
that are orthonormal eigenvectors of V corresponding to its positive eigenvalues, so that
P is n×r and PTV P is nonsingular. Then, by Proposition 2, for any n×r matrix L such
that LTV L is nonsingular and any u ∈ sp(V ),

(LTu)T(LTV L)−1(LTu) = (PTu)T(PTV P )−1(PTu) = uTV +u .

Proposition 3. If A and D are symmetric ν × ν matrices and DAD = DADAD,
then for any vector z in sp(D −DAD),

zT(D −DAD)+z = zTD+z .

Proof. Because z ∈ sp(D −DAD), there is a vector u such that z = (D −DAD)u.
Then

zT(D −DAD)+z = uT(D −DAD)u .

And

zTD+z = uT(D −DAD)D+(D −DAD)u

= uT(D −DAD −DAD + DADAD)u

= uT(D −DAD)u = zT(D −DAD)+z .

It can be shown that, for symmetric matrices A and B, (A⊗ B)+ = A+ ⊗ B+. With
that, it is straightforward to show that Proposition 3 extends to Kronecker products of the
form (D1 − D1A1D1) ⊗ (D2 − D2A2D2), a form shared by all the variance-covariance
matrices used in Section 2.

An m-category multinomial random variable f with category probabilities π and sam-
ple size n has variance-covariance matrix n{Diag(π)− ππT}, and { } has the properties
of D −DAD in Proposition 3, with D = Diag(π) and A = 1m1T

m, where 1m denotes an
m-vector of ones. Pearson avoided the singularity of the distribution of f by using only
its first m− 1 entries. That is the same as using LTU with L defined to be the first m− 1
columns of the m×m identity matrix. If all entries in π are positive, then LTvar(f)L is
positive definite. Whether we choose to use the first m− 1 components or the last m− 1,
or to leave out the middle component instead, whatever L we choose such that LTvar(f)L
is nonsingular with the same rank as var(f),

{LT(f − nπ)}T[LTn{Diag(π)− ππT}L]−1{LT(f − nπ)}
= (f − nπ)T{nDiag(π)}+(f − nπ)

=
m∑

i=1

(fi − nπi)
2(nπi)

+ , (13)

so long as f−nπ ∈ sp[n{Diag(π)−ππT}]. If no πi is 0, then (2) results. If some πj = 0,
then (13) holds provided that fj − nπj = 0.
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